1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/lib/CodeGen/IfConversion.cpp
Krzysztof Parzyszek 738486a316 IfConversion: Add implicit uses for redefined regs with live subregisters
Normally, if conversion would add implicit uses for redefined registers,
e.g. R0<def> = add_if ..., R0<imp-use>. However, if only subregisters of
R0 are known to be live but not R0 itself, such implicit uses will not be
added, causing prior definitions of such subregisters and R0 itself to
become dead.

llvm-svn: 282626
2016-09-28 20:07:41 +00:00

2301 lines
86 KiB
C++

//===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level if-conversion pass, which
// tries to convert conditional branches into predicated instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "BranchFolding.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "ifcvt"
// Hidden options for help debugging.
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
cl::init(false), cl::Hidden);
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
cl::init(true), cl::Hidden);
STATISTIC(NumSimple, "Number of simple if-conversions performed");
STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
STATISTIC(NumDupBBs, "Number of duplicated blocks");
STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
namespace {
class IfConverter : public MachineFunctionPass {
enum IfcvtKind {
ICNotClassfied, // BB data valid, but not classified.
ICSimpleFalse, // Same as ICSimple, but on the false path.
ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
ICTriangleRev, // Same as ICTriangle, but true path rev condition.
ICTriangleFalse, // Same as ICTriangle, but on the false path.
ICTriangle, // BB is entry of a triangle sub-CFG.
ICDiamond, // BB is entry of a diamond sub-CFG.
ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
// common tail that can be shared.
};
/// One per MachineBasicBlock, this is used to cache the result
/// if-conversion feasibility analysis. This includes results from
/// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
/// classification, and common tail block of its successors (if it's a
/// diamond shape), its size, whether it's predicable, and whether any
/// instruction can clobber the 'would-be' predicate.
///
/// IsDone - True if BB is not to be considered for ifcvt.
/// IsBeingAnalyzed - True if BB is currently being analyzed.
/// IsAnalyzed - True if BB has been analyzed (info is still valid).
/// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
/// IsBrAnalyzable - True if analyzeBranch() returns false.
/// HasFallThrough - True if BB may fallthrough to the following BB.
/// IsUnpredicable - True if BB is known to be unpredicable.
/// ClobbersPred - True if BB could modify predicates (e.g. has
/// cmp, call, etc.)
/// NonPredSize - Number of non-predicated instructions.
/// ExtraCost - Extra cost for multi-cycle instructions.
/// ExtraCost2 - Some instructions are slower when predicated
/// BB - Corresponding MachineBasicBlock.
/// TrueBB / FalseBB- See analyzeBranch().
/// BrCond - Conditions for end of block conditional branches.
/// Predicate - Predicate used in the BB.
struct BBInfo {
bool IsDone : 1;
bool IsBeingAnalyzed : 1;
bool IsAnalyzed : 1;
bool IsEnqueued : 1;
bool IsBrAnalyzable : 1;
bool IsBrReversible : 1;
bool HasFallThrough : 1;
bool IsUnpredicable : 1;
bool CannotBeCopied : 1;
bool ClobbersPred : 1;
unsigned NonPredSize;
unsigned ExtraCost;
unsigned ExtraCost2;
MachineBasicBlock *BB;
MachineBasicBlock *TrueBB;
MachineBasicBlock *FalseBB;
SmallVector<MachineOperand, 4> BrCond;
SmallVector<MachineOperand, 4> Predicate;
BBInfo() : IsDone(false), IsBeingAnalyzed(false),
IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
IsBrReversible(false), HasFallThrough(false),
IsUnpredicable(false), CannotBeCopied(false),
ClobbersPred(false), NonPredSize(0), ExtraCost(0),
ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
FalseBB(nullptr) {}
};
/// Record information about pending if-conversions to attempt:
/// BBI - Corresponding BBInfo.
/// Kind - Type of block. See IfcvtKind.
/// NeedSubsumption - True if the to-be-predicated BB has already been
/// predicated.
/// NumDups - Number of instructions that would be duplicated due
/// to this if-conversion. (For diamonds, the number of
/// identical instructions at the beginnings of both
/// paths).
/// NumDups2 - For diamonds, the number of identical instructions
/// at the ends of both paths.
struct IfcvtToken {
BBInfo &BBI;
IfcvtKind Kind;
unsigned NumDups;
unsigned NumDups2;
bool NeedSubsumption : 1;
bool TClobbersPred : 1;
bool FClobbersPred : 1;
IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
bool tc = false, bool fc = false)
: BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
TClobbersPred(tc), FClobbersPred(fc) {}
};
/// Results of if-conversion feasibility analysis indexed by basic block
/// number.
std::vector<BBInfo> BBAnalysis;
TargetSchedModel SchedModel;
const TargetLoweringBase *TLI;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const MachineBranchProbabilityInfo *MBPI;
MachineRegisterInfo *MRI;
LivePhysRegs Redefs;
LivePhysRegs DontKill;
bool PreRegAlloc;
bool MadeChange;
int FnNum;
std::function<bool(const Function &)> PredicateFtor;
public:
static char ID;
IfConverter(std::function<bool(const Function &)> Ftor = nullptr)
: MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) {
initializeIfConverterPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineBranchProbabilityInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
bool reverseBranchCondition(BBInfo &BBI) const;
bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
BranchProbability Prediction) const;
bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups,
BranchProbability Prediction) const;
bool CountDuplicatedInstructions(
MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
unsigned &Dups1, unsigned &Dups2,
MachineBasicBlock &TBB, MachineBasicBlock &FBB,
bool SkipUnconditionalBranches) const;
bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2,
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2,
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
void AnalyzeBranches(BBInfo &BBI);
void ScanInstructions(BBInfo &BBI,
MachineBasicBlock::iterator &Begin,
MachineBasicBlock::iterator &End,
bool BranchUnpredicable = false) const;
bool RescanInstructions(
MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
BBInfo &TrueBBI, BBInfo &FalseBBI) const;
void AnalyzeBlock(MachineBasicBlock &MBB,
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
bool isTriangle = false, bool RevBranch = false,
bool hasCommonTail = false);
void AnalyzeBlocks(MachineFunction &MF,
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
void InvalidatePreds(MachineBasicBlock &MBB);
void RemoveExtraEdges(BBInfo &BBI);
bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned NumDups1, unsigned NumDups2,
bool TClobbersPred, bool FClobbersPred,
bool RemoveBranch, bool MergeAddEdges);
bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2,
bool TClobbers, bool FClobbers);
bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2,
bool TClobbers, bool FClobbers);
void PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
SmallSet<unsigned, 4> *LaterRedefs = nullptr);
void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
bool IgnoreBr = false);
void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
unsigned Cycle, unsigned Extra,
BranchProbability Prediction) const {
return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
Prediction);
}
bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
unsigned TCycle, unsigned TExtra,
MachineBasicBlock &FBB,
unsigned FCycle, unsigned FExtra,
BranchProbability Prediction) const {
return TCycle > 0 && FCycle > 0 &&
TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
Prediction);
}
/// Returns true if Block ends without a terminator.
bool blockAlwaysFallThrough(BBInfo &BBI) const {
return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
}
/// Used to sort if-conversion candidates.
static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
const std::unique_ptr<IfcvtToken> &C2) {
int Incr1 = (C1->Kind == ICDiamond)
? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
int Incr2 = (C2->Kind == ICDiamond)
? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
if (Incr1 > Incr2)
return true;
else if (Incr1 == Incr2) {
// Favors subsumption.
if (!C1->NeedSubsumption && C2->NeedSubsumption)
return true;
else if (C1->NeedSubsumption == C2->NeedSubsumption) {
// Favors diamond over triangle, etc.
if ((unsigned)C1->Kind < (unsigned)C2->Kind)
return true;
else if (C1->Kind == C2->Kind)
return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
}
}
return false;
}
};
char IfConverter::ID = 0;
}
char &llvm::IfConverterID = IfConverter::ID;
INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()) ||
(PredicateFtor && !PredicateFtor(*MF.getFunction())))
return false;
const TargetSubtargetInfo &ST = MF.getSubtarget();
TLI = ST.getTargetLowering();
TII = ST.getInstrInfo();
TRI = ST.getRegisterInfo();
BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
MRI = &MF.getRegInfo();
SchedModel.init(ST.getSchedModel(), &ST, TII);
if (!TII) return false;
PreRegAlloc = MRI->isSSA();
bool BFChange = false;
if (!PreRegAlloc) {
// Tail merge tend to expose more if-conversion opportunities.
