mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 05:01:59 +01:00
e9def7c822
SROA pass processes debug info incorrecly if applied twice. Specifically, after SROA works first time, instcombine converts dbg.declare intrinsics into dbg.value. Inlining creates new opportunities for SROA, so it is called again. This time it does not handle correctly previously inserted dbg.value intrinsics. Differential Revision: https://reviews.llvm.org/D64595 llvm-svn: 370906
2998 lines
112 KiB
C++
2998 lines
112 KiB
C++
//===- Local.cpp - Functions to perform local transformations -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions perform various local transformations to the
|
|
// program.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LazyValueInfo.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalObject.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "local"
|
|
|
|
STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
|
|
|
|
// Max recursion depth for collectBitParts used when detecting bswap and
|
|
// bitreverse idioms
|
|
static const unsigned BitPartRecursionMaxDepth = 64;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local constant propagation.
|
|
//
|
|
|
|
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
|
|
/// constant value, convert it into an unconditional branch to the constant
|
|
/// destination. This is a nontrivial operation because the successors of this
|
|
/// basic block must have their PHI nodes updated.
|
|
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
|
|
/// conditions and indirectbr addresses this might make dead if
|
|
/// DeleteDeadConditions is true.
|
|
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
|
|
const TargetLibraryInfo *TLI,
|
|
DomTreeUpdater *DTU) {
|
|
Instruction *T = BB->getTerminator();
|
|
IRBuilder<> Builder(T);
|
|
|
|
// Branch - See if we are conditional jumping on constant
|
|
if (auto *BI = dyn_cast<BranchInst>(T)) {
|
|
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
|
|
BasicBlock *Dest1 = BI->getSuccessor(0);
|
|
BasicBlock *Dest2 = BI->getSuccessor(1);
|
|
|
|
if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
|
|
// Are we branching on constant?
|
|
// YES. Change to unconditional branch...
|
|
BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
|
|
BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
|
|
|
|
// Let the basic block know that we are letting go of it. Based on this,
|
|
// it will adjust it's PHI nodes.
|
|
OldDest->removePredecessor(BB);
|
|
|
|
// Replace the conditional branch with an unconditional one.
|
|
Builder.CreateBr(Destination);
|
|
BI->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
|
|
return true;
|
|
}
|
|
|
|
if (Dest2 == Dest1) { // Conditional branch to same location?
|
|
// This branch matches something like this:
|
|
// br bool %cond, label %Dest, label %Dest
|
|
// and changes it into: br label %Dest
|
|
|
|
// Let the basic block know that we are letting go of one copy of it.
|
|
assert(BI->getParent() && "Terminator not inserted in block!");
|
|
Dest1->removePredecessor(BI->getParent());
|
|
|
|
// Replace the conditional branch with an unconditional one.
|
|
Builder.CreateBr(Dest1);
|
|
Value *Cond = BI->getCondition();
|
|
BI->eraseFromParent();
|
|
if (DeleteDeadConditions)
|
|
RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<SwitchInst>(T)) {
|
|
// If we are switching on a constant, we can convert the switch to an
|
|
// unconditional branch.
|
|
auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
|
|
BasicBlock *DefaultDest = SI->getDefaultDest();
|
|
BasicBlock *TheOnlyDest = DefaultDest;
|
|
|
|
// If the default is unreachable, ignore it when searching for TheOnlyDest.
|
|
if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
|
|
SI->getNumCases() > 0) {
|
|
TheOnlyDest = SI->case_begin()->getCaseSuccessor();
|
|
}
|
|
|
|
// Figure out which case it goes to.
|
|
for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
|
|
// Found case matching a constant operand?
|
|
if (i->getCaseValue() == CI) {
|
|
TheOnlyDest = i->getCaseSuccessor();
|
|
break;
|
|
}
|
|
|
|
// Check to see if this branch is going to the same place as the default
|
|
// dest. If so, eliminate it as an explicit compare.
|
|
if (i->getCaseSuccessor() == DefaultDest) {
|
|
MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
|
|
unsigned NCases = SI->getNumCases();
|
|
// Fold the case metadata into the default if there will be any branches
|
|
// left, unless the metadata doesn't match the switch.
|
|
if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
|
|
// Collect branch weights into a vector.
|
|
SmallVector<uint32_t, 8> Weights;
|
|
for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
|
|
++MD_i) {
|
|
auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
|
|
Weights.push_back(CI->getValue().getZExtValue());
|
|
}
|
|
// Merge weight of this case to the default weight.
|
|
unsigned idx = i->getCaseIndex();
|
|
Weights[0] += Weights[idx+1];
|
|
// Remove weight for this case.
|
|
std::swap(Weights[idx+1], Weights.back());
|
|
Weights.pop_back();
|
|
SI->setMetadata(LLVMContext::MD_prof,
|
|
MDBuilder(BB->getContext()).
|
|
createBranchWeights(Weights));
|
|
}
|
|
// Remove this entry.
|
|
BasicBlock *ParentBB = SI->getParent();
|
|
DefaultDest->removePredecessor(ParentBB);
|
|
i = SI->removeCase(i);
|
|
e = SI->case_end();
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive(
|
|
{{DominatorTree::Delete, ParentBB, DefaultDest}});
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check to see if the switch only branches to one destination.
|
|
// We do this by reseting "TheOnlyDest" to null when we find two non-equal
|
|
// destinations.
|
|
if (i->getCaseSuccessor() != TheOnlyDest)
|
|
TheOnlyDest = nullptr;
|
|
|
|
// Increment this iterator as we haven't removed the case.
|
|
++i;
|
|
}
|
|
|
|
if (CI && !TheOnlyDest) {
|
|
// Branching on a constant, but not any of the cases, go to the default
|
|
// successor.
|
|
TheOnlyDest = SI->getDefaultDest();
|
|
}
|
|
|
|
// If we found a single destination that we can fold the switch into, do so
|
|
// now.
|
|
if (TheOnlyDest) {
|
|
// Insert the new branch.
|
|
Builder.CreateBr(TheOnlyDest);
|
|
BasicBlock *BB = SI->getParent();
|
|
std::vector <DominatorTree::UpdateType> Updates;
|
|
if (DTU)
|
|
Updates.reserve(SI->getNumSuccessors() - 1);
|
|
|
|
// Remove entries from PHI nodes which we no longer branch to...
|
|
for (BasicBlock *Succ : successors(SI)) {
|
|
// Found case matching a constant operand?
|
|
if (Succ == TheOnlyDest) {
|
|
TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
|
|
} else {
|
|
Succ->removePredecessor(BB);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, BB, Succ});
|
|
}
|
|
}
|
|
|
|
// Delete the old switch.
|
|
Value *Cond = SI->getCondition();
|
|
SI->eraseFromParent();
|
|
if (DeleteDeadConditions)
|
|
RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive(Updates);
|
|
return true;
|
|
}
|
|
|
|
if (SI->getNumCases() == 1) {
|
|
// Otherwise, we can fold this switch into a conditional branch
|
|
// instruction if it has only one non-default destination.
|
|
auto FirstCase = *SI->case_begin();
|
|
Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
|
|
FirstCase.getCaseValue(), "cond");
|
|
|
|
// Insert the new branch.
