1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Analysis/TargetTransformInfo.cpp
Arthur Eubanks d815d3c37a [AMDGPU][Inliner] Remove amdgpu-inline and add a new TTI inline hook
Having a custom inliner doesn't really fit in with the new PM's
pipeline. It's also extra technical debt.

amdgpu-inline only does a couple of custom things compared to the normal
inliner:
1) It disables inlining if the number of BBs in a function would exceed
   some limit
2) It increases the threshold if there are pointers to private arrays(?)

These can all be handled as TTI inliner hooks.
There already exists a hook for backends to multiply the inlining
threshold.

This way we can remove the custom amdgpu-inline pass.

This caused inline-hint.ll to fail, and after some investigation, it
looks like getInliningThresholdMultiplier() was previously getting
applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it
not applying at all, so some later inliner change must have fixed
something), so I had to change the threshold in the test.

Reviewed By: rampitec

Differential Revision: https://reviews.llvm.org/D94153
2021-01-21 20:29:17 -08:00

1474 lines
53 KiB
C++

//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "tti"
static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
cl::Hidden,
cl::desc("Recognize reduction patterns."));
namespace {
/// No-op implementation of the TTI interface using the utility base
/// classes.
///
/// This is used when no target specific information is available.
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
explicit NoTTIImpl(const DataLayout &DL)
: TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
};
} // namespace
bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
// If the loop has irreducible control flow, it can not be converted to
// Hardware loop.
LoopBlocksRPO RPOT(L);
RPOT.perform(&LI);
if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
return false;
return true;
}
IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) :
II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) {
FunctionType *FTy = I.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end());
if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
FMF = FPMO->getFastMathFlags();
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
const CallBase &CI) :
II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) {
if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
FMF = FPMO->getFastMathFlags();
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
FunctionType *FTy =
CI.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
const CallBase &CI,
ElementCount Factor)
: RetTy(CI.getType()), IID(Id), VF(Factor) {
assert(!Factor.isScalable() && "Scalable vectors are not yet supported");
if (auto *FPMO = dyn_cast<FPMathOperator>(&CI))
FMF = FPMO->getFastMathFlags();
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
FunctionType *FTy =
CI.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
const CallBase &CI,
ElementCount Factor,
unsigned ScalarCost)
: RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) {
if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
FMF = FPMO->getFastMathFlags();
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
FunctionType *FTy =
CI.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys,
FastMathFlags Flags) :
RetTy(RTy), IID(Id), FMF(Flags) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys,
FastMathFlags Flags,
unsigned ScalarCost) :
RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys,
FastMathFlags Flags,
unsigned ScalarCost,
const IntrinsicInst *I) :
II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys) :
RetTy(RTy), IID(Id) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
ArrayRef<const Value *> Args)
: RetTy(Ty), IID(Id) {
Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
ParamTys.reserve(Arguments.size());
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
ParamTys.push_back(Arguments[Idx]->getType());
}
bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
LoopInfo &LI, DominatorTree &DT,
bool ForceNestedLoop,
bool ForceHardwareLoopPHI) {
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *BB : ExitingBlocks) {
// If we pass the updated counter back through a phi, we need to know
// which latch the updated value will be coming from.
if (!L->isLoopLatch(BB)) {
if (ForceHardwareLoopPHI || CounterInReg)
continue;
}
const SCEV *EC = SE.getExitCount(L, BB);
if (isa<SCEVCouldNotCompute>(EC))
continue;
if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
if (ConstEC->getValue()->isZero())
continue;
} else if (!SE.isLoopInvariant(EC, L))
continue;
if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
continue;
// If this exiting block is contained in a nested loop, it is not eligible
// for insertion of the branch-and-decrement since the inner loop would
// end up messing up the value in the CTR.
if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
continue;
// We now have a loop-invariant count of loop iterations (which is not the
// constant zero) for which we know that this loop will not exit via this
// existing block.
// We need to make sure that this block will run on every loop iteration.
// For this to be true, we must dominate all blocks with backedges. Such
// blocks are in-loop predecessors to the header block.
bool NotAlways = false;
for (BasicBlock *Pred : predecessors(L->getHeader())) {
if (!L->contains(Pred))
continue;
if (!DT.dominates(BB, Pred)) {
NotAlways = true;
break;
}
}
if (NotAlways)
continue;
// Make sure this blocks ends with a conditional branch.
