mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
13bece08fd
to itself, even though this isn't wildly useful. llvm-svn: 97574
240 lines
8.8 KiB
C++
240 lines
8.8 KiB
C++
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits a DAG instruction selector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DAGISelEmitter.h"
|
|
#include "DAGISelMatcher.h"
|
|
#include "Record.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DAGISelEmitter Helper methods
|
|
//
|
|
|
|
/// getPatternSize - Return the 'size' of this pattern. We want to match large
|
|
/// patterns before small ones. This is used to determine the size of a
|
|
/// pattern.
|
|
static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
|
|
assert((EEVT::isExtIntegerInVTs(P->getExtTypes()) ||
|
|
EEVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
|
|
P->getExtTypeNum(0) == MVT::isVoid ||
|
|
P->getExtTypeNum(0) == MVT::Flag ||
|
|
P->getExtTypeNum(0) == MVT::iPTR ||
|
|
P->getExtTypeNum(0) == MVT::iPTRAny) &&
|
|
"Not a valid pattern node to size!");
|
|
unsigned Size = 3; // The node itself.
|
|
// If the root node is a ConstantSDNode, increases its size.
|
|
// e.g. (set R32:$dst, 0).
|
|
if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
|
|
Size += 2;
|
|
|
|
// FIXME: This is a hack to statically increase the priority of patterns
|
|
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
|
|
// Later we can allow complexity / cost for each pattern to be (optionally)
|
|
// specified. To get best possible pattern match we'll need to dynamically
|
|
// calculate the complexity of all patterns a dag can potentially map to.
|
|
const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
|
|
if (AM)
|
|
Size += AM->getNumOperands() * 3;
|
|
|
|
// If this node has some predicate function that must match, it adds to the
|
|
// complexity of this node.
|
|
if (!P->getPredicateFns().empty())
|
|
++Size;
|
|
|
|
// Count children in the count if they are also nodes.
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = P->getChild(i);
|
|
if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
|
|
Size += getPatternSize(Child, CGP);
|
|
else if (Child->isLeaf()) {
|
|
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
|
|
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
|
|
else if (Child->getComplexPatternInfo(CGP))
|
|
Size += getPatternSize(Child, CGP);
|
|
else if (!Child->getPredicateFns().empty())
|
|
++Size;
|
|
}
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
/// getResultPatternCost - Compute the number of instructions for this pattern.
|
|
/// This is a temporary hack. We should really include the instruction
|
|
/// latencies in this calculation.
|
|
static unsigned getResultPatternCost(TreePatternNode *P,
|
|
CodeGenDAGPatterns &CGP) {
|
|
if (P->isLeaf()) return 0;
|
|
|
|
unsigned Cost = 0;
|
|
Record *Op = P->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
Cost++;
|
|
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
|
|
if (II.usesCustomInserter)
|
|
Cost += 10;
|
|
}
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
Cost += getResultPatternCost(P->getChild(i), CGP);
|
|
return Cost;
|
|
}
|
|
|
|
/// getResultPatternCodeSize - Compute the code size of instructions for this
|
|
/// pattern.
|
|
static unsigned getResultPatternSize(TreePatternNode *P,
|
|
CodeGenDAGPatterns &CGP) {
|
|
if (P->isLeaf()) return 0;
|
|
|
|
unsigned Cost = 0;
|
|
Record *Op = P->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
Cost += Op->getValueAsInt("CodeSize");
|
|
}
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
Cost += getResultPatternSize(P->getChild(i), CGP);
|
|
return Cost;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Predicate emitter implementation.
|
|
//
|
|
|
|
void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) {
|
|
OS << "\n// Predicate functions.\n";
|
|
|
|
// Walk the pattern fragments, adding them to a map, which sorts them by
|
|
// name.
|
|
typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
|
|
PFsByNameTy PFsByName;
|
|
|
|
for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
|
|
I != E; ++I)
|
|
PFsByName.insert(std::make_pair(I->first->getName(), *I));
|
|
|
|
|
|
for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
|
|
I != E; ++I) {
|
|
Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
|
|
TreePattern *P = I->second.second;
|
|
|
|
// If there is a code init for this fragment, emit the predicate code.