BranchFolder BF(true, false, MBFI, *MBPI);
BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>());
}
DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
<< MF.getName() << "\'");
if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
DEBUG(dbgs() << " skipped\n");
return false;
}
DEBUG(dbgs() << "\n");
MF.RenumberBlocks();
BBAnalysis.resize(MF.getNumBlockIDs());
std::vector<std::unique_ptr<IfcvtToken>> Tokens;
MadeChange = false;
unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
// Do an initial analysis for each basic block and find all the potential
// candidates to perform if-conversion.
bool Change = false;
AnalyzeBlocks(MF, Tokens);
while (!Tokens.empty()) {
std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
Tokens.pop_back();
BBInfo &BBI = Token->BBI;
IfcvtKind Kind = Token->Kind;
unsigned NumDups = Token->NumDups;
unsigned NumDups2 = Token->NumDups2;
// If the block has been evicted out of the queue or it has already been
// marked dead (due to it being predicated), then skip it.
if (BBI.IsDone)
BBI.IsEnqueued = false;
if (!BBI.IsEnqueued)
continue;
BBI.IsEnqueued = false;
bool RetVal = false;
switch (Kind) {
default: llvm_unreachable("Unexpected!");
case ICSimple:
case ICSimpleFalse: {
bool isFalse = Kind == ICSimpleFalse;
if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ?
" false" : "")
<< "): BB#" << BBI.BB->getNumber() << " ("
<< ((Kind == ICSimpleFalse)
? BBI.FalseBB->getNumber()
: BBI.TrueBB->getNumber()) << ") ");
RetVal = IfConvertSimple(BBI, Kind);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) ++NumSimpleFalse;
else ++NumSimple;
}
break;
}
case ICTriangle:
case ICTriangleRev:
case ICTriangleFalse:
case ICTriangleFRev: {
bool isFalse = Kind == ICTriangleFalse;
bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
if (DisableTriangle && !isFalse && !isRev) break;
if (DisableTriangleR && !isFalse && isRev) break;
if (DisableTriangleF && isFalse && !isRev) break;
if (DisableTriangleFR && isFalse && isRev) break;
DEBUG(dbgs() << "Ifcvt (Triangle");
if (isFalse)
DEBUG(dbgs() << " false");
if (isRev)
DEBUG(dbgs() << " rev");
DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertTriangle(BBI, Kind);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) {
if (isRev) ++NumTriangleFRev;
else ++NumTriangleFalse;
} else {
if (isRev) ++NumTriangleRev;
else ++NumTriangle;
}
}
break;
}
case ICDiamond: {
if (DisableDiamond) break;
DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
Token->TClobbersPred,
Token->FClobbersPred);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) ++NumDiamonds;
break;
}
case ICForkedDiamond: {
if (DisableForkedDiamond) break;
DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#"
<< BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
Token->TClobbersPred,
Token->FClobbersPred);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) ++NumForkedDiamonds;
break;
}
}
Change |= RetVal;
NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
NumTriangleFalse + NumTriangleFRev + NumDiamonds;
if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
break;
}
if (!Change)
break;
MadeChange |= Change;
}
Tokens.clear();
BBAnalysis.clear();
if (MadeChange && IfCvtBranchFold) {
BranchFolder BF(false, false, MBFI, *MBPI);
BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>());
}
MadeChange |= BFChange;
return MadeChange;
}
/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
MachineBasicBlock *TrueBB) {
for (MachineBasicBlock *SuccBB : BB->successors()) {
if (SuccBB != TrueBB)
return SuccBB;
}
return nullptr;
}
/// Reverse the condition of the end of the block branch. Swap block's 'true'
/// and 'false' successors.
bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
DebugLoc dl; // FIXME: this is nowhere
if (!TII->reverseBranchCondition(BBI.BrCond)) {
TII->removeBranch(*BBI.BB);
TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
std::swap(BBI.TrueBB, BBI.FalseBB);
return true;
}
return false;
}
/// Returns the next block in the function blocks ordering. If it is the end,
/// returns NULL.
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
MachineFunction::iterator I = MBB.getIterator();
MachineFunction::iterator E = MBB.getParent()->end();
if (++I == E)
return nullptr;
return &*I;
}
/// Returns true if the 'true' block (along with its predecessor) forms a valid
/// simple shape for ifcvt. It also returns the number of instructions that the
/// ifcvt would need to duplicate if performed in Dups.
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
BranchProbability Prediction) const {
Dups = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
return false;
if (TrueBBI.IsBrAnalyzable)
return false;
if (TrueBBI.BB->pred_size() > 1) {
if (TrueBBI.CannotBeCopied ||
!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
Prediction))
return false;
Dups = TrueBBI.NonPredSize;
}
return true;
}
/// Returns true if the 'true' and 'false' blocks (along with their common
/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
/// true, it checks if 'true' block's false branch branches to the 'false' block
/// rather than the other way around. It also returns the number of instructions
/// that the ifcvt would need to duplicate if performed in 'Dups'.
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups,
BranchProbability Prediction) const {
Dups = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
return false;
if (TrueBBI.BB->pred_size() > 1) {
if (TrueBBI.CannotBeCopied)
return false;
unsigned Size = TrueBBI.NonPredSize;
if (TrueBBI.IsBrAnalyzable) {
if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
// Ends with an unconditional branch. It will be removed.
--Size;
else {
MachineBasicBlock *FExit = FalseBranch
? TrueBBI.TrueBB : TrueBBI.FalseBB;
if (FExit)
// Require a conditional branch
++Size;
}
}
if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
return false;
Dups = Size;
}
MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
MachineFunction::iterator I = TrueBBI.BB->getIterator();
if (++I == TrueBBI.BB->getParent()->end())
return false;
TExit = &*I;
}
return TExit && TExit == FalseBBI.BB;
}
/// Increment \p It until it points to a non-debug instruction or to \p End.
/// @param It Iterator to increment
/// @param End Iterator that points to end. Will be compared to It
/// @returns true if It == End, false otherwise.
static inline bool skipDebugInstructionsForward(
MachineBasicBlock::iterator &It,
MachineBasicBlock::iterator &End) {
while (It != End && It->isDebugValue())
It++;
return It == End;
}
/// Shrink the provided inclusive range by one instruction.
/// If the range was one instruction (\p It == \p Begin), It is not modified,
/// but \p Empty is set to true.
static inline void shrinkInclusiveRange(
MachineBasicBlock::iterator &Begin,
MachineBasicBlock::iterator &It,
bool &Empty) {
if (It == Begin)
Empty = true;
else
It--;
}
/// Decrement \p It until it points to a non-debug instruction or the range is
/// empty.
/// @param It Iterator to decrement.