Instruction *TI = BB->getTerminator();
if (!TI)
continue;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (!BI->isConditional())
continue;
ExitBranch = BI;
} else
continue;
// Note that this block may not be the loop latch block, even if the loop
// has a latch block.
ExitBlock = BB;
TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType()));
if (!EC->getType()->isPointerTy() && EC->getType() != CountType)
TripCount = SE.getZeroExtendExpr(TripCount, CountType);
break;
}
if (!ExitBlock)
return false;
return true;
}
TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
: TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
TargetTransformInfo::~TargetTransformInfo() {}
TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
: TTIImpl(std::move(Arg.TTIImpl)) {}
TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
TTIImpl = std::move(RHS.TTIImpl);
return *this;
}
unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
return TTIImpl->getInliningThresholdMultiplier();
}
unsigned
TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
return TTIImpl->adjustInliningThreshold(CB);
}
int TargetTransformInfo::getInlinerVectorBonusPercent() const {
return TTIImpl->getInlinerVectorBonusPercent();
}
int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) const {
return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
}
unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) const {
return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
}
int TargetTransformInfo::getUserCost(const User *U,
ArrayRef<const Value *> Operands,
enum TargetCostKind CostKind) const {
int Cost = TTIImpl->getUserCost(U, Operands, CostKind);
assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
"TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::hasBranchDivergence() const {
return TTIImpl->hasBranchDivergence();
}
bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
return TTIImpl->useGPUDivergenceAnalysis();
}
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
return TTIImpl->isSourceOfDivergence(V);
}
bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
return TTIImpl->isAlwaysUniform(V);
}
unsigned TargetTransformInfo::getFlatAddressSpace() const {
return TTIImpl->getFlatAddressSpace();
}
bool TargetTransformInfo::collectFlatAddressOperands(
SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
}
bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
unsigned ToAS) const {
return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
}
unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
return TTIImpl->getAssumedAddrSpace(V);
}
Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
IntrinsicInst *II, Value *OldV, Value *NewV) const {
return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
}
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
return TTIImpl->isLoweredToCall(F);
}
bool TargetTransformInfo::isHardwareLoopProfitable(
Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
}
bool TargetTransformInfo::preferPredicateOverEpilogue(
Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
TargetLibraryInfo *TLI, DominatorTree *DT,
const LoopAccessInfo *LAI) const {
return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
}
bool TargetTransformInfo::emitGetActiveLaneMask() const {
return TTIImpl->emitGetActiveLaneMask();
}
Optional<Instruction *>
TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const {
return TTIImpl->instCombineIntrinsic(IC, II);
}
Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) const {
return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
KnownBitsComputed);
}
Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const {
return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
SimplifyAndSetOp);
}
void TargetTransformInfo::getUnrollingPreferences(
Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
return TTIImpl->getUnrollingPreferences(L, SE, UP);
}
void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) const {
return TTIImpl->getPeelingPreferences(L, SE, PP);
}
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
return TTIImpl->isLegalAddImmediate(Imm);
}
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return TTIImpl->isLegalICmpImmediate(Imm);
}
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace,
Instruction *I) const {
return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace, I);
}
bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
return TTIImpl->isLSRCostLess(C1, C2);
}
bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
return TTIImpl->isNumRegsMajorCostOfLSR();
}
bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
return TTIImpl->isProfitableLSRChainElement(I);
}
bool TargetTransformInfo::canMacroFuseCmp() const {
return TTIImpl->canMacroFuseCmp();
}
bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) const {
return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
}
bool TargetTransformInfo::shouldFavorPostInc() const {
return TTIImpl->shouldFavorPostInc();
}
bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
return TTIImpl->shouldFavorBackedgeIndex(L);
}
bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedStore(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
}
bool TargetTransformInfo::isLegalNTStore(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalNTStore(DataType, Alignment);
}
bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
return TTIImpl->isLegalNTLoad(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedGather(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
return TTIImpl->isLegalMaskedCompressStore(DataType);
}
bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