|
|
BranchInst *NewBr = Builder.CreateCondBr(Cond,
|
|
FirstCase.getCaseSuccessor(),
|
|
SI->getDefaultDest());
|
|
MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
|
|
if (MD && MD->getNumOperands() == 3) {
|
|
ConstantInt *SICase =
|
|
mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
|
|
ConstantInt *SIDef =
|
|
mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
|
|
assert(SICase && SIDef);
|
|
// The TrueWeight should be the weight for the single case of SI.
|
|
NewBr->setMetadata(LLVMContext::MD_prof,
|
|
MDBuilder(BB->getContext()).
|
|
createBranchWeights(SICase->getValue().getZExtValue(),
|
|
SIDef->getValue().getZExtValue()));
|
|
}
|
|
|
|
// Update make.implicit metadata to the newly-created conditional branch.
|
|
MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
|
|
if (MakeImplicitMD)
|
|
NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
|
|
|
|
// Delete the old switch.
|
|
SI->eraseFromParent();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
|
|
// indirectbr blockaddress(@F, @BB) -> br label @BB
|
|
if (auto *BA =
|
|
dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
|
|
BasicBlock *TheOnlyDest = BA->getBasicBlock();
|
|
std::vector <DominatorTree::UpdateType> Updates;
|
|
if (DTU)
|
|
Updates.reserve(IBI->getNumDestinations() - 1);
|
|
|
|
// Insert the new branch.
|
|
Builder.CreateBr(TheOnlyDest);
|
|
|
|
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
|
|
if (IBI->getDestination(i) == TheOnlyDest) {
|
|
TheOnlyDest = nullptr;
|
|
} else {
|
|
BasicBlock *ParentBB = IBI->getParent();
|
|
BasicBlock *DestBB = IBI->getDestination(i);
|
|
DestBB->removePredecessor(ParentBB);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
|
|
}
|
|
}
|
|
Value *Address = IBI->getAddress();
|
|
IBI->eraseFromParent();
|
|
if (DeleteDeadConditions)
|
|
// Delete pointer cast instructions.
|
|
RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
|
|
|
|
// Also zap the blockaddress constant if there are no users remaining,
|
|
// otherwise the destination is still marked as having its address taken.
|
|
if (BA->use_empty())
|
|
BA->destroyConstant();
|
|
|
|
// If we didn't find our destination in the IBI successor list, then we
|
|
// have undefined behavior. Replace the unconditional branch with an
|
|
// 'unreachable' instruction.
|
|
if (TheOnlyDest) {
|
|
BB->getTerminator()->eraseFromParent();
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
}
|
|
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive(Updates);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local dead code elimination.
|
|
//
|
|
|
|
/// isInstructionTriviallyDead - Return true if the result produced by the
|
|
/// instruction is not used, and the instruction has no side effects.
|
|
///
|
|
bool llvm::isInstructionTriviallyDead(Instruction *I,
|
|
const TargetLibraryInfo *TLI) {
|
|
if (!I->use_empty())
|
|
return false;
|
|
return wouldInstructionBeTriviallyDead(I, TLI);
|
|
}
|
|
|
|
bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
|
|
const TargetLibraryInfo *TLI) {
|
|
if (I->isTerminator())
|
|
return false;
|
|
|
|
// We don't want the landingpad-like instructions removed by anything this
|
|
// general.
|
|
if (I->isEHPad())
|
|
return false;
|
|
|
|
// We don't want debug info removed by anything this general, unless
|
|
// debug info is empty.
|
|
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
|
|
if (DDI->getAddress())
|
|
return false;
|
|
return true;
|
|
}
|
|
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
|
|
if (DVI->getValue())
|
|
return false;
|
|
return true;
|
|
}
|
|
if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
|
|
if (DLI->getLabel())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
if (!I->mayHaveSideEffects())
|
|
return true;
|
|
|
|
// Special case intrinsics that "may have side effects" but can be deleted
|
|
// when dead.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
// Safe to delete llvm.stacksave and launder.invariant.group if dead.
|
|
if (II->getIntrinsicID() == Intrinsic::stacksave ||
|
|
II->getIntrinsicID() == Intrinsic::launder_invariant_group)
|
|
return true;
|
|
|
|
// Lifetime intrinsics are dead when their right-hand is undef.
|
|
if (II->isLifetimeStartOrEnd())
|
|
return isa<UndefValue>(II->getArgOperand(1));
|
|
|
|
// Assumptions are dead if their condition is trivially true. Guards on
|
|
// true are operationally no-ops. In the future we can consider more
|
|
// sophisticated tradeoffs for guards considering potential for check
|
|
// widening, but for now we keep things simple.
|
|
if (II->getIntrinsicID() == Intrinsic::assume ||
|
|
II->getIntrinsicID() == Intrinsic::experimental_guard) {
|
|
if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
|
|
return !Cond->isZero();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (isAllocLikeFn(I, TLI))
|
|
return true;
|
|
|
|
if (CallInst *CI = isFreeCall(I, TLI))
|
|
if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
|
|
return C->isNullValue() || isa<UndefValue>(C);
|
|
|
|
if (auto *Call = dyn_cast<CallBase>(I))
|
|
if (isMathLibCallNoop(Call, TLI))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
|
|
/// trivially dead instruction, delete it. If that makes any of its operands
|
|
/// trivially dead, delete them too, recursively. Return true if any
|
|
/// instructions were deleted.
|
|
bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
|
|
Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || !isInstructionTriviallyDead(I, TLI))
|
|
return false;
|
|
|
|
SmallVector<Instruction*, 16> DeadInsts;
|
|
DeadInsts.push_back(I);
|
|
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
|
|
|
|
return true;
|
|
}
|
|
|
|
void llvm::RecursivelyDeleteTriviallyDeadInstructions(
|
|
SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
|
|
MemorySSAUpdater *MSSAU) {
|
|
// Process the dead instruction list until empty.
|
|
while (!DeadInsts.empty()) {
|
|
Instruction &I = *DeadInsts.pop_back_val();
|
|
assert(I.use_empty() && "Instructions with uses are not dead.");
|
|
assert(isInstructionTriviallyDead(&I, TLI) &&
|
|
"Live instruction found in dead worklist!");
|
|
|
|
// Don't lose the debug info while deleting the instructions.
|
|
salvageDebugInfo(I);
|
|
|
|
// Null out all of the instruction's operands to see if any operand becomes
|
|
// dead as we go.
|
|
for (Use &OpU : I.operands()) {
|
|
Value *OpV = OpU.get();
|
|
OpU.set(nullptr);
|
|
|
|
if (!OpV->use_empty())
|
|
continue;
|
|
|
|
// If the operand is an instruction that became dead as we nulled out the
|
|
// operand, and if it is 'trivially' dead, delete it in a future loop
|
|
// iteration.