/// @param Begin Iterator that points to beginning. Will be compared to It
/// @param Empty Set to true if the resulting range is Empty
/// @returns the value of Empty as a convenience.
static inline bool skipDebugInstructionsBackward(
MachineBasicBlock::iterator &Begin,
MachineBasicBlock::iterator &It,
bool &Empty) {
while (!Empty && It->isDebugValue())
shrinkInclusiveRange(Begin, It, Empty);
return Empty;
}
/// Count duplicated instructions and move the iterators to show where they
/// are.
/// @param TIB True Iterator Begin
/// @param FIB False Iterator Begin
/// These two iterators initially point to the first instruction of the two
/// blocks, and finally point to the first non-shared instruction.
/// @param TIE True Iterator End
/// @param FIE False Iterator End
/// These two iterators initially point to End() for the two blocks() and
/// finally point to the first shared instruction in the tail.
/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
/// two blocks.
/// @param Dups1 count of duplicated instructions at the beginning of the 2
/// blocks.
/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
/// @param SkipUnconditionalBranches if true, Don't make sure that
/// unconditional branches at the end of the blocks are the same. True is
/// passed when the blocks are analyzable to allow for fallthrough to be
/// handled.
/// @return false if the shared portion prevents if conversion.
bool IfConverter::CountDuplicatedInstructions(
MachineBasicBlock::iterator &TIB,
MachineBasicBlock::iterator &FIB,
MachineBasicBlock::iterator &TIE,
MachineBasicBlock::iterator &FIE,
unsigned &Dups1, unsigned &Dups2,
MachineBasicBlock &TBB, MachineBasicBlock &FBB,
bool SkipUnconditionalBranches) const {
while (TIB != TIE && FIB != FIE) {
// Skip dbg_value instructions. These do not count.
if(skipDebugInstructionsForward(TIB, TIE))
break;
if(skipDebugInstructionsForward(FIB, FIE))
break;
if (!TIB->isIdenticalTo(*FIB))
break;
// A pred-clobbering instruction in the shared portion prevents
// if-conversion.
std::vector<MachineOperand> PredDefs;
if (TII->DefinesPredicate(*TIB, PredDefs))
return false;
// If we get all the way to the branch instructions, don't count them.
if (!TIB->isBranch())
++Dups1;
++TIB;
++FIB;
}
// Check for already containing all of the block.
if (TIB == TIE || FIB == FIE)
return true;
// Now, in preparation for counting duplicate instructions at the ends of the
// blocks, move the end iterators up past any branch instructions.
--TIE;
--FIE;
// After this point TIB and TIE define an inclusive range, which means that
// TIB == TIE is true when there is one more instruction to consider, not at
// the end. Because we may not be able to go before TIB, we need a flag to
// indicate a completely empty range.
bool TEmpty = false, FEmpty = false;
// Upon exit TIE and FIE will both point at the last non-shared instruction.
// They need to be moved forward to point past the last non-shared
// instruction if the range they delimit is non-empty.
auto IncrementEndIteratorsOnExit = make_scope_exit([&]() {
if (!TEmpty)
++TIE;
if (!FEmpty)
++FIE;
});
if (!TBB.succ_empty() || !FBB.succ_empty()) {
if (SkipUnconditionalBranches) {
while (!TEmpty && TIE->isUnconditionalBranch())
shrinkInclusiveRange(TIB, TIE, TEmpty);
while (!FEmpty && FIE->isUnconditionalBranch())
shrinkInclusiveRange(FIB, FIE, FEmpty);
}
}
// If Dups1 includes all of a block, then don't count duplicate
// instructions at the end of the blocks.
if (TEmpty || FEmpty)
return true;
// Count duplicate instructions at the ends of the blocks.
while (!TEmpty && !FEmpty) {
// Skip dbg_value instructions. These do not count.
if (skipDebugInstructionsBackward(TIB, TIE, TEmpty))
break;
if (skipDebugInstructionsBackward(FIB, FIE, FEmpty))
break;
if (!TIE->isIdenticalTo(*FIE))
break;
// We have to verify that any branch instructions are the same, and then we
// don't count them toward the # of duplicate instructions.
if (!TIE->isBranch())
++Dups2;
shrinkInclusiveRange(TIB, TIE, TEmpty);
shrinkInclusiveRange(FIB, FIE, FEmpty);
}
return true;
}
/// RescanInstructions - Run ScanInstructions on a pair of blocks.
/// @param TIB - True Iterator Begin, points to first non-shared instruction
/// @param FIB - False Iterator Begin, points to first non-shared instruction
/// @param TIE - True Iterator End, points past last non-shared instruction
/// @param FIE - False Iterator End, points past last non-shared instruction
/// @param TrueBBI - BBInfo to update for the true block.
/// @param FalseBBI - BBInfo to update for the false block.
/// @returns - false if either block cannot be predicated or if both blocks end
/// with a predicate-clobbering instruction.
bool IfConverter::RescanInstructions(
MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
BBInfo &TrueBBI, BBInfo &FalseBBI) const {
bool BranchUnpredicable = true;
TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
if (TrueBBI.IsUnpredicable)
return false;
ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
if (FalseBBI.IsUnpredicable)
return false;
if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
return false;
return true;
}
#ifndef NDEBUG
static void verifySameBranchInstructions(
MachineBasicBlock *MBB1,
MachineBasicBlock *MBB2) {
MachineBasicBlock::iterator B1 = MBB1->begin();
MachineBasicBlock::iterator B2 = MBB2->begin();
MachineBasicBlock::iterator E1 = std::prev(MBB1->end());
MachineBasicBlock::iterator E2 = std::prev(MBB2->end());
bool Empty1 = false, Empty2 = false;
while (!Empty1 && !Empty2) {
skipDebugInstructionsBackward(B1, E1, Empty1);
skipDebugInstructionsBackward(B2, E2, Empty2);
if (Empty1 && Empty2)
break;
if (Empty1) {
assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
break;
}
if (Empty2) {
assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
break;
}
if (E1->isBranch() || E2->isBranch())
assert(E1->isIdenticalTo(*E2) &&
"Branch mis-match, branch instructions don't match.");
else
break;
shrinkInclusiveRange(B1, E1, Empty1);
shrinkInclusiveRange(B2, E2, Empty2);
}
}
#endif
/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) form a diamond if a common tail block is
/// extracted.
/// While not strictly a diamond, this pattern would form a diamond if
/// tail-merging had merged the shared tails.
/// EBB
/// _/ \_
/// | |
/// TBB FBB
/// / \ / \
/// FalseBB TrueBB FalseBB
/// Currently only handles analyzable branches.
/// Specifically excludes actual diamonds to avoid overlap.
bool IfConverter::ValidForkedDiamond(
BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2,
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
Dups1 = Dups2 = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
return false;
if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
return false;
// Don't IfConvert blocks that can't be folded into their predecessor.
if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
return false;
// This function is specifically looking for conditional tails, as
// unconditional tails are already handled by the standard diamond case.
if (TrueBBI.BrCond.size() == 0 ||
FalseBBI.BrCond.size() == 0)
return false;
MachineBasicBlock *TT = TrueBBI.TrueBB;
MachineBasicBlock *TF = TrueBBI.FalseBB;
MachineBasicBlock *FT = FalseBBI.TrueBB;
MachineBasicBlock *FF = FalseBBI.FalseBB;
if (!TT)
TT = getNextBlock(*TrueBBI.BB);
if (!TF)
TF = getNextBlock(*TrueBBI.BB);
if (!FT)
FT = getNextBlock(*FalseBBI.BB);
if (!FF)
FF = getNextBlock(*FalseBBI.BB);
if (!TT || !TF)
return false;
// Check successors. If they don't match, bail.
if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
return false;
bool FalseReversed = false;
if (TF == FT && TT == FF) {
// If the branches are opposing, but we can't reverse, don't do it.
if (!FalseBBI.IsBrReversible)
return false;
FalseReversed = true;
reverseBranchCondition(FalseBBI);
}
auto UnReverseOnExit = make_scope_exit([&]() {
if (FalseReversed)
reverseBranchCondition(FalseBBI);
});
// Count duplicate instructions at the beginning of the true and false blocks.
MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
*TrueBBI.BB, *FalseBBI.BB,
/* SkipUnconditionalBranches */ true))
return false;
TrueBBICalc.BB = TrueBBI.BB;
FalseBBICalc.BB = FalseBBI.BB;
if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
return false;
// The size is used to decide whether to if-convert, and the shared portions
// are subtracted off. Because of the subtraction, we just use the size that
// was calculated by the original ScanInstructions, as it is correct.
TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
return true;
}
/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) forms a valid diamond shape for ifcvt.
bool IfConverter::ValidDiamond(
BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2,
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
Dups1 = Dups2 = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
return false;
MachineBasicBlock *TT = TrueBBI.TrueBB;
MachineBasicBlock *FT = FalseBBI.TrueBB;
if (!TT && blockAlwaysFallThrough(TrueBBI))
TT = getNextBlock(*TrueBBI.BB);
if (!FT && blockAlwaysFallThrough(FalseBBI))
FT = getNextBlock(*FalseBBI.BB);
if (TT != FT)
return false;
if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
return false;
if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
return false;
// FIXME: Allow true block to have an early exit?
if (TrueBBI.FalseBB || FalseBBI.FalseBB)
return false;
// Count duplicate instructions at the beginning and end of the true and
// false blocks.
// Skip unconditional branches only if we are considering an analyzable
// diamond. Otherwise the branches must be the same.
bool SkipUnconditionalBranches =
TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
*TrueBBI.BB, *FalseBBI.BB,
SkipUnconditionalBranches))
return false;
TrueBBICalc.BB = TrueBBI.BB;
FalseBBICalc.BB = FalseBBI.BB;
if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
return false;
// The size is used to decide whether to if-convert, and the shared portions
// are subtracted off. Because of the subtraction, we just use the size that
// was calculated by the original ScanInstructions, as it is correct.
TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
return true;
}
/// AnalyzeBranches - Look at the branches at the end of a block to determine if
/// the block is predicable.
void IfConverter::AnalyzeBranches(BBInfo &BBI) {
if (BBI.IsDone)
return;
BBI.TrueBB = BBI.FalseBB = nullptr;
BBI.BrCond.clear();
BBI.IsBrAnalyzable =
!TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
BBI.IsBrReversible = (RevCond.size() == 0) ||
!TII->reverseBranchCondition(RevCond);
BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
if (BBI.BrCond.size()) {
// No false branch. This BB must end with a conditional branch and a
// fallthrough.
if (!BBI.FalseBB)
BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
if (!BBI.FalseBB) {
// Malformed bcc? True and false blocks are the same?
BBI.IsUnpredicable = true;
}
}
}
/// ScanInstructions - Scan all the instructions in the block to determine if
/// the block is predicable. In most cases, that means all the instructions
/// in the block are isPredicable(). Also checks if the block contains any
/// instruction which can clobber a predicate (e.g. condition code register).
/// If so, the block is not predicable unless it's the last instruction.
void IfConverter::ScanInstructions(BBInfo &BBI,
MachineBasicBlock::iterator &Begin,
MachineBasicBlock::iterator &End,
bool BranchUnpredicable) const {
if (BBI.IsDone || BBI.IsUnpredicable)
return;
bool AlreadyPredicated = !BBI.Predicate.empty();
BBI.NonPredSize = 0;
BBI.ExtraCost = 0;
BBI.ExtraCost2 = 0;
BBI.ClobbersPred = false;
for (MachineInstr &MI : make_range(Begin, End)) {
if (MI.isDebugValue())
continue;
// It's unsafe to duplicate convergent instructions in this context, so set
// BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
// following CFG, which is subject to our "simple" transformation.
//
// BB0 // if (c1) goto BB1; else goto BB2;
// / \
// BB1 |
// | BB2 // if (c2) goto TBB; else goto FBB;
// | / |
// | / |
// TBB |
// | |
// | FBB
// |
// exit
//
// Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
// be unconditional, and in BB2, they'd be predicated upon c2), and suppose
// TBB contains a convergent instruction. This is safe iff doing so does
// not add a control-flow dependency to the convergent instruction -- i.e.,
// it's safe iff the set of control flows that leads us to the convergent
// instruction does not get smaller after the transformation.
//
// Originally we executed TBB if c1 || c2. After the transformation, there
// are two copies of TBB's instructions. We get to the first if c1, and we
// get to the second if !c1 && c2.
//
// There are clearly fewer ways to satisfy the condition "c1" than
// "c1 || c2". Since we've shrunk the set of control flows which lead to
// our convergent instruction, the transformation is unsafe.
if (MI.isNotDuplicable() || MI.isConvergent())
BBI.CannotBeCopied = true;
bool isPredicated = TII->isPredicated(MI);
bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
if (BranchUnpredicable && MI.isBranch()) {
BBI.IsUnpredicable = true;
return;
}
// A conditional branch is not predicable, but it may be eliminated.
if (isCondBr)
continue;
if (!isPredicated) {
BBI.NonPredSize++;
unsigned ExtraPredCost = TII->getPredicationCost(MI);
unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
if (NumCycles > 1)
BBI.ExtraCost += NumCycles-1;
BBI.ExtraCost2 += ExtraPredCost;
} else if (!AlreadyPredicated) {
// FIXME: This instruction is already predicated before the
// if-conversion pass. It's probably something like a conditional move.
// Mark this block unpredicable for now.
BBI.IsUnpredicable = true;
return;
}
if (BBI.ClobbersPred && !isPredicated) {
// Predicate modification instruction should end the block (except for
// already predicated instructions and end of block branches).
// Predicate may have been modified, the subsequent (currently)
// unpredicated instructions cannot be correctly predicated.
BBI.IsUnpredicable = true;
return;
}
// FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
// still potentially predicable.
std::vector<MachineOperand> PredDefs;
if (TII->DefinesPredicate(MI, PredDefs))
BBI.ClobbersPred = true;
if (!TII->isPredicable(MI)) {
BBI.IsUnpredicable = true;
return;
}
}
}
/// Determine if the block is a suitable candidate to be predicated by the
/// specified predicate.
/// @param BBI BBInfo for the block to check
/// @param Pred Predicate array for the branch that leads to BBI
/// @param isTriangle true if the Analysis is for a triangle
/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
/// case
/// @param hasCommonTail true if BBI shares a tail with a sibling block that
/// contains any instruction that would make the block unpredicable.
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
SmallVectorImpl<MachineOperand> &Pred,
bool isTriangle, bool RevBranch,
bool hasCommonTail) {
// If the block is dead or unpredicable, then it cannot be predicated.
// Two blocks may share a common unpredicable tail, but this doesn't prevent
// them from being if-converted. The non-shared portion is assumed to have
// been checked
if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
return false;
// If it is already predicated but we couldn't analyze its terminator, the
// latter might fallthrough, but we can't determine where to.
// Conservatively avoid if-converting again.
if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
return false;
// If it is already predicated, check if the new predicate subsumes
// its predicate.
if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
return false;
if (!hasCommonTail && BBI.BrCond.size()) {
if (!isTriangle)
return false;
// Test predicate subsumption.
SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (RevBranch) {
if (TII->reverseBranchCondition(Cond))
return false;
}
if (TII->reverseBranchCondition(RevPred) ||
!TII->SubsumesPredicate(Cond, RevPred))
return false;
}
return true;
}
/// Analyze the structure of the sub-CFG starting from the specified block.
/// Record its successors and whether it looks like an if-conversion candidate.
void IfConverter::AnalyzeBlock(
MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
struct BBState {
BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
MachineBasicBlock *MBB;
/// This flag is true if MBB's successors have been analyzed.
bool SuccsAnalyzed;
};
// Push MBB to the stack.
SmallVector<BBState, 16> BBStack(1, MBB);
while (!BBStack.empty()) {
BBState &State = BBStack.back();
MachineBasicBlock *BB = State.MBB;
BBInfo &BBI = BBAnalysis[BB->getNumber()];
if (!State.SuccsAnalyzed) {
if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
BBStack.pop_back();
continue;
}
BBI.BB = BB;
BBI.IsBeingAnalyzed = true;
AnalyzeBranches(BBI);
MachineBasicBlock::iterator Begin = BBI.BB->begin();
MachineBasicBlock::iterator End = BBI.BB->end();
ScanInstructions(BBI, Begin, End);
// Unanalyzable or ends with fallthrough or unconditional branch, or if is
// not considered for ifcvt anymore.
if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
// Do not ifcvt if either path is a back edge to the entry block.
if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
// Do not ifcvt if true and false fallthrough blocks are the same.
if (!BBI.FalseBB) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
// Push the False and True blocks to the stack.
State.SuccsAnalyzed = true;
BBStack.push_back(*BBI.FalseBB);
BBStack.push_back(*BBI.TrueBB);
continue;
}
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
if (TrueBBI.IsDone && FalseBBI.IsDone) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
SmallVector<MachineOperand, 4>
RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
bool CanRevCond = !TII->reverseBranchCondition(RevCond);
unsigned Dups = 0;
unsigned Dups2 = 0;
bool TNeedSub = !TrueBBI.Predicate.empty();
bool FNeedSub = !FalseBBI.Predicate.empty();
bool Enqueued = false;
BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
if (CanRevCond) {
BBInfo TrueBBICalc, FalseBBICalc;
auto feasibleDiamond = [&]() {
bool MeetsSize = MeetIfcvtSizeLimit(
*TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
*FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
Prediction);
bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
/* IsTriangle */ false, /* RevCond */ false,
/* hasCommonTail */ true);
bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
/* IsTriangle */ false, /* RevCond */ false,
/* hasCommonTail */ true);
return MeetsSize && TrueFeasible && FalseFeasible;
};
if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
TrueBBICalc, FalseBBICalc)) {
if (feasibleDiamond()) {
// Diamond:
// EBB
// / \_
// | |
// TBB FBB
// \ /
// TailBB
// Note TailBB can be empty.
Tokens.push_back(llvm::make_unique<IfcvtToken>(
BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
(bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
Enqueued = true;
}
} else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
TrueBBICalc, FalseBBICalc)) {
if (feasibleDiamond()) {
// ForkedDiamond:
// if TBB and FBB have a common tail that includes their conditional
// branch instructions, then we can If Convert this pattern.
// EBB
// _/ \_
// | |
// TBB FBB
// / \ / \
// FalseBB TrueBB FalseBB
//
Tokens.push_back(llvm::make_unique<IfcvtToken>(
BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
(bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
Enqueued = true;
}
}
}
if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
TrueBBI.ExtraCost2, Prediction) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
// Triangle:
// EBB
// | \_
// | |
// | TBB
// | /
// FBB
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
Enqueued = true;
}
if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
TrueBBI.ExtraCost2, Prediction) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
Enqueued = true;
}
if (ValidSimple(TrueBBI, Dups, Prediction) &&
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
TrueBBI.ExtraCost2, Prediction) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
// Simple (split, no rejoin):
// EBB
// | \_
// | |
// | TBB---> exit
// |
// FBB
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
Enqueued = true;
}
if (CanRevCond) {
// Try the other path...
if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
Prediction.getCompl()) &&
MeetIfcvtSizeLimit(*FalseBBI.BB,
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
FeasibilityAnalysis(FalseBBI, RevCond, true)) {
Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
FNeedSub, Dups));
Enqueued = true;
}
if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
Prediction.getCompl()) &&
MeetIfcvtSizeLimit(*FalseBBI.BB,
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
Enqueued = true;
}
if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
MeetIfcvtSizeLimit(*FalseBBI.BB,
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
FeasibilityAnalysis(FalseBBI, RevCond)) {
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
Enqueued = true;
}
}
BBI.IsEnqueued = Enqueued;
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
}
}
/// Analyze all blocks and find entries for all if-conversion candidates.
void IfConverter::AnalyzeBlocks(
MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
for (MachineBasicBlock &MBB : MF)
AnalyzeBlock(MBB, Tokens);
// Sort to favor more complex ifcvt scheme.
std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
}
/// Returns true either if ToMBB is the next block after MBB or that all the
/// intervening blocks are empty (given MBB can fall through to its next block).
static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
MachineFunction::iterator PI = MBB.getIterator();
MachineFunction::iterator I = std::next(PI);
MachineFunction::iterator TI = ToMBB.getIterator();
MachineFunction::iterator E = MBB.getParent()->end();
while (I != TI) {
// Check isSuccessor to avoid case where the next block is empty, but
// it's not a successor.
if (I == E || !I->empty() || !PI->isSuccessor(&*I))
return false;
PI = I++;
}
return true;
}
/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
/// can be if-converted. If predecessor is already enqueued, dequeue it!
void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
if (PBBI.IsDone || PBBI.BB == &MBB)
continue;
PBBI.IsAnalyzed = false;
PBBI.IsEnqueued = false;
}
}
/// Inserts an unconditional branch from \p MBB to \p ToMBB.
static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
const TargetInstrInfo *TII) {
DebugLoc dl; // FIXME: this is nowhere
SmallVector<MachineOperand, 0> NoCond;
TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
}
/// Remove true / false edges if either / both are no longer successors.
void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond))
BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
}
/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
/// values defined in MI which are also live/used by MI.
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
const TargetRegisterInfo *TRI = MI.getParent()->getParent()
->getSubtarget().getRegisterInfo();
// Before stepping forward past MI, remember which regs were live
// before MI. This is needed to set the Undef flag only when reg is
// dead.
SparseSet<unsigned> LiveBeforeMI;
LiveBeforeMI.setUniverse(TRI->getNumRegs());
for (unsigned Reg : Redefs)
LiveBeforeMI.insert(Reg);
SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
Redefs.stepForward(MI, Clobbers);
// Now add the implicit uses for each of the clobbered values.
for (auto Clobber : Clobbers) {
// FIXME: Const cast here is nasty, but better than making StepForward
// take a mutable instruction instead of const.
unsigned Reg = Clobber.first;
MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
MachineInstr *OpMI = Op.getParent();
MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI);
if (Op.isRegMask()) {
// First handle regmasks. They clobber any entries in the mask which
// means that we need a def for those registers.
if (LiveBeforeMI.count(Reg))
MIB.addReg(Reg, RegState::Implicit);
// We also need to add an implicit def of this register for the later
// use to read from.
// For the register allocator to have allocated a register clobbered
// by the call which is used later, it must be the case that
// the call doesn't return.
