mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
d815d3c37a
Having a custom inliner doesn't really fit in with the new PM's pipeline. It's also extra technical debt. amdgpu-inline only does a couple of custom things compared to the normal inliner: 1) It disables inlining if the number of BBs in a function would exceed some limit 2) It increases the threshold if there are pointers to private arrays(?) These can all be handled as TTI inliner hooks. There already exists a hook for backends to multiply the inlining threshold. This way we can remove the custom amdgpu-inline pass. This caused inline-hint.ll to fail, and after some investigation, it looks like getInliningThresholdMultiplier() was previously getting applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it not applying at all, so some later inliner change must have fixed something), so I had to change the threshold in the test. Reviewed By: rampitec Differential Revision: https://reviews.llvm.org/D94153
1474 lines
53 KiB
C++
1474 lines
53 KiB
C++
//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/TargetTransformInfoImpl.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "tti"
|
|
|
|
static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
|
|
cl::Hidden,
|
|
cl::desc("Recognize reduction patterns."));
|
|
|
|
namespace {
|
|
/// No-op implementation of the TTI interface using the utility base
|
|
/// classes.
|
|
///
|
|
/// This is used when no target specific information is available.
|
|
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
|
|
explicit NoTTIImpl(const DataLayout &DL)
|
|
: TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
|
|
};
|
|
} // namespace
|
|
|
|
bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
|
|
// If the loop has irreducible control flow, it can not be converted to
|
|
// Hardware loop.
|
|
LoopBlocksRPO RPOT(L);
|
|
RPOT.perform(&LI);
|
|
if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) :
|
|
II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) {
|
|
|
|
FunctionType *FTy = I.getCalledFunction()->getFunctionType();
|
|
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
|
|
Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end());
|
|
if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
|
|
FMF = FPMO->getFastMathFlags();
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
|
|
const CallBase &CI) :
|
|
II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) {
|
|
|
|
if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
|
|
FMF = FPMO->getFastMathFlags();
|
|
|
|
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
|
|
FunctionType *FTy =
|
|
CI.getCalledFunction()->getFunctionType();
|
|
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
|
|
const CallBase &CI,
|
|
ElementCount Factor)
|
|
: RetTy(CI.getType()), IID(Id), VF(Factor) {
|
|
|
|
assert(!Factor.isScalable() && "Scalable vectors are not yet supported");
|
|
if (auto *FPMO = dyn_cast<FPMathOperator>(&CI))
|
|
FMF = FPMO->getFastMathFlags();
|
|
|
|
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
|
|
FunctionType *FTy =
|
|
CI.getCalledFunction()->getFunctionType();
|
|
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
|
|
const CallBase &CI,
|
|
ElementCount Factor,
|
|
unsigned ScalarCost)
|
|
: RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) {
|
|
|
|
if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
|
|
FMF = FPMO->getFastMathFlags();
|
|
|
|
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
|
|
FunctionType *FTy =
|
|
CI.getCalledFunction()->getFunctionType();
|
|
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
|
|
ArrayRef<Type *> Tys,
|
|
FastMathFlags Flags) :
|
|
RetTy(RTy), IID(Id), FMF(Flags) {
|
|
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
|
|
ArrayRef<Type *> Tys,
|
|
FastMathFlags Flags,
|
|
unsigned ScalarCost) :
|
|
RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
|
|
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
|
|
ArrayRef<Type *> Tys,
|
|
FastMathFlags Flags,
|
|
unsigned ScalarCost,
|
|
const IntrinsicInst *I) :
|
|
II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
|
|
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
|
|
ArrayRef<Type *> Tys) :
|
|
RetTy(RTy), IID(Id) {
|
|
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
|
|
}
|
|
|
|
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
|
|
ArrayRef<const Value *> Args)
|
|
: RetTy(Ty), IID(Id) {
|
|
|
|
Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
|
|
ParamTys.reserve(Arguments.size());
|
|
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
|
|
ParamTys.push_back(Arguments[Idx]->getType());
|
|
}
|
|
|
|
bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
|
|
LoopInfo &LI, DominatorTree &DT,
|
|
bool ForceNestedLoop,
|
|
bool ForceHardwareLoopPHI) {
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
for (BasicBlock *BB : ExitingBlocks) {
|
|
// If we pass the updated counter back through a phi, we need to know
|
|
// which latch the updated value will be coming from.