|
|
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
|
|
if (isInstructionTriviallyDead(OpI, TLI))
|
|
DeadInsts.push_back(OpI);
|
|
}
|
|
if (MSSAU)
|
|
MSSAU->removeMemoryAccess(&I);
|
|
|
|
I.eraseFromParent();
|
|
}
|
|
}
|
|
|
|
bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
|
|
SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
|
|
findDbgUsers(DbgUsers, I);
|
|
for (auto *DII : DbgUsers) {
|
|
Value *Undef = UndefValue::get(I->getType());
|
|
DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
|
|
ValueAsMetadata::get(Undef)));
|
|
}
|
|
return !DbgUsers.empty();
|
|
}
|
|
|
|
/// areAllUsesEqual - Check whether the uses of a value are all the same.
|
|
/// This is similar to Instruction::hasOneUse() except this will also return
|
|
/// true when there are no uses or multiple uses that all refer to the same
|
|
/// value.
|
|
static bool areAllUsesEqual(Instruction *I) {
|
|
Value::user_iterator UI = I->user_begin();
|
|
Value::user_iterator UE = I->user_end();
|
|
if (UI == UE)
|
|
return true;
|
|
|
|
User *TheUse = *UI;
|
|
for (++UI; UI != UE; ++UI) {
|
|
if (*UI != TheUse)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
|
|
/// dead PHI node, due to being a def-use chain of single-use nodes that
|
|
/// either forms a cycle or is terminated by a trivially dead instruction,
|
|
/// delete it. If that makes any of its operands trivially dead, delete them
|
|
/// too, recursively. Return true if a change was made.
|
|
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
|
|
const TargetLibraryInfo *TLI) {
|
|
SmallPtrSet<Instruction*, 4> Visited;
|
|
for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
|
|
I = cast<Instruction>(*I->user_begin())) {
|
|
if (I->use_empty())
|
|
return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
|
|
|
|
// If we find an instruction more than once, we're on a cycle that
|
|
// won't prove fruitful.
|
|
if (!Visited.insert(I).second) {
|
|
// Break the cycle and delete the instruction and its operands.
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
(void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
simplifyAndDCEInstruction(Instruction *I,
|
|
SmallSetVector<Instruction *, 16> &WorkList,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI) {
|
|
if (isInstructionTriviallyDead(I, TLI)) {
|
|
salvageDebugInfo(*I);
|
|
|
|
// Null out all of the instruction's operands to see if any operand becomes
|
|
// dead as we go.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
Value *OpV = I->getOperand(i);
|
|
I->setOperand(i, nullptr);
|
|
|
|
if (!OpV->use_empty() || I == OpV)
|
|
continue;
|
|
|
|
// If the operand is an instruction that became dead as we nulled out the
|
|
// operand, and if it is 'trivially' dead, delete it in a future loop
|
|
// iteration.
|
|
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
|
|
if (isInstructionTriviallyDead(OpI, TLI))
|
|
WorkList.insert(OpI);
|
|
}
|
|
|
|
I->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
if (Value *SimpleV = SimplifyInstruction(I, DL)) {
|
|
// Add the users to the worklist. CAREFUL: an instruction can use itself,
|
|
// in the case of a phi node.
|
|
for (User *U : I->users()) {
|
|
if (U != I) {
|
|
WorkList.insert(cast<Instruction>(U));
|
|
}
|
|
}
|
|
|
|
// Replace the instruction with its simplified value.
|
|
bool Changed = false;
|
|
if (!I->use_empty()) {
|
|
I->replaceAllUsesWith(SimpleV);
|
|
Changed = true;
|
|
}
|
|
if (isInstructionTriviallyDead(I, TLI)) {
|
|
I->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
|
|
/// simplify any instructions in it and recursively delete dead instructions.
|
|
///
|
|
/// This returns true if it changed the code, note that it can delete
|
|
/// instructions in other blocks as well in this block.
|
|
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool MadeChange = false;
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
|
|
#ifndef NDEBUG
|
|
// In debug builds, ensure that the terminator of the block is never replaced
|
|
// or deleted by these simplifications. The idea of simplification is that it
|
|
// cannot introduce new instructions, and there is no way to replace the
|
|
// terminator of a block without introducing a new instruction.
|
|
AssertingVH<Instruction> TerminatorVH(&BB->back());
|
|
#endif
|
|
|
|
SmallSetVector<Instruction *, 16> WorkList;
|
|
// Iterate over the original function, only adding insts to the worklist
|
|
// if they actually need to be revisited. This avoids having to pre-init
|
|
// the worklist with the entire function's worth of instructions.
|
|
for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
|
|
BI != E;) {
|
|
assert(!BI->isTerminator());
|
|
Instruction *I = &*BI;
|
|
++BI;
|
|
|
|
// We're visiting this instruction now, so make sure it's not in the
|
|
// worklist from an earlier visit.
|
|
if (!WorkList.count(I))
|
|
MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
|
|
}
|
|
|
|
while (!WorkList.empty()) {
|
|
Instruction *I = WorkList.pop_back_val();
|
|
MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Control Flow Graph Restructuring.
|
|
//
|
|
|
|
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
|
|
DomTreeUpdater *DTU) {
|
|
// This only adjusts blocks with PHI nodes.
|
|
if (!isa<PHINode>(BB->begin()))
|
|
return;
|
|
|
|
// Remove the entries for Pred from the PHI nodes in BB, but do not simplify
|
|
// them down. This will leave us with single entry phi nodes and other phis
|
|
// that can be removed.
|
|
BB->removePredecessor(Pred, true);
|
|
|
|
WeakTrackingVH PhiIt = &BB->front();
|
|
while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
|
|
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
|
|
Value *OldPhiIt = PhiIt;
|
|
|
|
if (!recursivelySimplifyInstruction(PN))
|
|
continue;
|
|
|
|
// If recursive simplification ended up deleting the next PHI node we would
|
|
// iterate to, then our iterator is invalid, restart scanning from the top
|
|
// of the block.
|
|
if (PhiIt != OldPhiIt) PhiIt = &BB->front();
|
|
}
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
|
|
}
|
|
|
|
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
|
|
DomTreeUpdater *DTU) {
|
|
|
|
// If BB has single-entry PHI nodes, fold them.
|
|
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
|
|
Value *NewVal = PN->getIncomingValue(0);
|
|
// Replace self referencing PHI with undef, it must be dead.
|
|
if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
|
|
PN->replaceAllUsesWith(NewVal);
|
|
PN->eraseFromParent();
|
|
}
|
|
|
|
BasicBlock *PredBB = DestBB->getSinglePredecessor();
|
|
assert(PredBB && "Block doesn't have a single predecessor!");
|
|
|
|
bool ReplaceEntryBB = false;
|
|
if (PredBB == &DestBB->getParent()->getEntryBlock())
|
|
ReplaceEntryBB = true;
|
|
|
|
// DTU updates: Collect all the edges that enter
|
|
// PredBB. These dominator edges will be redirected to DestBB.
|
|
SmallVector<DominatorTree::UpdateType, 32> Updates;
|
|
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
|
|
for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
|
|
Updates.push_back({DominatorTree::Delete, *I, PredBB});
|
|
// This predecessor of PredBB may already have DestBB as a successor.
|
|
if (llvm::find(successors(*I), DestBB) == succ_end(*I))
|
|
Updates.push_back({DominatorTree::Insert, *I, DestBB});
|
|
}
|
|
}
|
|
|
|
// Zap anything that took the address of DestBB. Not doing this will give the
|
|
// address an invalid value.