return TTIImpl->isLegalMaskedExpandLoad(DataType);
}
bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
return TTIImpl->hasDivRemOp(DataType, IsSigned);
}
bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
unsigned AddrSpace) const {
return TTIImpl->hasVolatileVariant(I, AddrSpace);
}
bool TargetTransformInfo::prefersVectorizedAddressing() const {
return TTIImpl->prefersVectorizedAddressing();
}
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace) const {
int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::LSRWithInstrQueries() const {
return TTIImpl->LSRWithInstrQueries();
}
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TTIImpl->isTruncateFree(Ty1, Ty2);
}
bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
return TTIImpl->isProfitableToHoist(I);
}
bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
return TTIImpl->isTypeLegal(Ty);
}
unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
return TTIImpl->getRegUsageForType(Ty);
}
bool TargetTransformInfo::shouldBuildLookupTables() const {
return TTIImpl->shouldBuildLookupTables();
}
bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
Constant *C) const {
return TTIImpl->shouldBuildLookupTablesForConstant(C);
}
bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
return TTIImpl->useColdCCForColdCall(F);
}
unsigned
TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract) const {
return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
}
unsigned TargetTransformInfo::getOperandsScalarizationOverhead(
ArrayRef<const Value *> Args, unsigned VF) const {
return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
}
bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
return TTIImpl->supportsEfficientVectorElementLoadStore();
}
bool TargetTransformInfo::enableAggressiveInterleaving(
bool LoopHasReductions) const {
return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
}
TargetTransformInfo::MemCmpExpansionOptions
TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
}
bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
return TTIImpl->enableInterleavedAccessVectorization();
}
bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
return TTIImpl->enableMaskedInterleavedAccessVectorization();
}
bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
return TTIImpl->isFPVectorizationPotentiallyUnsafe();
}
bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
unsigned BitWidth,
unsigned AddressSpace,
unsigned Alignment,
bool *Fast) const {
return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
AddressSpace, Alignment, Fast);
}
TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
return TTIImpl->getPopcntSupport(IntTyWidthInBit);
}
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
return TTIImpl->haveFastSqrt(Ty);
}
bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
}
int TargetTransformInfo::getFPOpCost(Type *Ty) const {
int Cost = TTIImpl->getFPOpCost(Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
const APInt &Imm,
Type *Ty) const {
int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) const {
int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int
TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
return TTIImpl->getNumberOfRegisters(ClassID);
}
unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
Type *Ty) const {
return TTIImpl->getRegisterClassForType(Vector, Ty);
}
const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
return TTIImpl->getRegisterClassName(ClassID);
}
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
return TTIImpl->getRegisterBitWidth(Vector);
}
unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
return TTIImpl->getMinVectorRegisterBitWidth();
}
Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
return TTIImpl->getMaxVScale();
}
bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
}
unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
return TTIImpl->getMinimumVF(ElemWidth);
}
unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
unsigned Opcode) const {
return TTIImpl->getMaximumVF(ElemWidth, Opcode);
}
bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
return TTIImpl->shouldConsiderAddressTypePromotion(
I, AllowPromotionWithoutCommonHeader);
}
unsigned TargetTransformInfo::getCacheLineSize() const {
return TTIImpl->getCacheLineSize();
}
llvm::Optional<unsigned>
TargetTransformInfo::getCacheSize(CacheLevel Level) const {
return TTIImpl->getCacheSize(Level);
}
llvm::Optional<unsigned>
TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
return TTIImpl->getCacheAssociativity(Level);
}
unsigned TargetTransformInfo::getPrefetchDistance() const {
return TTIImpl->getPrefetchDistance();
}
unsigned TargetTransformInfo::getMinPrefetchStride(
unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
unsigned NumPrefetches, bool HasCall) const {
return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
NumPrefetches, HasCall);
}
unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
return TTIImpl->getMaxPrefetchIterationsAhead();
}
bool TargetTransformInfo::enableWritePrefetching() const {
return TTIImpl->enableWritePrefetching();
}
unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
return TTIImpl->getMaxInterleaveFactor(VF);
}
TargetTransformInfo::OperandValueKind
TargetTransformInfo::getOperandInfo(const Value *V,
OperandValueProperties &OpProps) {
OperandValueKind OpInfo = OK_AnyValue;
OpProps = OP_None;
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getValue().isPowerOf2())
OpProps = OP_PowerOf2;
return OK_UniformConstantValue;
}
// A broadcast shuffle creates a uniform value.