|
|
if (!L->isLoopLatch(BB)) {
|
|
if (ForceHardwareLoopPHI || CounterInReg)
|
|
continue;
|
|
}
|
|
|
|
const SCEV *EC = SE.getExitCount(L, BB);
|
|
if (isa<SCEVCouldNotCompute>(EC))
|
|
continue;
|
|
if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
|
|
if (ConstEC->getValue()->isZero())
|
|
continue;
|
|
} else if (!SE.isLoopInvariant(EC, L))
|
|
continue;
|
|
|
|
if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
|
|
continue;
|
|
|
|
// If this exiting block is contained in a nested loop, it is not eligible
|
|
// for insertion of the branch-and-decrement since the inner loop would
|
|
// end up messing up the value in the CTR.
|
|
if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
|
|
continue;
|
|
|
|
// We now have a loop-invariant count of loop iterations (which is not the
|
|
// constant zero) for which we know that this loop will not exit via this
|
|
// existing block.
|
|
|
|
// We need to make sure that this block will run on every loop iteration.
|
|
// For this to be true, we must dominate all blocks with backedges. Such
|
|
// blocks are in-loop predecessors to the header block.
|
|
bool NotAlways = false;
|
|
for (BasicBlock *Pred : predecessors(L->getHeader())) {
|
|
if (!L->contains(Pred))
|
|
continue;
|
|
|
|
if (!DT.dominates(BB, Pred)) {
|
|
NotAlways = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (NotAlways)
|
|
continue;
|
|
|
|
// Make sure this blocks ends with a conditional branch.
|
|
Instruction *TI = BB->getTerminator();
|
|
if (!TI)
|
|
continue;
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (!BI->isConditional())
|
|
continue;
|
|
|
|
ExitBranch = BI;
|
|
} else
|
|
continue;
|
|
|
|
// Note that this block may not be the loop latch block, even if the loop
|
|
// has a latch block.
|
|
ExitBlock = BB;
|
|
TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType()));
|
|
|
|
if (!EC->getType()->isPointerTy() && EC->getType() != CountType)
|
|
TripCount = SE.getZeroExtendExpr(TripCount, CountType);
|
|
|
|
break;
|
|
}
|
|
|
|
if (!ExitBlock)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
|
|
: TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
|
|
|
|
TargetTransformInfo::~TargetTransformInfo() {}
|
|
|
|
TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
|
|
: TTIImpl(std::move(Arg.TTIImpl)) {}
|
|
|
|
TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
|
|
TTIImpl = std::move(RHS.TTIImpl);
|
|
return *this;
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
|
|
return TTIImpl->getInliningThresholdMultiplier();
|
|
}
|
|
|
|
unsigned
|
|
TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
|
|
return TTIImpl->adjustInliningThreshold(CB);
|
|
}
|
|
|
|
int TargetTransformInfo::getInlinerVectorBonusPercent() const {
|
|
return TTIImpl->getInlinerVectorBonusPercent();
|
|
}
|
|
|
|
int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
|
|
const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI) const {
|
|
return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
|
|
}
|
|
|
|
int TargetTransformInfo::getUserCost(const User *U,
|
|
ArrayRef<const Value *> Operands,
|
|
enum TargetCostKind CostKind) const {
|
|
int Cost = TTIImpl->getUserCost(U, Operands, CostKind);
|
|
assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
|
|
"TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
bool TargetTransformInfo::hasBranchDivergence() const {
|
|
return TTIImpl->hasBranchDivergence();
|
|
}
|
|
|
|
bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
|
|
return TTIImpl->useGPUDivergenceAnalysis();
|
|
}
|
|
|
|
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
|
|
return TTIImpl->isSourceOfDivergence(V);
|
|
}
|
|
|
|
bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
|
|
return TTIImpl->isAlwaysUniform(V);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getFlatAddressSpace() const {
|
|
return TTIImpl->getFlatAddressSpace();
|
|
}
|
|
|
|
bool TargetTransformInfo::collectFlatAddressOperands(
|
|
SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
|
|
return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
|
|
}
|
|
|
|
bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
|
|
unsigned ToAS) const {
|
|
return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
|
|
return TTIImpl->getAssumedAddrSpace(V);
|
|
}
|
|
|
|
Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
|
|
IntrinsicInst *II, Value *OldV, Value *NewV) const {
|
|
return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
|
|
return TTIImpl->isLoweredToCall(F);
|
|
}
|
|
|
|
bool TargetTransformInfo::isHardwareLoopProfitable(
|
|
Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
|
|
TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
|
|
return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
|
|
}
|
|
|
|
bool TargetTransformInfo::preferPredicateOverEpilogue(
|
|
Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
|
|
TargetLibraryInfo *TLI, DominatorTree *DT,
|
|
const LoopAccessInfo *LAI) const {
|
|
return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
|
|
}
|
|
|
|
bool TargetTransformInfo::emitGetActiveLaneMask() const {
|
|
return TTIImpl->emitGetActiveLaneMask();
|
|
}
|
|
|
|