|
|
if (DestBB->hasAddressTaken()) {
|
|
BlockAddress *BA = BlockAddress::get(DestBB);
|
|
Constant *Replacement =
|
|
ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
|
|
BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
|
|
BA->getType()));
|
|
BA->destroyConstant();
|
|
}
|
|
|
|
// Anything that branched to PredBB now branches to DestBB.
|
|
PredBB->replaceAllUsesWith(DestBB);
|
|
|
|
// Splice all the instructions from PredBB to DestBB.
|
|
PredBB->getTerminator()->eraseFromParent();
|
|
DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
|
|
new UnreachableInst(PredBB->getContext(), PredBB);
|
|
|
|
// If the PredBB is the entry block of the function, move DestBB up to
|
|
// become the entry block after we erase PredBB.
|
|
if (ReplaceEntryBB)
|
|
DestBB->moveAfter(PredBB);
|
|
|
|
if (DTU) {
|
|
assert(PredBB->getInstList().size() == 1 &&
|
|
isa<UnreachableInst>(PredBB->getTerminator()) &&
|
|
"The successor list of PredBB isn't empty before "
|
|
"applying corresponding DTU updates.");
|
|
DTU->applyUpdatesPermissive(Updates);
|
|
DTU->deleteBB(PredBB);
|
|
// Recalculation of DomTree is needed when updating a forward DomTree and
|
|
// the Entry BB is replaced.
|
|
if (ReplaceEntryBB && DTU->hasDomTree()) {
|
|
// The entry block was removed and there is no external interface for
|
|
// the dominator tree to be notified of this change. In this corner-case
|
|
// we recalculate the entire tree.
|
|
DTU->recalculate(*(DestBB->getParent()));
|
|
}
|
|
}
|
|
|
|
else {
|
|
PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
|
|
}
|
|
}
|
|
|
|
/// Return true if we can choose one of these values to use in place of the
|
|
/// other. Note that we will always choose the non-undef value to keep.
|
|
static bool CanMergeValues(Value *First, Value *Second) {
|
|
return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
|
|
}
|
|
|
|
/// Return true if we can fold BB, an almost-empty BB ending in an unconditional
|
|
/// branch to Succ, into Succ.
|
|
///
|
|
/// Assumption: Succ is the single successor for BB.
|
|
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
|
|
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
|
|
|
|
LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
|
|
<< Succ->getName() << "\n");
|
|
// Shortcut, if there is only a single predecessor it must be BB and merging
|
|
// is always safe
|
|
if (Succ->getSinglePredecessor()) return true;
|
|
|
|
// Make a list of the predecessors of BB
|
|
SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
|
|
|
|
// Look at all the phi nodes in Succ, to see if they present a conflict when
|
|
// merging these blocks
|
|
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
// If the incoming value from BB is again a PHINode in
|
|
// BB which has the same incoming value for *PI as PN does, we can
|
|
// merge the phi nodes and then the blocks can still be merged
|
|
PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
|
|
if (BBPN && BBPN->getParent() == BB) {
|
|
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
|
|
BasicBlock *IBB = PN->getIncomingBlock(PI);
|
|
if (BBPreds.count(IBB) &&
|
|
!CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
|
|
PN->getIncomingValue(PI))) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Can't fold, phi node " << PN->getName() << " in "
|
|
<< Succ->getName() << " is conflicting with "
|
|
<< BBPN->getName() << " with regard to common predecessor "
|
|
<< IBB->getName() << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
Value* Val = PN->getIncomingValueForBlock(BB);
|
|
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
|
|
// See if the incoming value for the common predecessor is equal to the
|
|
// one for BB, in which case this phi node will not prevent the merging
|
|
// of the block.
|
|
BasicBlock *IBB = PN->getIncomingBlock(PI);
|
|
if (BBPreds.count(IBB) &&
|
|
!CanMergeValues(Val, PN->getIncomingValue(PI))) {
|
|
LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
|
|
<< " in " << Succ->getName()
|
|
<< " is conflicting with regard to common "
|
|
<< "predecessor " << IBB->getName() << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
using PredBlockVector = SmallVector<BasicBlock *, 16>;
|
|
using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
|
|
|
|
/// Determines the value to use as the phi node input for a block.
|
|
///
|
|
/// Select between \p OldVal any value that we know flows from \p BB
|
|
/// to a particular phi on the basis of which one (if either) is not
|
|
/// undef. Update IncomingValues based on the selected value.
|
|
///
|
|
/// \param OldVal The value we are considering selecting.
|
|
/// \param BB The block that the value flows in from.
|
|
/// \param IncomingValues A map from block-to-value for other phi inputs
|
|
/// that we have examined.
|
|
///
|
|
/// \returns the selected value.
|
|
static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
|
|
IncomingValueMap &IncomingValues) {
|
|
if (!isa<UndefValue>(OldVal)) {
|
|
assert((!IncomingValues.count(BB) ||
|
|
IncomingValues.find(BB)->second == OldVal) &&
|
|
"Expected OldVal to match incoming value from BB!");
|
|
|
|
IncomingValues.insert(std::make_pair(BB, OldVal));
|
|
return OldVal;
|
|
}
|
|
|
|
IncomingValueMap::const_iterator It = IncomingValues.find(BB);
|
|
if (It != IncomingValues.end()) return It->second;
|
|
|
|
return OldVal;
|
|
}
|
|
|
|
/// Create a map from block to value for the operands of a
|
|
/// given phi.
|
|
///
|
|
/// Create a map from block to value for each non-undef value flowing
|
|
/// into \p PN.
|
|
///
|
|
/// \param PN The phi we are collecting the map for.
|
|
/// \param IncomingValues [out] The map from block to value for this phi.
|
|
static void gatherIncomingValuesToPhi(PHINode *PN,
|
|
IncomingValueMap &IncomingValues) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
BasicBlock *BB = PN->getIncomingBlock(i);
|
|
Value *V = PN->getIncomingValue(i);
|
|
|
|
if (!isa<UndefValue>(V))
|
|
IncomingValues.insert(std::make_pair(BB, V));
|
|
}
|
|
}
|
|
|
|
/// Replace the incoming undef values to a phi with the values
|
|
/// from a block-to-value map.
|
|
///
|
|
/// \param PN The phi we are replacing the undefs in.
|
|
/// \param IncomingValues A map from block to value.
|
|
static void replaceUndefValuesInPhi(PHINode *PN,
|
|
const IncomingValueMap &IncomingValues) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = PN->getIncomingValue(i);
|
|
|
|
if (!isa<UndefValue>(V)) continue;
|
|
|
|
BasicBlock *BB = PN->getIncomingBlock(i);
|
|
IncomingValueMap::const_iterator It = IncomingValues.find(BB);
|
|
if (It == IncomingValues.end()) continue;
|
|
|
|
PN->setIncomingValue(i, It->second);
|
|
}
|
|
}
|
|
|
|
/// Replace a value flowing from a block to a phi with
|
|
/// potentially multiple instances of that value flowing from the
|
|
/// block's predecessors to the phi.
|
|
///
|
|
/// \param BB The block with the value flowing into the phi.
|
|
/// \param BBPreds The predecessors of BB.