MIB.addReg(Reg, RegState::Implicit | RegState::Define);
continue;
}
assert(Op.isReg() && "Register operand required");
if (Op.isDead()) {
// If we found a dead def, but it needs to be live, then remove the dead
// flag.
if (Redefs.contains(Op.getReg()))
Op.setIsDead(false);
}
if (LiveBeforeMI.count(Reg))
MIB.addReg(Reg, RegState::Implicit);
else {
bool HasLiveSubReg = false;
for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
if (!LiveBeforeMI.count(*S))
continue;
HasLiveSubReg = true;
break;
}
if (HasLiveSubReg)
MIB.addReg(Reg, RegState::Implicit);
}
}
}
/// Remove kill flags from operands with a registers in the \p DontKill set.
static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
for (MIBundleOperands O(MI); O.isValid(); ++O) {
if (!O->isReg() || !O->isKill())
continue;
if (DontKill.contains(O->getReg()))
O->setIsKill(false);
}
}
/// Walks a range of machine instructions and removes kill flags for registers
/// in the \p DontKill set.
static void RemoveKills(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E,
const LivePhysRegs &DontKill,
const MCRegisterInfo &MCRI) {
for (MachineInstr &MI : make_range(I, E))
RemoveKills(MI, DontKill);
}
/// If convert a simple (split, no rejoin) sub-CFG.
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
BBInfo *CvtBBI = &TrueBBI;
BBInfo *NextBBI = &FalseBBI;
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (Kind == ICSimpleFalse)
std::swap(CvtBBI, NextBBI);
MachineBasicBlock &CvtMBB = *CvtBBI->BB;
MachineBasicBlock &NextMBB = *NextBBI->BB;
if (CvtBBI->IsDone ||
(CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
if (CvtMBB.hasAddressTaken())
// Conservatively abort if-conversion if BB's address is taken.
return false;
if (Kind == ICSimpleFalse)
if (TII->reverseBranchCondition(Cond))
llvm_unreachable("Unable to reverse branch condition!");
// Initialize liveins to the first BB. These are potentiall redefined by
// predicated instructions.
Redefs.init(TRI);
Redefs.addLiveIns(CvtMBB);
Redefs.addLiveIns(NextMBB);
// Compute a set of registers which must not be killed by instructions in
// BB1: This is everything live-in to BB2.
DontKill.init(TRI);
DontKill.addLiveIns(NextMBB);
if (CvtMBB.pred_size() > 1) {
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
BBI.BB->removeSuccessor(&CvtMBB, true);
} else {
RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI);
PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
// Merge converted block into entry block.
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI);
}
bool IterIfcvt = true;
if (!canFallThroughTo(*BBI.BB, NextMBB)) {
InsertUncondBranch(*BBI.BB, NextMBB, TII);
BBI.HasFallThrough = false;
// Now ifcvt'd block will look like this:
// BB:
// ...
// t, f = cmp
// if t op
// b BBf
//
// We cannot further ifcvt this block because the unconditional branch
// will have to be predicated on the new condition, that will not be
// available if cmp executes.
IterIfcvt = false;
}
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
InvalidatePreds(*BBI.BB);
CvtBBI->IsDone = true;
// FIXME: Must maintain LiveIns.
return true;
}
/// If convert a triangle sub-CFG.
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
BBInfo *CvtBBI = &TrueBBI;
BBInfo *NextBBI = &FalseBBI;
DebugLoc dl; // FIXME: this is nowhere
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
std::swap(CvtBBI, NextBBI);
MachineBasicBlock &CvtMBB = *CvtBBI->BB;
MachineBasicBlock &NextMBB = *NextBBI->BB;
if (CvtBBI->IsDone ||
(CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
if (CvtMBB.hasAddressTaken())
// Conservatively abort if-conversion if BB's address is taken.
return false;
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
if (TII->reverseBranchCondition(Cond))
llvm_unreachable("Unable to reverse branch condition!");
if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
if (reverseBranchCondition(*CvtBBI)) {
// BB has been changed, modify its predecessors (except for this
// one) so they don't get ifcvt'ed based on bad intel.
for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
if (PBB == BBI.BB)
continue;
BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
if (PBBI.IsEnqueued) {
PBBI.IsAnalyzed = false;
PBBI.IsEnqueued = false;
}
}
}
}
// Initialize liveins to the first BB. These are potentially redefined by
// predicated instructions.
Redefs.init(TRI);
Redefs.addLiveIns(CvtMBB);
Redefs.addLiveIns(NextMBB);
DontKill.clear();
bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
if (HasEarlyExit) {
// Get probabilities before modifying CvtMBB and BBI.BB.
CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
}
if (CvtMBB.pred_size() > 1) {
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
BBI.BB->removeSuccessor(&CvtMBB, true);
} else {
// Predicate the 'true' block after removing its branch.
CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
// Now merge the entry of the triangle with the true block.
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI, false);
}
// If 'true' block has a 'false' successor, add an exit branch to it.
if (HasEarlyExit) {
SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
CvtBBI->BrCond.end());
if (TII->reverseBranchCondition(RevCond))
llvm_unreachable("Unable to reverse branch condition!");
// Update the edge probability for both CvtBBI->FalseBB and NextBBI.
// NewNext = New_Prob(BBI.BB, NextMBB) =
// Prob(BBI.BB, NextMBB) +
// Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
// NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
// Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
auto NewTrueBB = getNextBlock(*BBI.BB);
auto NewNext = BBNext + BBCvt * CvtNext;
auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
if (NewTrueBBIter != BBI.BB->succ_end())
BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
auto NewFalse = BBCvt * CvtFalse;
TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
}
// Merge in the 'false' block if the 'false' block has no other
// predecessors. Otherwise, add an unconditional branch to 'false'.
bool FalseBBDead = false;
bool IterIfcvt = true;
bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
if (!isFallThrough) {
// Only merge them if the true block does not fallthrough to the false
// block. By not merging them, we make it possible to iteratively
// ifcvt the blocks.
if (!HasEarlyExit &&
NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
!NextMBB.hasAddressTaken()) {
MergeBlocks(BBI, *NextBBI);
FalseBBDead = true;
} else {
InsertUncondBranch(*BBI.BB, NextMBB, TII);
BBI.HasFallThrough = false;
}
// Mixed predicated and unpredicated code. This cannot be iteratively
// predicated.
IterIfcvt = false;
}
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
InvalidatePreds(*BBI.BB);
CvtBBI->IsDone = true;
if (FalseBBDead)
NextBBI->IsDone = true;
// FIXME: Must maintain LiveIns.
return true;
}
/// Common code shared between diamond conversions.
/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
/// and FalseBBI
/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
/// and \p FalseBBI
/// \p RemoveBranch - Remove the common branch of the two blocks before
/// predicating. Only false for unanalyzable fallthrough
/// cases. The caller will replace the branch if necessary.
/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
/// unanalyzable fallthrough
bool IfConverter::IfConvertDiamondCommon(
BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned NumDups1, unsigned NumDups2,
bool TClobbersPred, bool FClobbersPred,
bool RemoveBranch, bool MergeAddEdges) {
if (TrueBBI.IsDone || FalseBBI.IsDone ||
TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
// Something has changed. It's no longer safe to predicate these blocks.
BBI.IsAnalyzed = false;
TrueBBI.IsAnalyzed = false;
FalseBBI.IsAnalyzed = false;
return false;
}
if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
// Conservatively abort if-conversion if either BB has its address taken.
return false;
// Put the predicated instructions from the 'true' block before the
// instructions from the 'false' block, unless the true block would clobber
// the predicate, in which case, do the opposite.
BBInfo *BBI1 = &TrueBBI;
BBInfo *BBI2 = &FalseBBI;
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
if (TII->reverseBranchCondition(RevCond))
llvm_unreachable("Unable to reverse branch condition!");
SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
// Figure out the more profitable ordering.
bool DoSwap = false;
if (TClobbersPred && !FClobbersPred)
DoSwap = true;
else if (!TClobbersPred && !FClobbersPred) {
if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
DoSwap = true;
} else if (TClobbersPred && FClobbersPred)
llvm_unreachable("Predicate info cannot be clobbered by both sides.");
if (DoSwap) {
std::swap(BBI1, BBI2);
std::swap(Cond1, Cond2);
}
// Remove the conditional branch from entry to the blocks.