Optional<Instruction *>
|
|
TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
|
|
IntrinsicInst &II) const {
|
|
return TTIImpl->instCombineIntrinsic(IC, II);
|
|
}
|
|
|
|
Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
|
|
InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
|
|
bool &KnownBitsComputed) const {
|
|
return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
|
|
KnownBitsComputed);
|
|
}
|
|
|
|
Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
|
|
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
|
|
APInt &UndefElts2, APInt &UndefElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) const {
|
|
return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
|
|
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
|
|
SimplifyAndSetOp);
|
|
}
|
|
|
|
void TargetTransformInfo::getUnrollingPreferences(
|
|
Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
|
|
return TTIImpl->getUnrollingPreferences(L, SE, UP);
|
|
}
|
|
|
|
void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
PeelingPreferences &PP) const {
|
|
return TTIImpl->getPeelingPreferences(L, SE, PP);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
|
|
return TTIImpl->isLegalAddImmediate(Imm);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
|
|
return TTIImpl->isLegalICmpImmediate(Imm);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace,
|
|
Instruction *I) const {
|
|
return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
Scale, AddrSpace, I);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
|
|
return TTIImpl->isLSRCostLess(C1, C2);
|
|
}
|
|
|
|
bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
|
|
return TTIImpl->isNumRegsMajorCostOfLSR();
|
|
}
|
|
|
|
bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
|
|
return TTIImpl->isProfitableLSRChainElement(I);
|
|
}
|
|
|
|
bool TargetTransformInfo::canMacroFuseCmp() const {
|
|
return TTIImpl->canMacroFuseCmp();
|
|
}
|
|
|
|
bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
|
|
ScalarEvolution *SE, LoopInfo *LI,
|
|
DominatorTree *DT, AssumptionCache *AC,
|
|
TargetLibraryInfo *LibInfo) const {
|
|
return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
|
|
}
|
|
|
|
bool TargetTransformInfo::shouldFavorPostInc() const {
|
|
return TTIImpl->shouldFavorPostInc();
|
|
}
|
|
|
|
bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
|
|
return TTIImpl->shouldFavorBackedgeIndex(L);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
|
|
Align Alignment) const {
|
|
return TTIImpl->isLegalMaskedStore(DataType, Alignment);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
|
|
Align Alignment) const {
|
|
return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalNTStore(Type *DataType,
|
|
Align Alignment) const {
|
|
return TTIImpl->isLegalNTStore(DataType, Alignment);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
|
|
return TTIImpl->isLegalNTLoad(DataType, Alignment);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
|
|
Align Alignment) const {
|
|
return TTIImpl->isLegalMaskedGather(DataType, Alignment);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
|
|
Align Alignment) const {
|
|
return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
|
|
return TTIImpl->isLegalMaskedCompressStore(DataType);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
|
|
return TTIImpl->isLegalMaskedExpandLoad(DataType);
|
|
}
|
|
|
|
bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
|
|
return TTIImpl->hasDivRemOp(DataType, IsSigned);
|
|
}
|
|
|
|
bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
|
|
unsigned AddrSpace) const {
|
|
return TTIImpl->hasVolatileVariant(I, AddrSpace);
|
|
}
|
|
|
|
bool TargetTransformInfo::prefersVectorizedAddressing() const {
|
|
return TTIImpl->prefersVectorizedAddressing();
|
|
}
|
|
|
|
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace) const {
|
|
int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
Scale, AddrSpace);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
bool TargetTransformInfo::LSRWithInstrQueries() const {
|
|
return TTIImpl->LSRWithInstrQueries();
|
|
}
|
|
|
|
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
return TTIImpl->isTruncateFree(Ty1, Ty2);
|
|
}
|
|
|
|
bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
|
|
return TTIImpl->isProfitableToHoist(I);
|
|
}
|
|
|
|
bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
|
|
|
|
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
|
|
return TTIImpl->isTypeLegal(Ty);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
|
|
return TTIImpl->getRegUsageForType(Ty);
|
|
}
|
|
|
|
bool TargetTransformInfo::shouldBuildLookupTables() const {
|
|
return TTIImpl->shouldBuildLookupTables();
|
|
}
|
|
bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
|
|
Constant *C) const {
|
|
return TTIImpl->shouldBuildLookupTablesForConstant(C);
|
|
}
|
|
|
|
bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
|
|
return TTIImpl->useColdCCForColdCall(F);
|
|
}
|
|
|
|
unsigned
|
|
TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
|
|
const APInt &DemandedElts,
|
|
bool Insert, bool Extract) const {
|
|
return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getOperandsScalarizationOverhead(