|
|
/// \param PN The phi that we are updating.
|
|
static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
|
|
const PredBlockVector &BBPreds,
|
|
PHINode *PN) {
|
|
Value *OldVal = PN->removeIncomingValue(BB, false);
|
|
assert(OldVal && "No entry in PHI for Pred BB!");
|
|
|
|
IncomingValueMap IncomingValues;
|
|
|
|
// We are merging two blocks - BB, and the block containing PN - and
|
|
// as a result we need to redirect edges from the predecessors of BB
|
|
// to go to the block containing PN, and update PN
|
|
// accordingly. Since we allow merging blocks in the case where the
|
|
// predecessor and successor blocks both share some predecessors,
|
|
// and where some of those common predecessors might have undef
|
|
// values flowing into PN, we want to rewrite those values to be
|
|
// consistent with the non-undef values.
|
|
|
|
gatherIncomingValuesToPhi(PN, IncomingValues);
|
|
|
|
// If this incoming value is one of the PHI nodes in BB, the new entries
|
|
// in the PHI node are the entries from the old PHI.
|
|
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
|
|
PHINode *OldValPN = cast<PHINode>(OldVal);
|
|
for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
|
|
// Note that, since we are merging phi nodes and BB and Succ might
|
|
// have common predecessors, we could end up with a phi node with
|
|
// identical incoming branches. This will be cleaned up later (and
|
|
// will trigger asserts if we try to clean it up now, without also
|
|
// simplifying the corresponding conditional branch).
|
|
BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
|
|
Value *PredVal = OldValPN->getIncomingValue(i);
|
|
Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
|
|
IncomingValues);
|
|
|
|
// And add a new incoming value for this predecessor for the
|
|
// newly retargeted branch.
|
|
PN->addIncoming(Selected, PredBB);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
|
|
// Update existing incoming values in PN for this
|
|
// predecessor of BB.
|
|
BasicBlock *PredBB = BBPreds[i];
|
|
Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
|
|
IncomingValues);
|
|
|
|
// And add a new incoming value for this predecessor for the
|
|
// newly retargeted branch.
|
|
PN->addIncoming(Selected, PredBB);
|
|
}
|
|
}
|
|
|
|
replaceUndefValuesInPhi(PN, IncomingValues);
|
|
}
|
|
|
|
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
|
|
DomTreeUpdater *DTU) {
|
|
assert(BB != &BB->getParent()->getEntryBlock() &&
|
|
"TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
|
|
|
|
// We can't eliminate infinite loops.
|
|
BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
|
|
if (BB == Succ) return false;
|
|
|
|
// Check to see if merging these blocks would cause conflicts for any of the
|
|
// phi nodes in BB or Succ. If not, we can safely merge.
|
|
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
|
|
|
|
// Check for cases where Succ has multiple predecessors and a PHI node in BB
|
|
// has uses which will not disappear when the PHI nodes are merged. It is
|
|
// possible to handle such cases, but difficult: it requires checking whether
|
|
// BB dominates Succ, which is non-trivial to calculate in the case where
|
|
// Succ has multiple predecessors. Also, it requires checking whether
|
|
// constructing the necessary self-referential PHI node doesn't introduce any
|
|
// conflicts; this isn't too difficult, but the previous code for doing this
|
|
// was incorrect.
|
|
//
|
|
// Note that if this check finds a live use, BB dominates Succ, so BB is
|
|
// something like a loop pre-header (or rarely, a part of an irreducible CFG);
|
|
// folding the branch isn't profitable in that case anyway.
|
|
if (!Succ->getSinglePredecessor()) {
|
|
BasicBlock::iterator BBI = BB->begin();
|
|
while (isa<PHINode>(*BBI)) {
|
|
for (Use &U : BBI->uses()) {
|
|
if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
|
|
if (PN->getIncomingBlock(U) != BB)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
++BBI;
|
|
}
|
|
}
|
|
|
|
// We cannot fold the block if it's a branch to an already present callbr
|
|
// successor because that creates duplicate successors.
|
|
for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
|
|
if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
|
|
if (Succ == CBI->getDefaultDest())
|
|
return false;
|
|
for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
|
|
if (Succ == CBI->getIndirectDest(i))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
|
|
|
|
SmallVector<DominatorTree::UpdateType, 32> Updates;
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Delete, BB, Succ});
|
|
// All predecessors of BB will be moved to Succ.
|
|
for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
|
|
Updates.push_back({DominatorTree::Delete, *I, BB});
|
|
// This predecessor of BB may already have Succ as a successor.
|
|
if (llvm::find(successors(*I), Succ) == succ_end(*I))
|
|
Updates.push_back({DominatorTree::Insert, *I, Succ});
|
|
}
|
|
}
|
|
|
|
if (isa<PHINode>(Succ->begin())) {
|
|
// If there is more than one pred of succ, and there are PHI nodes in
|
|
// the successor, then we need to add incoming edges for the PHI nodes
|
|
//
|
|
const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
|
|
|
|
// Loop over all of the PHI nodes in the successor of BB.
|
|
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
|
|
}
|
|
}
|
|
|
|
if (Succ->getSinglePredecessor()) {
|
|
// BB is the only predecessor of Succ, so Succ will end up with exactly
|
|
// the same predecessors BB had.
|
|
|
|
// Copy over any phi, debug or lifetime instruction.
|
|
BB->getTerminator()->eraseFromParent();
|
|
Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
|
|
BB->getInstList());
|
|
} else {
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
|
// We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
|
|
assert(PN->use_empty() && "There shouldn't be any uses here!");
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// If the unconditional branch we replaced contains llvm.loop metadata, we
|
|
// add the metadata to the branch instructions in the predecessors.
|
|
unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
|
|
Instruction *TI = BB->getTerminator();
|
|
if (TI)
|
|
if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
BasicBlock *Pred = *PI;
|
|
Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
|
|
}
|
|
|
|
// Everything that jumped to BB now goes to Succ.
|
|
BB->replaceAllUsesWith(Succ);
|
|
if (!Succ->hasName()) Succ->takeName(BB);
|
|
|
|
// Clear the successor list of BB to match updates applying to DTU later.
|
|
if (BB->getTerminator())
|
|
BB->getInstList().pop_back();
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
assert(succ_empty(BB) && "The successor list of BB isn't empty before "
|
|
"applying corresponding DTU updates.");
|
|
|
|
if (DTU) {
|
|
DTU->applyUpdatesPermissive(Updates);
|
|
DTU->deleteBB(BB);
|
|
} else {
|
|
BB->eraseFromParent(); // Delete the old basic block.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
|
|
// This implementation doesn't currently consider undef operands
|
|
// specially. Theoretically, two phis which are identical except for
|
|
// one having an undef where the other doesn't could be collapsed.
|
|
|
|
struct PHIDenseMapInfo {
|
|
static PHINode *getEmptyKey() {
|
|
return DenseMapInfo<PHINode *>::getEmptyKey();
|
|
}
|
|
|
|
static PHINode *getTombstoneKey() {
|
|
return DenseMapInfo<PHINode *>::getTombstoneKey();
|
|
}
|
|
|
|
static unsigned getHashValue(PHINode *PN) {
|
|
// Compute a hash value on the operands. Instcombine will likely have
|
|
// sorted them, which helps expose duplicates, but we have to check all
|
|
// the operands to be safe in case instcombine hasn't run.