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
MachineBasicBlock &MBB1 = *BBI1->BB;
MachineBasicBlock &MBB2 = *BBI2->BB;
// Initialize the Redefs:
// - BB2 live-in regs need implicit uses before being redefined by BB1
// instructions.
// - BB1 live-out regs need implicit uses before being redefined by BB2
// instructions. We start with BB1 live-ins so we have the live-out regs
// after tracking the BB1 instructions.
Redefs.init(TRI);
Redefs.addLiveIns(MBB1);
Redefs.addLiveIns(MBB2);
// Remove the duplicated instructions at the beginnings of both paths.
// Skip dbg_value instructions
MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
BBI1->NonPredSize -= NumDups1;
BBI2->NonPredSize -= NumDups1;
// Skip past the dups on each side separately since there may be
// differing dbg_value entries.
for (unsigned i = 0; i < NumDups1; ++DI1) {
if (!DI1->isDebugValue())
++i;
}
while (NumDups1 != 0) {
++DI2;
if (!DI2->isDebugValue())
--NumDups1;
}
// Compute a set of registers which must not be killed by instructions in BB1:
// This is everything used+live in BB2 after the duplicated instructions. We
// can compute this set by simulating liveness backwards from the end of BB2.
DontKill.init(TRI);
for (const MachineInstr &MI : make_range(MBB2.rbegin(), ++DI2.getReverse()))
DontKill.stepBackward(MI);
for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers;
Redefs.stepForward(MI, IgnoredClobbers);
}
BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
MBB2.erase(MBB2.begin(), DI2);
// The branches have been checked to match, so it is safe to remove the branch
// in BB1 and rely on the copy in BB2
#ifndef NDEBUG
// Unanalyzable branches must match exactly. Check that now.
if (!BBI1->IsBrAnalyzable)
verifySameBranchInstructions(&MBB1, &MBB2);
#endif
BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
// Remove duplicated instructions.
DI1 = MBB1.end();
for (unsigned i = 0; i != NumDups2; ) {
// NumDups2 only counted non-dbg_value instructions, so this won't
// run off the head of the list.
assert(DI1 != MBB1.begin());
--DI1;
// skip dbg_value instructions
if (!DI1->isDebugValue())
++i;
}
MBB1.erase(DI1, MBB1.end());
// Kill flags in the true block for registers living into the false block
// must be removed.
RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI);
DI2 = BBI2->BB->end();
// The branches have been checked to match. Skip over the branch in the false
// block so that we don't try to predicate it.
if (RemoveBranch)
BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
else {
do {
assert(DI2 != MBB2.begin());
DI2--;
} while (DI2->isBranch() || DI2->isDebugValue());
DI2++;
}
while (NumDups2 != 0) {
// NumDups2 only counted non-dbg_value instructions, so this won't
// run off the head of the list.
assert(DI2 != MBB2.begin());
--DI2;
// skip dbg_value instructions
if (!DI2->isDebugValue())
--NumDups2;
}
// Remember which registers would later be defined by the false block.
// This allows us not to predicate instructions in the true block that would
// later be re-defined. That is, rather than
// subeq r0, r1, #1
// addne r0, r1, #1
// generate:
// sub r0, r1, #1
// addne r0, r1, #1
SmallSet<unsigned, 4> RedefsByFalse;
SmallSet<unsigned, 4> ExtUses;
if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
if (FI.isDebugValue())
continue;
SmallVector<unsigned, 4> Defs;
for (const MachineOperand &MO : FI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef()) {
Defs.push_back(Reg);
} else if (!RedefsByFalse.count(Reg)) {
// These are defined before ctrl flow reach the 'false' instructions.
// They cannot be modified by the 'true' instructions.
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
ExtUses.insert(*SubRegs);
}
}
for (unsigned Reg : Defs) {
if (!ExtUses.count(Reg)) {
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
RedefsByFalse.insert(*SubRegs);
}
}
}
}
// Predicate the 'true' block.
PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
// After predicating BBI1, if there is a predicated terminator in BBI1 and
// a non-predicated in BBI2, then we don't want to predicate the one from
// BBI2. The reason is that if we merged these blocks, we would end up with
// two predicated terminators in the same block.
if (!MBB2.empty() && (DI2 == MBB2.end())) {
MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) &&
BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T))
--DI2;
}
// Predicate the 'false' block.
PredicateBlock(*BBI2, DI2, *Cond2);
// Merge the true block into the entry of the diamond.
MergeBlocks(BBI, *BBI1, MergeAddEdges);
MergeBlocks(BBI, *BBI2, MergeAddEdges);
return true;
}
/// If convert an almost-diamond sub-CFG where the true
/// and false blocks share a common tail.
bool IfConverter::IfConvertForkedDiamond(
BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2,
bool TClobbersPred, bool FClobbersPred) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
// Save the debug location for later.
DebugLoc dl;
MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
if (TIE != TrueBBI.BB->end())
dl = TIE->getDebugLoc();
// Removing branches from both blocks is safe, because we have already
// determined that both blocks have the same branch instructions. The branch
// will be added back at the end, unpredicated.
if (!IfConvertDiamondCommon(
BBI, TrueBBI, FalseBBI,
NumDups1, NumDups2,
TClobbersPred, FClobbersPred,
/* RemoveBranch */ true, /* MergeAddEdges */ true))
return false;
// Add back the branch.
// Debug location saved above when removing the branch from BBI2
TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
TrueBBI.BrCond, dl);
RemoveExtraEdges(BBI);
// Update block info.
BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
InvalidatePreds(*BBI.BB);
// FIXME: Must maintain LiveIns.
return true;
}
/// If convert a diamond sub-CFG.
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2,
bool TClobbersPred, bool FClobbersPred) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
MachineBasicBlock *TailBB = TrueBBI.TrueBB;
// True block must fall through or end with an unanalyzable terminator.
if (!TailBB) {
if (blockAlwaysFallThrough(TrueBBI))
TailBB = FalseBBI.TrueBB;
assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
}
if (!IfConvertDiamondCommon(
BBI, TrueBBI, FalseBBI,
NumDups1, NumDups2,
TClobbersPred, FClobbersPred,
/* RemoveBranch */ TrueBBI.IsBrAnalyzable,
/* MergeAddEdges */ TailBB == nullptr))
return false;
// If the if-converted block falls through or unconditionally branches into
// the tail block, and the tail block does not have other predecessors, then
// fold the tail block in as well. Otherwise, unless it falls through to the
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
bool CanMergeTail = !TailBBI.HasFallThrough &&
!TailBBI.BB->hasAddressTaken();
// The if-converted block can still have a predicated terminator
// (e.g. a predicated return). If that is the case, we cannot merge
// it with the tail block.
MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
if (TI != BBI.BB->end() && TII->isPredicated(*TI))
CanMergeTail = false;
// There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
// check if there are any other predecessors besides those.
unsigned NumPreds = TailBB->pred_size();
if (NumPreds > 1)
CanMergeTail = false;
else if (NumPreds == 1 && CanMergeTail) {
MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
CanMergeTail = false;
}
if (CanMergeTail) {
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
InsertUncondBranch(*BBI.BB, *TailBB, TII);
BBI.HasFallThrough = false;
}
}
// RemoveExtraEdges won't work if the block has an unanalyzable branch,
// which can happen here if TailBB is unanalyzable and is merged, so
// explicitly remove BBI1 and BBI2 as successors.