|
|
ArrayRef<const Value *> Args, unsigned VF) const {
|
|
return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
|
|
}
|
|
|
|
bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
|
|
return TTIImpl->supportsEfficientVectorElementLoadStore();
|
|
}
|
|
|
|
bool TargetTransformInfo::enableAggressiveInterleaving(
|
|
bool LoopHasReductions) const {
|
|
return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
|
|
}
|
|
|
|
TargetTransformInfo::MemCmpExpansionOptions
|
|
TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
|
|
return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
|
|
}
|
|
|
|
bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
|
|
return TTIImpl->enableInterleavedAccessVectorization();
|
|
}
|
|
|
|
bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
|
|
return TTIImpl->enableMaskedInterleavedAccessVectorization();
|
|
}
|
|
|
|
bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
|
|
return TTIImpl->isFPVectorizationPotentiallyUnsafe();
|
|
}
|
|
|
|
bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
|
|
unsigned BitWidth,
|
|
unsigned AddressSpace,
|
|
unsigned Alignment,
|
|
bool *Fast) const {
|
|
return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
|
|
AddressSpace, Alignment, Fast);
|
|
}
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
|
|
return TTIImpl->getPopcntSupport(IntTyWidthInBit);
|
|
}
|
|
|
|
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
|
|
return TTIImpl->haveFastSqrt(Ty);
|
|
}
|
|
|
|
bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
|
|
return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
|
|
}
|
|
|
|
int TargetTransformInfo::getFPOpCost(Type *Ty) const {
|
|
int Cost = TTIImpl->getFPOpCost(Ty);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm,
|
|
Type *Ty) const {
|
|
int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst) const {
|
|
int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int
|
|
TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
|
|
return TTIImpl->getNumberOfRegisters(ClassID);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
|
|
Type *Ty) const {
|
|
return TTIImpl->getRegisterClassForType(Vector, Ty);
|
|
}
|
|
|
|
const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
|
|
return TTIImpl->getRegisterClassName(ClassID);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
|
|
return TTIImpl->getRegisterBitWidth(Vector);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
|
|
return TTIImpl->getMinVectorRegisterBitWidth();
|
|
}
|
|
|
|
Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
|
|
return TTIImpl->getMaxVScale();
|
|
}
|
|
|
|
bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
|
|
return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
|
|
return TTIImpl->getMinimumVF(ElemWidth);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
|
|
unsigned Opcode) const {
|
|
return TTIImpl->getMaximumVF(ElemWidth, Opcode);
|
|
}
|
|
|
|
bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
|
|
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
|
|
return TTIImpl->shouldConsiderAddressTypePromotion(
|
|
I, AllowPromotionWithoutCommonHeader);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getCacheLineSize() const {
|
|
return TTIImpl->getCacheLineSize();
|
|
}
|
|
|
|
llvm::Optional<unsigned>
|
|
TargetTransformInfo::getCacheSize(CacheLevel Level) const {
|
|
return TTIImpl->getCacheSize(Level);
|
|
}
|
|
|
|
llvm::Optional<unsigned>
|
|
TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
|
|
return TTIImpl->getCacheAssociativity(Level);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getPrefetchDistance() const {
|
|
return TTIImpl->getPrefetchDistance();
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMinPrefetchStride(
|
|
unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
|
|
unsigned NumPrefetches, bool HasCall) const {
|
|
return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
|
|
NumPrefetches, HasCall);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
|
|
return TTIImpl->getMaxPrefetchIterationsAhead();
|
|
}
|
|
|
|
bool TargetTransformInfo::enableWritePrefetching() const {
|
|
return TTIImpl->enableWritePrefetching();
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
|
|
return TTIImpl->getMaxInterleaveFactor(VF);
|
|
}
|
|
|
|
TargetTransformInfo::OperandValueKind
|
|
TargetTransformInfo::getOperandInfo(const Value *V,
|
|
OperandValueProperties &OpProps) {
|
|
OperandValueKind OpInfo = OK_AnyValue;
|
|
OpProps = OP_None;
|
|
|
|
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->getValue().isPowerOf2())
|
|
OpProps = OP_PowerOf2;
|
|
return OK_UniformConstantValue;
|
|
}
|
|
|
|
// A broadcast shuffle creates a uniform value.
|
|
// TODO: Add support for non-zero index broadcasts.
|
|
// TODO: Add support for different source vector width.
|
|
if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
|
|
if (ShuffleInst->isZeroEltSplat())
|
|
OpInfo = OK_UniformValue;
|
|
|
|
const Value *Splat = getSplatValue(V);
|
|
|
|
// Check for a splat of a constant or for a non uniform vector of constants
|
|
// and check if the constant(s) are all powers of two.