// TODO: Add support for non-zero index broadcasts.
// TODO: Add support for different source vector width.
if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
if (ShuffleInst->isZeroEltSplat())
OpInfo = OK_UniformValue;
const Value *Splat = getSplatValue(V);
// Check for a splat of a constant or for a non uniform vector of constants
// and check if the constant(s) are all powers of two.
if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
OpInfo = OK_NonUniformConstantValue;
if (Splat) {
OpInfo = OK_UniformConstantValue;
if (auto *CI = dyn_cast<ConstantInt>(Splat))
if (CI->getValue().isPowerOf2())
OpProps = OP_PowerOf2;
} else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
OpProps = OP_PowerOf2;
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
if (CI->getValue().isPowerOf2())
continue;
OpProps = OP_None;
break;
}
}
}
// Check for a splat of a uniform value. This is not loop aware, so return
// true only for the obviously uniform cases (argument, globalvalue)
if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
OpInfo = OK_UniformValue;
return OpInfo;
}
int TargetTransformInfo::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
OperandValueKind Opd1Info,
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI) const {
int Cost = TTIImpl->getArithmeticInstrCost(
Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo,
Args, CxtI);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty,
int Index, VectorType *SubTp) const {
int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
TTI::CastContextHint
TargetTransformInfo::getCastContextHint(const Instruction *I) {
if (!I)
return CastContextHint::None;
auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
unsigned GatScatOp) {
const Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return CastContextHint::None;
if (I->getOpcode() == LdStOp)
return CastContextHint::Normal;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == MaskedOp)
return TTI::CastContextHint::Masked;
if (II->getIntrinsicID() == GatScatOp)
return TTI::CastContextHint::GatherScatter;
}
return TTI::CastContextHint::None;
};
switch (I->getOpcode()) {
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPExt:
return getLoadStoreKind(I->getOperand(0), Instruction::Load,
Intrinsic::masked_load, Intrinsic::masked_gather);
case Instruction::Trunc:
case Instruction::FPTrunc:
if (I->hasOneUse())
return getLoadStoreKind(*I->user_begin(), Instruction::Store,
Intrinsic::masked_store,
Intrinsic::masked_scatter);
break;
default:
return CastContextHint::None;
}
return TTI::CastContextHint::None;
}
int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) const {
int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost =
TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMaskedMemoryOpCost(
unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) const {
int Cost =
TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) const {
int Cost = TTIImpl->getInterleavedMemoryOpCost(
Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int
TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
return TTIImpl->getNumberOfParts(Tp);
}
int TargetTransformInfo::getAddressComputationCost(Type *Tp,
ScalarEvolution *SE,
const SCEV *Ptr) const {
int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
int Cost = TTIImpl->getMemcpyCost(I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode,
VectorType *Ty,
bool IsPairwiseForm,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMinMaxReductionCost(
VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
TTI::TargetCostKind CostKind) const {
int Cost =
TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind) const {
return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
CostKind);
}
unsigned
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
}
bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
}
unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
}
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
IntrinsicInst *Inst, Type *ExpectedType) const {
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
}
Type *TargetTransformInfo::getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
DestAddrSpace, SrcAlign, DestAlign);
}
void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign) const {
TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
SrcAddrSpace, DestAddrSpace,
SrcAlign, DestAlign);
}
bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
return TTIImpl->areInlineCompatible(Caller, Callee);
}
bool TargetTransformInfo::areFunctionArgsABICompatible(
const Function *Caller, const Function *Callee,
SmallPtrSetImpl<Argument *> &Args) const {
return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
}
bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
Type *Ty) const {
return TTIImpl->isIndexedLoadLegal(Mode, Ty);
}
bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
Type *Ty) const {
return TTIImpl->isIndexedStoreLegal(Mode, Ty);
}
unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
return TTIImpl->getLoadStoreVecRegBitWidth(AS);
}
bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
return TTIImpl->isLegalToVectorizeLoad(LI);
}
bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
return TTIImpl->isLegalToVectorizeStore(SI);
}
bool TargetTransformInfo::isLegalToVectorizeLoadChain(
unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool TargetTransformInfo::isLegalToVectorizeStoreChain(
unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
}
unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
}
bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const {
return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
}
bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const {
return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
}
bool TargetTransformInfo::preferPredicatedReductionSelect(
unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
}
bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
return TTIImpl->shouldExpandReduction(II);
}
unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
return TTIImpl->getGISelRematGlobalCost();
}
bool TargetTransformInfo::supportsScalableVectors() const {
return TTIImpl->supportsScalableVectors();
}
int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
return TTIImpl->getInstructionLatency(I);
}
static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
unsigned Level) {
// We don't need a shuffle if we just want to have element 0 in position 0 of
// the vector.