|
|
std::string Code = PatFragRecord->getValueAsCode("Predicate");
|
|
if (Code.empty()) continue;
|
|
|
|
if (P->getOnlyTree()->isLeaf())
|
|
OS << "inline bool Predicate_" << PatFragRecord->getName()
|
|
<< "(SDNode *N) const {\n";
|
|
else {
|
|
std::string ClassName =
|
|
CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
|
|
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
|
|
|
|
OS << "inline bool Predicate_" << PatFragRecord->getName()
|
|
<< "(SDNode *" << C2 << ") const {\n";
|
|
if (ClassName != "SDNode")
|
|
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
|
|
}
|
|
OS << Code << "\n}\n";
|
|
}
|
|
|
|
OS << "\n\n";
|
|
}
|
|
|
|
namespace {
|
|
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
|
|
// In particular, we want to match maximal patterns first and lowest cost within
|
|
// a particular complexity first.
|
|
struct PatternSortingPredicate {
|
|
PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
|
|
CodeGenDAGPatterns &CGP;
|
|
|
|
bool operator()(const PatternToMatch *LHS,
|
|
const PatternToMatch *RHS) {
|
|
unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
|
|
unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
|
|
LHSSize += LHS->getAddedComplexity();
|
|
RHSSize += RHS->getAddedComplexity();
|
|
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
|
|
if (LHSSize < RHSSize) return false;
|
|
|
|
// If the patterns have equal complexity, compare generated instruction cost
|
|
unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
|
|
unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
|
|
if (LHSCost < RHSCost) return true;
|
|
if (LHSCost > RHSCost) return false;
|
|
|
|
unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP);
|
|
unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP);
|
|
if (LHSPatSize < RHSPatSize) return true;
|
|
if (LHSPatSize > RHSPatSize) return false;
|
|
|
|
// Sort based on the UID of the pattern, giving us a deterministic ordering.
|
|
assert(LHS == RHS || LHS->ID != RHS->ID);
|
|
return LHS->ID < RHS->ID;
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
void DAGISelEmitter::run(raw_ostream &OS) {
|
|
EmitSourceFileHeader("DAG Instruction Selector for the " +
|
|
CGP.getTargetInfo().getName() + " target", OS);
|
|
|
|
OS << "// *** NOTE: This file is #included into the middle of the target\n"
|
|
<< "// *** instruction selector class. These functions are really "
|
|
<< "methods.\n\n";
|
|
|
|
DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n";
|
|
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
|
|
E = CGP.ptm_end(); I != E; ++I) {
|
|
errs() << "PATTERN: "; I->getSrcPattern()->dump();
|
|
errs() << "\nRESULT: "; I->getDstPattern()->dump();
|
|
errs() << "\n";
|
|
});
|
|
|
|
// FIXME: These are being used by hand written code, gross.
|
|
EmitPredicateFunctions(OS);
|
|
|
|
// Add all the patterns to a temporary list so we can sort them.
|
|
std::vector<const PatternToMatch*> Patterns;
|
|
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
|
|
I != E; ++I)
|
|
Patterns.push_back(&*I);
|
|
|
|
// We want to process the matches in order of minimal cost. Sort the patterns
|
|
// so the least cost one is at the start.
|
|
std::stable_sort(Patterns.begin(), Patterns.end(),
|
|
PatternSortingPredicate(CGP));
|
|
|
|
|
|
// Convert each variant of each pattern into a Matcher.
|
|
std::vector<Matcher*> PatternMatchers;
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
for (unsigned Variant = 0; ; ++Variant) {
|
|
if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP))
|
|
PatternMatchers.push_back(M);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
Matcher *TheMatcher = new ScopeMatcher(&PatternMatchers[0],
|
|
PatternMatchers.size());
|
|
|
|
TheMatcher = OptimizeMatcher(TheMatcher, CGP);
|
|
//Matcher->dump();
|
|
EmitMatcherTable(TheMatcher, CGP, OS);
|
|
delete TheMatcher;
|
|
}
|