|
|
if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
|
|
OpInfo = OK_NonUniformConstantValue;
|
|
if (Splat) {
|
|
OpInfo = OK_UniformConstantValue;
|
|
if (auto *CI = dyn_cast<ConstantInt>(Splat))
|
|
if (CI->getValue().isPowerOf2())
|
|
OpProps = OP_PowerOf2;
|
|
} else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
|
|
OpProps = OP_PowerOf2;
|
|
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
|
|
if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
|
|
if (CI->getValue().isPowerOf2())
|
|
continue;
|
|
OpProps = OP_None;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for a splat of a uniform value. This is not loop aware, so return
|
|
// true only for the obviously uniform cases (argument, globalvalue)
|
|
if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
|
|
OpInfo = OK_UniformValue;
|
|
|
|
return OpInfo;
|
|
}
|
|
|
|
int TargetTransformInfo::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
OperandValueKind Opd1Info,
|
|
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
|
|
OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) const {
|
|
int Cost = TTIImpl->getArithmeticInstrCost(
|
|
Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo,
|
|
Args, CxtI);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty,
|
|
int Index, VectorType *SubTp) const {
|
|
int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
TTI::CastContextHint
|
|
TargetTransformInfo::getCastContextHint(const Instruction *I) {
|
|
if (!I)
|
|
return CastContextHint::None;
|
|
|
|
auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
|
|
unsigned GatScatOp) {
|
|
const Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return CastContextHint::None;
|
|
|
|
if (I->getOpcode() == LdStOp)
|
|
return CastContextHint::Normal;
|
|
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == MaskedOp)
|
|
return TTI::CastContextHint::Masked;
|
|
if (II->getIntrinsicID() == GatScatOp)
|
|
return TTI::CastContextHint::GatherScatter;
|
|
}
|
|
|
|
return TTI::CastContextHint::None;
|
|
};
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPExt:
|
|
return getLoadStoreKind(I->getOperand(0), Instruction::Load,
|
|
Intrinsic::masked_load, Intrinsic::masked_gather);
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
if (I->hasOneUse())
|
|
return getLoadStoreKind(*I->user_begin(), Instruction::Store,
|
|
Intrinsic::masked_store,
|
|
Intrinsic::masked_scatter);
|
|
break;
|
|
default:
|
|
return CastContextHint::None;
|
|
}
|
|
|
|
return TTI::CastContextHint::None;
|
|
}
|
|
|
|
int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const {
|
|
assert((I == nullptr || I->getOpcode() == Opcode) &&
|
|
"Opcode should reflect passed instruction.");
|
|
int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
|
|
VectorType *VecTy,
|
|
unsigned Index) const {
|
|
int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const {
|
|
assert((I == nullptr || I->getOpcode() == Opcode) &&
|
|
"Opcode should reflect passed instruction.");
|
|
int Cost =
|
|
TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const {
|
|
assert((I == nullptr || I->getOpcode() == Opcode) &&
|
|
"Opcode should reflect passed instruction.");
|
|
int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind, I);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getMaskedMemoryOpCost(
|
|
unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost =
|
|
TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getGatherScatterOpCost(
|
|
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
|
|
int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) const {
|
|
int Cost = TTIImpl->getInterleavedMemoryOpCost(
|
|
Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int
|
|
TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
|
|
ArrayRef<Type *> Tys,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
|
|
return TTIImpl->getNumberOfParts(Tp);
|
|
}
|
|
|
|
int TargetTransformInfo::getAddressComputationCost(Type *Tp,
|
|
ScalarEvolution *SE,
|
|
const SCEV *Ptr) const {
|
|
int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
|
|
int Cost = TTIImpl->getMemcpyCost(I);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode,
|
|
VectorType *Ty,
|
|
bool IsPairwiseForm,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
|
|
CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
int TargetTransformInfo::getMinMaxReductionCost(
|
|
VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
|
|
TTI::TargetCostKind CostKind) const {
|
|
int Cost =
|
|
TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
|
|
CostKind);
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
|
|
bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
|
|
CostKind);
|
|
}
|
|
|
|
unsigned
|
|
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
|
|
return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
|
|
}
|
|
|
|
bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|
MemIntrinsicInfo &Info) const {
|
|
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
|
|
return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
|
|
}
|
|
|
|
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
|
|
IntrinsicInst *Inst, Type *ExpectedType) const {
|
|
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
|
|
}
|
|
|
|
Type *TargetTransformInfo::getMemcpyLoopLoweringType(
|
|
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
|
|
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
|
|
return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
|
|
DestAddrSpace, SrcAlign, DestAlign);
|
|
}
|
|
|
|
void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
|
|
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