if (!SI && Level == 0 && IsLeft)
return true;
else if (!SI)
return false;
SmallVector<int, 32> Mask(
cast<FixedVectorType>(SI->getType())->getNumElements(), -1);
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
// we look at the left or right side.
for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
Mask[i] = val;
ArrayRef<int> ActualMask = SI->getShuffleMask();
return Mask == ActualMask;
}
static Optional<TTI::ReductionData> getReductionData(Instruction *I) {
Value *L, *R;
if (m_BinOp(m_Value(L), m_Value(R)).match(I))
return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R);
if (auto *SI = dyn_cast<SelectInst>(I)) {
if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
m_SMax(m_Value(L), m_Value(R)).match(SI) ||
m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
auto *CI = cast<CmpInst>(SI->getCondition());
return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R);
}
if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
m_UMax(m_Value(L), m_Value(R)).match(SI)) {
auto *CI = cast<CmpInst>(SI->getCondition());
return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R);
}
}
return llvm::None;
}
static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
unsigned Level,
unsigned NumLevels) {
// Match one level of pairwise operations.
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
if (!I)
return TTI::RK_None;
assert(I->getType()->isVectorTy() && "Expecting a vector type");
Optional<TTI::ReductionData> RD = getReductionData(I);
if (!RD)
return TTI::RK_None;
ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
if (!LS && Level)
return TTI::RK_None;
ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
if (!RS && Level)
return TTI::RK_None;
// On level 0 we can omit one shufflevector instruction.
if (!Level && !RS && !LS)
return TTI::RK_None;
// Shuffle inputs must match.
Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
Value *NextLevelOp = nullptr;
if (NextLevelOpR && NextLevelOpL) {
// If we have two shuffles their operands must match.
if (NextLevelOpL != NextLevelOpR)
return TTI::RK_None;
NextLevelOp = NextLevelOpL;
} else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
// On the first level we can omit the shufflevector <0, undef,...>. So the
// input to the other shufflevector <1, undef> must match with one of the
// inputs to the current binary operation.
// Example:
// %NextLevelOpL = shufflevector %R, <1, undef ...>
// %BinOp = fadd %NextLevelOpL, %R
if (NextLevelOpL && NextLevelOpL != RD->RHS)
return TTI::RK_None;
else if (NextLevelOpR && NextLevelOpR != RD->LHS)
return TTI::RK_None;
NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
} else
return TTI::RK_None;
// Check that the next levels binary operation exists and matches with the
// current one.
if (Level + 1 != NumLevels) {
if (!isa<Instruction>(NextLevelOp))
return TTI::RK_None;
Optional<TTI::ReductionData> NextLevelRD =
getReductionData(cast<Instruction>(NextLevelOp));
if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
return TTI::RK_None;
}
// Shuffle mask for pairwise operation must match.
if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
return TTI::RK_None;
} else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
return TTI::RK_None;
} else {
return TTI::RK_None;
}
if (++Level == NumLevels)
return RD->Kind;
// Match next level.
return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level,
NumLevels);
}
TTI::ReductionKind TTI::matchPairwiseReduction(
const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
if (!EnableReduxCost)
return TTI::RK_None;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return TTI::RK_None;
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
if (!RdxStart)
return TTI::RK_None;
Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
if (!RD)
return TTI::RK_None;
auto *VecTy = cast<FixedVectorType>(RdxStart->getType());
unsigned NumVecElems = VecTy->getNumElements();
if (!isPowerOf2_32(NumVecElems))
return TTI::RK_None;
// We look for a sequence of shuffle,shuffle,add triples like the following
// that builds a pairwise reduction tree.