|
|
return static_cast<unsigned>(hash_combine(
|
|
hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
|
|
hash_combine_range(PN->block_begin(), PN->block_end())));
|
|
}
|
|
|
|
static bool isEqual(PHINode *LHS, PHINode *RHS) {
|
|
if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
|
|
RHS == getEmptyKey() || RHS == getTombstoneKey())
|
|
return LHS == RHS;
|
|
return LHS->isIdenticalTo(RHS);
|
|
}
|
|
};
|
|
|
|
// Set of unique PHINodes.
|
|
DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
|
|
|
|
// Examine each PHI.
|
|
bool Changed = false;
|
|
for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
|
|
auto Inserted = PHISet.insert(PN);
|
|
if (!Inserted.second) {
|
|
// A duplicate. Replace this PHI with its duplicate.
|
|
PN->replaceAllUsesWith(*Inserted.first);
|
|
PN->eraseFromParent();
|
|
Changed = true;
|
|
|
|
// The RAUW can change PHIs that we already visited. Start over from the
|
|
// beginning.
|
|
PHISet.clear();
|
|
I = BB->begin();
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// enforceKnownAlignment - If the specified pointer points to an object that
|
|
/// we control, modify the object's alignment to PrefAlign. This isn't
|
|
/// often possible though. If alignment is important, a more reliable approach
|
|
/// is to simply align all global variables and allocation instructions to
|
|
/// their preferred alignment from the beginning.
|
|
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
|
|
unsigned PrefAlign,
|
|
const DataLayout &DL) {
|
|
assert(PrefAlign > Align);
|
|
|
|
V = V->stripPointerCasts();
|
|
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
// TODO: ideally, computeKnownBits ought to have used
|
|
// AllocaInst::getAlignment() in its computation already, making
|
|
// the below max redundant. But, as it turns out,
|
|
// stripPointerCasts recurses through infinite layers of bitcasts,
|
|
// while computeKnownBits is not allowed to traverse more than 6
|
|
// levels.
|
|
Align = std::max(AI->getAlignment(), Align);
|
|
if (PrefAlign <= Align)
|
|
return Align;
|
|
|
|
// If the preferred alignment is greater than the natural stack alignment
|
|
// then don't round up. This avoids dynamic stack realignment.
|
|
if (DL.exceedsNaturalStackAlignment(llvm::Align(PrefAlign)))
|
|
return Align;
|
|
AI->setAlignment(PrefAlign);
|
|
return PrefAlign;
|
|
}
|
|
|
|
if (auto *GO = dyn_cast<GlobalObject>(V)) {
|
|
// TODO: as above, this shouldn't be necessary.
|
|
Align = std::max(GO->getAlignment(), Align);
|
|
if (PrefAlign <= Align)
|
|
return Align;
|
|
|
|
// If there is a large requested alignment and we can, bump up the alignment
|
|
// of the global. If the memory we set aside for the global may not be the
|
|
// memory used by the final program then it is impossible for us to reliably
|
|
// enforce the preferred alignment.
|
|
if (!GO->canIncreaseAlignment())
|
|
return Align;
|
|
|
|
GO->setAlignment(PrefAlign);
|
|
return PrefAlign;
|
|
}
|
|
|
|
return Align;
|
|
}
|
|
|
|
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
|
|
const DataLayout &DL,
|
|
const Instruction *CxtI,
|
|
AssumptionCache *AC,
|
|
const DominatorTree *DT) {
|
|
assert(V->getType()->isPointerTy() &&
|
|
"getOrEnforceKnownAlignment expects a pointer!");
|
|
|
|
KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
|
|
unsigned TrailZ = Known.countMinTrailingZeros();
|
|
|
|
// Avoid trouble with ridiculously large TrailZ values, such as
|
|
// those computed from a null pointer.
|
|
TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
|
|
|
|
unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
|
|
|
|
// LLVM doesn't support alignments larger than this currently.
|
|
Align = std::min(Align, +Value::MaximumAlignment);
|
|
|
|
if (PrefAlign > Align)
|
|
Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
|
|
|
|
// We don't need to make any adjustment.
|
|
return Align;
|
|
}
|
|
|
|
///===---------------------------------------------------------------------===//
|
|
/// Dbg Intrinsic utilities
|
|
///
|
|
|
|
/// See if there is a dbg.value intrinsic for DIVar before I.
|
|
static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
|
|
Instruction *I) {
|
|
// Since we can't guarantee that the original dbg.declare instrinsic
|
|
// is removed by LowerDbgDeclare(), we need to make sure that we are
|
|
// not inserting the same dbg.value intrinsic over and over.
|
|
BasicBlock::InstListType::iterator PrevI(I);
|
|
if (PrevI != I->getParent()->getInstList().begin()) {
|
|
--PrevI;
|
|
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
|
|
if (DVI->getValue() == I->getOperand(0) &&
|
|
DVI->getVariable() == DIVar &&
|
|
DVI->getExpression() == DIExpr)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
|
|
static bool PhiHasDebugValue(DILocalVariable *DIVar,
|
|
DIExpression *DIExpr,
|
|
PHINode *APN) {
|
|
// Since we can't guarantee that the original dbg.declare instrinsic
|
|
// is removed by LowerDbgDeclare(), we need to make sure that we are
|
|
// not inserting the same dbg.value intrinsic over and over.
|
|
SmallVector<DbgValueInst *, 1> DbgValues;
|
|
findDbgValues(DbgValues, APN);
|
|
for (auto *DVI : DbgValues) {
|
|
assert(DVI->getValue() == APN);
|
|
if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check if the alloc size of \p ValTy is large enough to cover the variable
|
|
/// (or fragment of the variable) described by \p DII.
|
|
///
|
|
/// This is primarily intended as a helper for the different
|
|
/// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
|
|
/// converted describes an alloca'd variable, so we need to use the
|
|
/// alloc size of the value when doing the comparison. E.g. an i1 value will be
|
|
/// identified as covering an n-bit fragment, if the store size of i1 is at
|
|
/// least n bits.
|
|
static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
|
|
const DataLayout &DL = DII->getModule()->getDataLayout();
|
|
uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
|
|
if (auto FragmentSize = DII->getFragmentSizeInBits())
|
|
return ValueSize >= *FragmentSize;
|
|
// We can't always calculate the size of the DI variable (e.g. if it is a
|
|
// VLA). Try to use the size of the alloca that the dbg intrinsic describes
|
|
// intead.
|
|
if (DII->isAddressOfVariable())
|
|
if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
|
|
if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
|
|
return ValueSize >= *FragmentSize;
|
|
// Could not determine size of variable. Conservatively return false.
|
|
return false;
|
|
}
|
|
|
|
/// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
|
|
/// to a dbg.value. Because no machine insts can come from debug intrinsics,
|
|
/// only the scope and inlinedAt is significant. Zero line numbers are used in
|
|
/// case this DebugLoc leaks into any adjacent instructions.
|
|
static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
|
|
// Original dbg.declare must have a location.