|
|
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
|
|
unsigned SrcAlign, unsigned DestAlign) const {
|
|
TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
|
|
SrcAddrSpace, DestAddrSpace,
|
|
SrcAlign, DestAlign);
|
|
}
|
|
|
|
bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
return TTIImpl->areInlineCompatible(Caller, Callee);
|
|
}
|
|
|
|
bool TargetTransformInfo::areFunctionArgsABICompatible(
|
|
const Function *Caller, const Function *Callee,
|
|
SmallPtrSetImpl<Argument *> &Args) const {
|
|
return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
|
|
}
|
|
|
|
bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
|
|
Type *Ty) const {
|
|
return TTIImpl->isIndexedLoadLegal(Mode, Ty);
|
|
}
|
|
|
|
bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
|
|
Type *Ty) const {
|
|
return TTIImpl->isIndexedStoreLegal(Mode, Ty);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
|
|
return TTIImpl->getLoadStoreVecRegBitWidth(AS);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
|
|
return TTIImpl->isLegalToVectorizeLoad(LI);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
|
|
return TTIImpl->isLegalToVectorizeStore(SI);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalToVectorizeLoadChain(
|
|
unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
|
|
return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
|
|
AddrSpace);
|
|
}
|
|
|
|
bool TargetTransformInfo::isLegalToVectorizeStoreChain(
|
|
unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
|
|
return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
|
|
AddrSpace);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
|
|
unsigned LoadSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const {
|
|
return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
|
|
unsigned StoreSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const {
|
|
return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
|
|
}
|
|
|
|
bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty,
|
|
ReductionFlags Flags) const {
|
|
return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
|
|
}
|
|
|
|
bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
|
|
ReductionFlags Flags) const {
|
|
return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
|
|
}
|
|
|
|
bool TargetTransformInfo::preferPredicatedReductionSelect(
|
|
unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
|
|
return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
|
|
}
|
|
|
|
bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
|
|
return TTIImpl->shouldExpandReduction(II);
|
|
}
|
|
|
|
unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
|
|
return TTIImpl->getGISelRematGlobalCost();
|
|
}
|
|
|
|
bool TargetTransformInfo::supportsScalableVectors() const {
|
|
return TTIImpl->supportsScalableVectors();
|
|
}
|
|
|
|
int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
|
|
return TTIImpl->getInstructionLatency(I);
|
|
}
|
|
|
|
static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
|
|
unsigned Level) {
|
|
// We don't need a shuffle if we just want to have element 0 in position 0 of
|
|
// the vector.
|
|
if (!SI && Level == 0 && IsLeft)
|
|
return true;
|
|
else if (!SI)
|
|
return false;
|
|
|
|
SmallVector<int, 32> Mask(
|
|
cast<FixedVectorType>(SI->getType())->getNumElements(), -1);
|
|
|
|
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
|
|
// we look at the left or right side.
|
|
for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
|
|
Mask[i] = val;
|
|
|
|
ArrayRef<int> ActualMask = SI->getShuffleMask();
|
|
return Mask == ActualMask;
|
|
}
|
|
|
|
static Optional<TTI::ReductionData> getReductionData(Instruction *I) {
|
|
Value *L, *R;
|
|
if (m_BinOp(m_Value(L), m_Value(R)).match(I))
|
|
return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R);
|
|
if (auto *SI = dyn_cast<SelectInst>(I)) {
|
|
if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
|
|
m_SMax(m_Value(L), m_Value(R)).match(SI) ||
|
|
m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
|
|
m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
|
|
m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
|
|
m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
|
|
auto *CI = cast<CmpInst>(SI->getCondition());
|
|
return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R);
|
|
}
|
|
if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
|
|
m_UMax(m_Value(L), m_Value(R)).match(SI)) {
|
|
auto *CI = cast<CmpInst>(SI->getCondition());
|
|
return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R);
|
|
}
|
|
}
|
|
return llvm::None;
|
|
}
|
|
|
|
static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
|
|
unsigned Level,
|
|
unsigned NumLevels) {
|
|
// Match one level of pairwise operations.
|
|
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
|
|
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
|
|
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
|
|
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
|
|
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
|
|
if (!I)
|
|
return TTI::RK_None;
|
|
|
|
assert(I->getType()->isVectorTy() && "Expecting a vector type");
|
|
|
|
Optional<TTI::ReductionData> RD = getReductionData(I);
|
|
if (!RD)
|
|
return TTI::RK_None;
|
|
|
|
ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
|
|
if (!LS && Level)
|
|
return TTI::RK_None;
|
|
ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
|
|
if (!RS && Level)
|
|
return TTI::RK_None;
|
|
|
|
// On level 0 we can omit one shufflevector instruction.
|
|
if (!Level && !RS && !LS)
|
|
return TTI::RK_None;
|
|
|
|
// Shuffle inputs must match.