//
// (X0, X1, X2, X3)
// (X0 + X1, X2 + X3, undef, undef)
// ((X0 + X1) + (X2 + X3), undef, undef, undef)
//
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
// %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
// %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
// %r = extractelement <4 x float> %bin.rdx8, i32 0
if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
TTI::RK_None)
return TTI::RK_None;
Opcode = RD->Opcode;
Ty = VecTy;
return RD->Kind;
}
static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(Value *L, Value *R) {
ShuffleVectorInst *S = nullptr;
if ((S = dyn_cast<ShuffleVectorInst>(L)))
return std::make_pair(R, S);
S = dyn_cast<ShuffleVectorInst>(R);
return std::make_pair(L, S);
}
TTI::ReductionKind TTI::matchVectorSplittingReduction(
const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
if (!EnableReduxCost)
return TTI::RK_None;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return TTI::RK_None;
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
if (!RdxStart)
return TTI::RK_None;
Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
if (!RD)
return TTI::RK_None;
auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType());
unsigned NumVecElems = VecTy->getNumElements();
if (!isPowerOf2_32(NumVecElems))
return TTI::RK_None;
// We look for a sequence of shuffles and adds like the following matching one
// fadd, shuffle vector pair at a time.
//
// %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
// %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
// %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
// %r = extractelement <4 x float> %bin.rdx8, i32 0
unsigned MaskStart = 1;
Instruction *RdxOp = RdxStart;
SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
unsigned NumVecElemsRemain = NumVecElems;
while (NumVecElemsRemain - 1) {
// Check for the right reduction operation.
if (!RdxOp)
return TTI::RK_None;
Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp);
if (!RDLevel || !RDLevel->hasSameData(*RD))
return TTI::RK_None;
Value *NextRdxOp;
ShuffleVectorInst *Shuffle;
std::tie(NextRdxOp, Shuffle) =
getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
// Check the current reduction operation and the shuffle use the same value.
if (Shuffle == nullptr)
return TTI::RK_None;
if (Shuffle->getOperand(0) != NextRdxOp)
return TTI::RK_None;
// Check that shuffle masks matches.
for (unsigned j = 0; j != MaskStart; ++j)
ShuffleMask[j] = MaskStart + j;
// Fill the rest of the mask with -1 for undef.
std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
ArrayRef<int> Mask = Shuffle->getShuffleMask();
if (ShuffleMask != Mask)
return TTI::RK_None;
RdxOp = dyn_cast<Instruction>(NextRdxOp);
NumVecElemsRemain /= 2;
MaskStart *= 2;
}
Opcode = RD->Opcode;
Ty = VecTy;
return RD->Kind;
}
TTI::ReductionKind
TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode,
VectorType *&Ty, bool &IsPairwise) {
TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty);
if (RdxKind != TTI::ReductionKind::RK_None) {
IsPairwise = false;
return RdxKind;
}
IsPairwise = true;
return matchPairwiseReduction(Root, Opcode, Ty);
}
int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
case Instruction::Ret:
case Instruction::PHI:
case Instruction::Br:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::FNeg:
case Instruction::Select:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Store:
case Instruction::Load:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ExtractValue:
case Instruction::ShuffleVector:
case Instruction::Call:
return getUserCost(I, CostKind);
default:
// We don't have any information on this instruction.
return -1;
}
}
TargetTransformInfo::Concept::~Concept() {}
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
TargetIRAnalysis::TargetIRAnalysis(
std::function<Result(const Function &)> TTICallback)
: TTICallback(std::move(TTICallback)) {}
TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
FunctionAnalysisManager &) {
return TTICallback(F);
}
AnalysisKey TargetIRAnalysis::Key;
TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
return Result(F.getParent()->getDataLayout());
}
// Register the basic pass.
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
"Target Transform Information", false, true)
char TargetTransformInfoWrapperPass::ID = 0;
void TargetTransformInfoWrapperPass::anchor() {}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
: ImmutablePass(ID) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
TargetIRAnalysis TIRA)
: ImmutablePass(ID), TIRA(std::move(TIRA)) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
FunctionAnalysisManager DummyFAM;
TTI = TIRA.run(F, DummyFAM);
return *TTI;
}
ImmutablePass *
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
return new TargetTransformInfoWrapperPass(std::move(TIRA));
}