|
|
DebugLoc DeclareLoc = DII->getDebugLoc();
|
|
MDNode *Scope = DeclareLoc.getScope();
|
|
DILocation *InlinedAt = DeclareLoc.getInlinedAt();
|
|
// Produce an unknown location with the correct scope / inlinedAt fields.
|
|
return DebugLoc::get(0, 0, Scope, InlinedAt);
|
|
}
|
|
|
|
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
|
|
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
|
|
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
|
|
StoreInst *SI, DIBuilder &Builder) {
|
|
assert(DII->isAddressOfVariable());
|
|
auto *DIVar = DII->getVariable();
|
|
assert(DIVar && "Missing variable");
|
|
auto *DIExpr = DII->getExpression();
|
|
Value *DV = SI->getValueOperand();
|
|
|
|
DebugLoc NewLoc = getDebugValueLoc(DII, SI);
|
|
|
|
if (!valueCoversEntireFragment(DV->getType(), DII)) {
|
|
// FIXME: If storing to a part of the variable described by the dbg.declare,
|
|
// then we want to insert a dbg.value for the corresponding fragment.
|
|
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
|
|
<< *DII << '\n');
|
|
// For now, when there is a store to parts of the variable (but we do not
|
|
// know which part) we insert an dbg.value instrinsic to indicate that we
|
|
// know nothing about the variable's content.
|
|
DV = UndefValue::get(DV->getType());
|
|
if (!LdStHasDebugValue(DIVar, DIExpr, SI))
|
|
Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
|
|
return;
|
|
}
|
|
|
|
if (!LdStHasDebugValue(DIVar, DIExpr, SI))
|
|
Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
|
|
}
|
|
|
|
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
|
|
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
|
|
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
|
|
LoadInst *LI, DIBuilder &Builder) {
|
|
auto *DIVar = DII->getVariable();
|
|
auto *DIExpr = DII->getExpression();
|
|
assert(DIVar && "Missing variable");
|
|
|
|
if (LdStHasDebugValue(DIVar, DIExpr, LI))
|
|
return;
|
|
|
|
if (!valueCoversEntireFragment(LI->getType(), DII)) {
|
|
// FIXME: If only referring to a part of the variable described by the
|
|
// dbg.declare, then we want to insert a dbg.value for the corresponding
|
|
// fragment.
|
|
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
|
|
<< *DII << '\n');
|
|
return;
|
|
}
|
|
|
|
DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
|
|
|
|
// We are now tracking the loaded value instead of the address. In the
|
|
// future if multi-location support is added to the IR, it might be
|
|
// preferable to keep tracking both the loaded value and the original
|
|
// address in case the alloca can not be elided.
|
|
Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
|
|
LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
|
|
DbgValue->insertAfter(LI);
|
|
}
|
|
|
|
/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
|
|
/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
|
|
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
|
|
PHINode *APN, DIBuilder &Builder) {
|
|
auto *DIVar = DII->getVariable();
|
|
auto *DIExpr = DII->getExpression();
|
|
assert(DIVar && "Missing variable");
|
|
|
|
if (PhiHasDebugValue(DIVar, DIExpr, APN))
|
|
return;
|
|
|
|
if (!valueCoversEntireFragment(APN->getType(), DII)) {
|
|
// FIXME: If only referring to a part of the variable described by the
|
|
// dbg.declare, then we want to insert a dbg.value for the corresponding
|
|
// fragment.
|
|
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
|
|
<< *DII << '\n');
|
|
return;
|
|
}
|
|
|
|
BasicBlock *BB = APN->getParent();
|
|
auto InsertionPt = BB->getFirstInsertionPt();
|
|
|
|
DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
|
|
|
|
// The block may be a catchswitch block, which does not have a valid
|
|
// insertion point.
|
|
// FIXME: Insert dbg.value markers in the successors when appropriate.
|
|
if (InsertionPt != BB->end())
|
|
Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
|
|
}
|
|
|
|
/// Determine whether this alloca is either a VLA or an array.
|
|
static bool isArray(AllocaInst *AI) {
|
|
return AI->isArrayAllocation() ||
|
|
(AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
|
|
}
|
|
|
|
/// Determine whether this alloca is a structure.
|
|
static bool isStructure(AllocaInst *AI) {
|
|
return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
|
|
}
|
|
|
|
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
|
|
/// of llvm.dbg.value intrinsics.
|
|
bool llvm::LowerDbgDeclare(Function &F) {
|
|
DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
|
|
SmallVector<DbgDeclareInst *, 4> Dbgs;
|
|
for (auto &FI : F)
|
|
for (Instruction &BI : FI)
|
|
if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
|
|
Dbgs.push_back(DDI);
|
|
|
|
if (Dbgs.empty())
|
|
return false;
|
|
|
|
for (auto &I : Dbgs) {
|
|
DbgDeclareInst *DDI = I;
|
|
AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
|
|
// If this is an alloca for a scalar variable, insert a dbg.value
|
|
// at each load and store to the alloca and erase the dbg.declare.
|
|
// The dbg.values allow tracking a variable even if it is not
|
|
// stored on the stack, while the dbg.declare can only describe
|
|
// the stack slot (and at a lexical-scope granularity). Later
|
|
// passes will attempt to elide the stack slot.
|
|
if (!AI || isArray(AI) || isStructure(AI))
|
|
continue;
|
|
|
|
// A volatile load/store means that the alloca can't be elided anyway.
|
|
if (llvm::any_of(AI->users(), [](User *U) -> bool {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(U))
|
|
return LI->isVolatile();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(U))
|
|
return SI->isVolatile();
|
|
return false;
|
|
}))
|
|
continue;
|
|
|
|
for (auto &AIUse : AI->uses()) {
|
|
User *U = AIUse.getUser();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
if (AIUse.getOperandNo() == 1)
|
|
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
|
|
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
|
// This is a call by-value or some other instruction that takes a
|
|
// pointer to the variable. Insert a *value* intrinsic that describes
|
|
// the variable by dereferencing the alloca.
|
|
DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
|
|
auto *DerefExpr =
|
|
DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
|
|
DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, NewLoc,
|
|
CI);
|
|
}
|
|
}
|
|
DDI->eraseFromParent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Propagate dbg.value intrinsics through the newly inserted PHIs.
|
|
void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
|
|
SmallVectorImpl<PHINode *> &InsertedPHIs) {
|
|
assert(BB && "No BasicBlock to clone dbg.value(s) from.");
|
|
if (InsertedPHIs.size() == 0)
|
|
return;
|
|
|
|
// Map existing PHI nodes to their dbg.values.
|
|
ValueToValueMapTy DbgValueMap;
|
|
for (auto &I : *BB) {
|
|
if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
|
|
if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
|
|
DbgValueMap.insert({Loc, DbgII});
|
|
}
|
|
}
|
|
if (DbgValueMap.size() == 0)
|
|
return;
|
|
|
|
// Then iterate through the new PHIs and look to see if they use one of the
|
|
// previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
|
|
// propagate the info through the new PHI.
|
|
LLVMContext &C = BB->getContext();
|
|
for (auto PHI : InsertedPHIs) {
|
|
BasicBlock *Parent = PHI->getParent();
|
|
// Avoid inserting an intrinsic into an EH block.