BBI.BB->removeSuccessor(TrueBBI.BB);
BBI.BB->removeSuccessor(FalseBBI.BB, /* NormalizeSuccessProbs */ true);
RemoveExtraEdges(BBI);
// Update block info.
BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
InvalidatePreds(*BBI.BB);
// FIXME: Must maintain LiveIns.
return true;
}
static bool MaySpeculate(const MachineInstr &MI,
SmallSet<unsigned, 4> &LaterRedefs) {
bool SawStore = true;
if (!MI.isSafeToMove(nullptr, SawStore))
return false;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef() && !LaterRedefs.count(Reg))
return false;
}
return true;
}
/// Predicate instructions from the start of the block to the specified end with
/// the specified condition.
void IfConverter::PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
SmallSet<unsigned, 4> *LaterRedefs) {
bool AnyUnpred = false;
bool MaySpec = LaterRedefs != nullptr;
for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
if (I.isDebugValue() || TII->isPredicated(I))
continue;
// It may be possible not to predicate an instruction if it's the 'true'
// side of a diamond and the 'false' side may re-define the instruction's
// defs.
if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
AnyUnpred = true;
continue;
}
// If any instruction is predicated, then every instruction after it must
// be predicated.
MaySpec = false;
if (!TII->PredicateInstruction(I, Cond)) {
#ifndef NDEBUG
dbgs() << "Unable to predicate " << I << "!\n";
#endif
llvm_unreachable(nullptr);
}
// If the predicated instruction now redefines a register as the result of
// if-conversion, add an implicit kill.
UpdatePredRedefs(I, Redefs);
}
BBI.Predicate.append(Cond.begin(), Cond.end());
BBI.IsAnalyzed = false;
BBI.NonPredSize = 0;
++NumIfConvBBs;
if (AnyUnpred)
++NumUnpred;
}
/// Copy and predicate instructions from source BB to the destination block.
/// Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
bool IgnoreBr) {
MachineFunction &MF = *ToBBI.BB->getParent();
MachineBasicBlock &FromMBB = *FromBBI.BB;
for (MachineInstr &I : FromMBB) {
// Do not copy the end of the block branches.
if (IgnoreBr && I.isBranch())
break;
MachineInstr *MI = MF.CloneMachineInstr(&I);
ToBBI.BB->insert(ToBBI.BB->end(), MI);
ToBBI.NonPredSize++;
unsigned ExtraPredCost = TII->getPredicationCost(I);
unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
if (NumCycles > 1)
ToBBI.ExtraCost += NumCycles-1;
ToBBI.ExtraCost2 += ExtraPredCost;
if (!TII->isPredicated(I) && !MI->isDebugValue()) {
if (!TII->PredicateInstruction(*MI, Cond)) {
#ifndef NDEBUG
dbgs() << "Unable to predicate " << I << "!\n";
#endif
llvm_unreachable(nullptr);
}
}
// If the predicated instruction now redefines a register as the result of
// if-conversion, add an implicit kill.
UpdatePredRedefs(*MI, Redefs);
// Some kill flags may not be correct anymore.
if (!DontKill.empty())
RemoveKills(*MI, DontKill);
}
if (!IgnoreBr) {
std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
FromMBB.succ_end());
MachineBasicBlock *NBB = getNextBlock(FromMBB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
for (MachineBasicBlock *Succ : Succs) {
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
ToBBI.BB->addSuccessor(Succ);
}
}
ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
ToBBI.Predicate.append(Cond.begin(), Cond.end());
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
ToBBI.IsAnalyzed = false;
++NumDupBBs;
}
/// Move all instructions from FromBB to the end of ToBB. This will leave
/// FromBB as an empty block, so remove all of its successor edges except for
/// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
/// being moved, add those successor edges to ToBBI.
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
MachineBasicBlock &FromMBB = *FromBBI.BB;
assert(!FromMBB.hasAddressTaken() &&
"Removing a BB whose address is taken!");
// In case FromMBB contains terminators (e.g. return instruction),
// first move the non-terminator instructions, then the terminators.
MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
// If FromBB has non-predicated terminator we should copy it at the end.
if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
ToTI = ToBBI.BB->end();
ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
// Force normalizing the successors' probabilities of ToBBI.BB to convert all
// unknown probabilities into known ones.
// FIXME: This usage is too tricky and in the future we would like to
// eliminate all unknown probabilities in MBB.
ToBBI.BB->normalizeSuccProbs();
SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
FromMBB.succ_end());
MachineBasicBlock *NBB = getNextBlock(FromMBB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
// The edge probability from ToBBI.BB to FromMBB, which is only needed when
// AddEdges is true and FromMBB is a successor of ToBBI.BB.
auto To2FromProb = BranchProbability::getZero();
if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
// Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the
// edge probability being merged to other edges when this edge is removed
// later.
ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB),
BranchProbability::getZero());
}
for (MachineBasicBlock *Succ : FromSuccs) {
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
auto NewProb = BranchProbability::getZero();
if (AddEdges) {
// Calculate the edge probability for the edge from ToBBI.BB to Succ,
// which is a portion of the edge probability from FromMBB to Succ. The
// portion ratio is the edge probability from ToBBI.BB to FromMBB (if
// FromBBI is a successor of ToBBI.BB. See comment below for excepion).
NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
// To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
// only happens when if-converting a diamond CFG and FromMBB is the
// tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
// could just use the probabilities on FromMBB's out-edges when adding
// new successors.
if (!To2FromProb.isZero())
NewProb *= To2FromProb;
}
FromMBB.removeSuccessor(Succ);
if (AddEdges) {
// If the edge from ToBBI.BB to Succ already exists, update the
// probability of this edge by adding NewProb to it. An example is shown
// below, in which A is ToBBI.BB and B is FromMBB. In this case we
// don't have to set C as A's successor as it already is. We only need to
// update the edge probability on A->C. Note that B will not be
// immediately removed from A's successors. It is possible that B->D is
// not removed either if D is a fallthrough of B. Later the edge A->D
// (generated here) and B->D will be combined into one edge. To maintain
// correct edge probability of this combined edge, we need to set the edge
// probability of A->B to zero, which is already done above. The edge
// probability on A->D is calculated by scaling the original probability
// on A->B by the probability of B->D.
//
// Before ifcvt: After ifcvt (assume B->D is kept):
//
// A A
// /| /|\
// / B / B|
// | /| | ||
// |/ | | |/
// C D C D
//
if (ToBBI.BB->isSuccessor(Succ))
ToBBI.BB->setSuccProbability(
find(ToBBI.BB->successors(), Succ),
MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
else
ToBBI.BB->addSuccessor(Succ, NewProb);
}
}
// Now FromBBI always falls through to the next block!
if (NBB && !FromMBB.isSuccessor(NBB))
FromMBB.addSuccessor(NBB);
// Normalize the probabilities of ToBBI.BB's successors with all adjustment
// we've done above.
ToBBI.BB->normalizeSuccProbs();
ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
FromBBI.Predicate.clear();
ToBBI.NonPredSize += FromBBI.NonPredSize;
ToBBI.ExtraCost += FromBBI.ExtraCost;
ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
FromBBI.NonPredSize = 0;
FromBBI.ExtraCost = 0;
FromBBI.ExtraCost2 = 0;
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
ToBBI.HasFallThrough = FromBBI.HasFallThrough;
ToBBI.IsAnalyzed = false;
FromBBI.IsAnalyzed = false;
}
FunctionPass *
llvm::createIfConverter(std::function<bool(const Function &)> Ftor) {
return new IfConverter(std::move(Ftor));
}