|
|
Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
|
|
Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
|
|
Value *NextLevelOp = nullptr;
|
|
if (NextLevelOpR && NextLevelOpL) {
|
|
// If we have two shuffles their operands must match.
|
|
if (NextLevelOpL != NextLevelOpR)
|
|
return TTI::RK_None;
|
|
|
|
NextLevelOp = NextLevelOpL;
|
|
} else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
|
|
// On the first level we can omit the shufflevector <0, undef,...>. So the
|
|
// input to the other shufflevector <1, undef> must match with one of the
|
|
// inputs to the current binary operation.
|
|
// Example:
|
|
// %NextLevelOpL = shufflevector %R, <1, undef ...>
|
|
// %BinOp = fadd %NextLevelOpL, %R
|
|
if (NextLevelOpL && NextLevelOpL != RD->RHS)
|
|
return TTI::RK_None;
|
|
else if (NextLevelOpR && NextLevelOpR != RD->LHS)
|
|
return TTI::RK_None;
|
|
|
|
NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
|
|
} else
|
|
return TTI::RK_None;
|
|
|
|
// Check that the next levels binary operation exists and matches with the
|
|
// current one.
|
|
if (Level + 1 != NumLevels) {
|
|
if (!isa<Instruction>(NextLevelOp))
|
|
return TTI::RK_None;
|
|
Optional<TTI::ReductionData> NextLevelRD =
|
|
getReductionData(cast<Instruction>(NextLevelOp));
|
|
if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
|
|
return TTI::RK_None;
|
|
}
|
|
|
|
// Shuffle mask for pairwise operation must match.
|
|
if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
|
|
if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
|
|
return TTI::RK_None;
|
|
} else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
|
|
if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
|
|
return TTI::RK_None;
|
|
} else {
|
|
return TTI::RK_None;
|
|
}
|
|
|
|
if (++Level == NumLevels)
|
|
return RD->Kind;
|
|
|
|
// Match next level.
|
|
return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level,
|
|
NumLevels);
|
|
}
|
|
|
|
TTI::ReductionKind TTI::matchPairwiseReduction(
|
|
const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
|
|
if (!EnableReduxCost)
|
|
return TTI::RK_None;
|
|
|
|
// Need to extract the first element.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
|
|
unsigned Idx = ~0u;
|
|
if (CI)
|
|
Idx = CI->getZExtValue();
|
|
if (Idx != 0)
|
|
return TTI::RK_None;
|
|
|
|
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
|
|
if (!RdxStart)
|
|
return TTI::RK_None;
|
|
Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
|
|
if (!RD)
|
|
return TTI::RK_None;
|
|
|
|
auto *VecTy = cast<FixedVectorType>(RdxStart->getType());
|
|
unsigned NumVecElems = VecTy->getNumElements();
|
|
if (!isPowerOf2_32(NumVecElems))
|
|
return TTI::RK_None;
|
|
|
|
// We look for a sequence of shuffle,shuffle,add triples like the following
|
|
// that builds a pairwise reduction tree.
|
|
//
|
|
// (X0, X1, X2, X3)
|
|
// (X0 + X1, X2 + X3, undef, undef)
|
|
// ((X0 + X1) + (X2 + X3), undef, undef, undef)
|
|
//
|
|
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
|
|
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
|
|
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
|
|
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
|
|
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
|
|
// %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
|
|
// <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
|
|
// %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
|
|
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
|
|
// %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
|
|
// %r = extractelement <4 x float> %bin.rdx8, i32 0
|
|
if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
|
|
TTI::RK_None)
|
|
return TTI::RK_None;
|
|
|
|
Opcode = RD->Opcode;
|
|
Ty = VecTy;
|
|
|
|
return RD->Kind;
|
|
}
|
|
|
|
static std::pair<Value *, ShuffleVectorInst *>
|
|
getShuffleAndOtherOprd(Value *L, Value *R) {
|
|
ShuffleVectorInst *S = nullptr;
|
|
|
|
if ((S = dyn_cast<ShuffleVectorInst>(L)))
|
|
return std::make_pair(R, S);
|
|
|
|
S = dyn_cast<ShuffleVectorInst>(R);
|
|
return std::make_pair(L, S);
|
|
}
|
|
|
|
TTI::ReductionKind TTI::matchVectorSplittingReduction(
|
|
const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
|
|
|
|
if (!EnableReduxCost)
|
|
return TTI::RK_None;
|
|
|
|
// Need to extract the first element.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
|
|
unsigned Idx = ~0u;
|
|
if (CI)
|
|
Idx = CI->getZExtValue();
|
|
if (Idx != 0)
|
|
return TTI::RK_None;
|
|
|
|
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
|
|
if (!RdxStart)
|
|
return TTI::RK_None;
|
|
Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
|
|
if (!RD)
|
|
return TTI::RK_None;
|
|
|
|
auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType());
|
|
unsigned NumVecElems = VecTy->getNumElements();
|
|
if (!isPowerOf2_32(NumVecElems))
|
|
return TTI::RK_None;
|
|
|
|
// We look for a sequence of shuffles and adds like the following matching one
|
|
// fadd, shuffle vector pair at a time.
|
|
//
|
|
// %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
|
|
// <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
|
|
// %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
|
|
// %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
|
|
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
|
|
// %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
|
|
// %r = extractelement <4 x float> %bin.rdx8, i32 0
|
|
|
|
unsigned MaskStart = 1;
|
|
Instruction *RdxOp = RdxStart;
|
|
SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
|
|
unsigned NumVecElemsRemain = NumVecElems;
|
|
while (NumVecElemsRemain - 1) {
|
|
// Check for the right reduction operation.
|
|
if (!RdxOp)
|
|
return TTI::RK_None;
|
|
Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp);
|
|
if (!RDLevel || !RDLevel->hasSameData(*RD))
|
|
return TTI::RK_None;
|
|
|
|
Value *NextRdxOp;
|
|
ShuffleVectorInst *Shuffle;
|
|
std::tie(NextRdxOp, Shuffle) =
|
|
getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
|
|
|
|
// Check the current reduction operation and the shuffle use the same value.
|
|
if (Shuffle == nullptr)
|
|
return TTI::RK_None;
|
|
if (Shuffle->getOperand(0) != NextRdxOp)
|
|
return TTI::RK_None;
|
|
|
|
// Check that shuffle masks matches.
|
|
for (unsigned j = 0; j != MaskStart; ++j)
|
|
ShuffleMask[j] = MaskStart + j;
|
|
// Fill the rest of the mask with -1 for undef.
|
|
std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
|
|
|
|
ArrayRef<int> Mask = Shuffle->getShuffleMask();
|
|
if (ShuffleMask != Mask)
|
|
return TTI::RK_None;
|
|
|
|
RdxOp = dyn_cast<Instruction>(NextRdxOp);
|
|
NumVecElemsRemain /= 2;
|
|
MaskStart *= 2;
|
|
}
|
|
|
|
Opcode = RD->Opcode;
|
|
Ty = VecTy;
|
|
return RD->Kind;
|
|
}
|
|
|
|
TTI::ReductionKind
|
|
TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode,
|
|
VectorType *&Ty, bool &IsPairwise) {
|
|
TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty);
|
|
if (RdxKind != TTI::ReductionKind::RK_None) {
|
|
IsPairwise = false;
|
|
return RdxKind;
|
|
}
|
|
IsPairwise = true;
|
|
return matchPairwiseReduction(Root, Opcode, Ty);
|
|
}
|
|
|
|
int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::Ret:
|
|
case Instruction::PHI:
|
|
case Instruction::Br:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::FNeg:
|
|
case Instruction::Select:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
case Instruction::Store:
|
|
case Instruction::Load:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast:
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement:
|
|
case Instruction::ExtractValue:
|
|
case Instruction::ShuffleVector:
|
|
case Instruction::Call:
|
|
return getUserCost(I, CostKind);
|
|
default:
|
|
// We don't have any information on this instruction.
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
TargetTransformInfo::Concept::~Concept() {}
|
|
|
|
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
|
|
|
|
TargetIRAnalysis::TargetIRAnalysis(
|
|
std::function<Result(const Function &)> TTICallback)
|
|
: TTICallback(std::move(TTICallback)) {}
|
|
|
|
TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
|
|
FunctionAnalysisManager &) {
|
|
return TTICallback(F);
|
|
}
|
|
|
|
AnalysisKey TargetIRAnalysis::Key;
|
|
|
|
TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
|
|
return Result(F.getParent()->getDataLayout());
|
|
}
|
|
|
|
// Register the basic pass.
|
|
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
|
|
"Target Transform Information", false, true)
|
|
char TargetTransformInfoWrapperPass::ID = 0;
|
|
|
|
void TargetTransformInfoWrapperPass::anchor() {}
|
|
|
|
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
|
|
: ImmutablePass(ID) {
|
|
initializeTargetTransformInfoWrapperPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
|
|
TargetIRAnalysis TIRA)
|
|
: ImmutablePass(ID), TIRA(std::move(TIRA)) {
|
|
initializeTargetTransformInfoWrapperPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
|
|
FunctionAnalysisManager DummyFAM;
|
|
TTI = TIRA.run(F, DummyFAM);
|
|
return *TTI;
|
|
}
|
|
|
|
ImmutablePass *
|
|
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
|
|
return new TargetTransformInfoWrapperPass(std::move(TIRA));
|
|
}
|