|
|
if (Parent->getFirstNonPHI()->isEHPad())
|
|
continue;
|
|
auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
|
|
for (auto VI : PHI->operand_values()) {
|
|
auto V = DbgValueMap.find(VI);
|
|
if (V != DbgValueMap.end()) {
|
|
auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
|
|
Instruction *NewDbgII = DbgII->clone();
|
|
NewDbgII->setOperand(0, PhiMAV);
|
|
auto InsertionPt = Parent->getFirstInsertionPt();
|
|
assert(InsertionPt != Parent->end() && "Ill-formed basic block");
|
|
NewDbgII->insertBefore(&*InsertionPt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Finds all intrinsics declaring local variables as living in the memory that
|
|
/// 'V' points to. This may include a mix of dbg.declare and
|
|
/// dbg.addr intrinsics.
|
|
TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
|
|
// This function is hot. Check whether the value has any metadata to avoid a
|
|
// DenseMap lookup.
|
|
if (!V->isUsedByMetadata())
|
|
return {};
|
|
auto *L = LocalAsMetadata::getIfExists(V);
|
|
if (!L)
|
|
return {};
|
|
auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
|
|
if (!MDV)
|
|
return {};
|
|
|
|
TinyPtrVector<DbgVariableIntrinsic *> Declares;
|
|
for (User *U : MDV->users()) {
|
|
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
|
|
if (DII->isAddressOfVariable())
|
|
Declares.push_back(DII);
|
|
}
|
|
|
|
return Declares;
|
|
}
|
|
|
|
void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
|
|
// This function is hot. Check whether the value has any metadata to avoid a
|
|
// DenseMap lookup.
|
|
if (!V->isUsedByMetadata())
|
|
return;
|
|
if (auto *L = LocalAsMetadata::getIfExists(V))
|
|
if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
|
|
for (User *U : MDV->users())
|
|
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
|
|
DbgValues.push_back(DVI);
|
|
}
|
|
|
|
void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
|
|
Value *V) {
|
|
// This function is hot. Check whether the value has any metadata to avoid a
|
|
// DenseMap lookup.
|
|
if (!V->isUsedByMetadata())
|
|
return;
|
|
if (auto *L = LocalAsMetadata::getIfExists(V))
|
|
if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
|
|
for (User *U : MDV->users())
|
|
if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
|
|
DbgUsers.push_back(DII);
|
|
}
|
|
|
|
bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
|
|
Instruction *InsertBefore, DIBuilder &Builder,
|
|
uint8_t DIExprFlags, int Offset) {
|
|
auto DbgAddrs = FindDbgAddrUses(Address);
|
|
for (DbgVariableIntrinsic *DII : DbgAddrs) {
|
|
DebugLoc Loc = DII->getDebugLoc();
|
|
auto *DIVar = DII->getVariable();
|
|
auto *DIExpr = DII->getExpression();
|
|
assert(DIVar && "Missing variable");
|
|
DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
|
|
// Insert llvm.dbg.declare immediately before InsertBefore, and remove old
|
|
// llvm.dbg.declare.
|
|
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
|
|
if (DII == InsertBefore)
|
|
InsertBefore = InsertBefore->getNextNode();
|
|
DII->eraseFromParent();
|
|
}
|
|
return !DbgAddrs.empty();
|
|
}
|
|
|
|
bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
|
|
DIBuilder &Builder, uint8_t DIExprFlags,
|
|
int Offset) {
|
|
return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
|
|
DIExprFlags, Offset);
|
|
}
|
|
|
|
static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
|
|
DIBuilder &Builder, int Offset) {
|
|
DebugLoc Loc = DVI->getDebugLoc();
|
|
auto *DIVar = DVI->getVariable();
|
|
auto *DIExpr = DVI->getExpression();
|
|
assert(DIVar && "Missing variable");
|
|
|
|
// This is an alloca-based llvm.dbg.value. The first thing it should do with
|
|
// the alloca pointer is dereference it. Otherwise we don't know how to handle
|
|
// it and give up.
|
|
if (!DIExpr || DIExpr->getNumElements() < 1 ||
|
|
DIExpr->getElement(0) != dwarf::DW_OP_deref)
|
|
return;
|
|
|
|
// Insert the offset before the first deref.
|
|
// We could just change the offset argument of dbg.value, but it's unsigned...
|
|
if (Offset)
|
|
DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
|
|
|
|
Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
|
|
DVI->eraseFromParent();
|
|
}
|
|
|
|
void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
|
|
DIBuilder &Builder, int Offset) {
|
|
if (auto *L = LocalAsMetadata::getIfExists(AI))
|
|
if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
|
|
for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
|
|
Use &U = *UI++;
|
|
if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
|
|
replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
|
|
}
|
|
}
|
|
|
|
/// Wrap \p V in a ValueAsMetadata instance.
|
|
static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
|
|
return MetadataAsValue::get(C, ValueAsMetadata::get(V));
|
|
}
|
|
|
|
bool llvm::salvageDebugInfo(Instruction &I) {
|
|
SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
|
|
findDbgUsers(DbgUsers, &I);
|
|
if (DbgUsers.empty())
|
|
return false;
|
|
|
|
return salvageDebugInfoForDbgValues(I, DbgUsers);
|
|
}
|
|
|
|
bool llvm::salvageDebugInfoForDbgValues(
|
|
Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
|
|
auto &Ctx = I.getContext();
|
|
auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
|
|
|
|
for (auto *DII : DbgUsers) {
|
|
// Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
|
|
// are implicitly pointing out the value as a DWARF memory location
|
|
// description.
|
|
bool StackValue = isa<DbgValueInst>(DII);
|
|
|
|
DIExpression *DIExpr =
|
|
salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
|
|
|
|
// salvageDebugInfoImpl should fail on examining the first element of
|
|
// DbgUsers, or none of them.
|
|
if (!DIExpr)
|
|
return false;
|
|
|
|
DII->setOperand(0, wrapMD(I.getOperand(0)));
|
|
DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
|
|
LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
|
|
DIExpression *SrcDIExpr,
|
|
bool WithStackValue) {
|
|
auto &M = *I.getModule();
|
|
auto &DL = M.getDataLayout();
|
|
|
|
// Apply a vector of opcodes to the source DIExpression.
|
|
auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
|
|
DIExpression *DIExpr = SrcDIExpr;
|
|
if (!Ops.empty()) {
|
|
DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
|
|
}
|
|
return DIExpr;
|
|
};
|
|
|
|
// Apply the given offset to the source DIExpression.
|
|
auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
|
|
SmallVector<uint64_t, 8> Ops;
|
|
DIExpression::appendOffset(Ops, Offset);
|
|
return doSalvage(Ops);
|
|
};
|
|
|
|
// initializer-list helper for applying operators to the source DIExpression.
|
|
auto applyOps =
|
|
[&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * {
|
|
SmallVector<uint64_t, 8> Ops(Opcodes);
|
|
return doSalvage(Ops);
|
|
};
|
|
|
|
if (auto *CI = dyn_cast<CastInst>(&I)) {
|
|
// No-op casts and zexts are irrelevant for debug info.
|
|
if (CI->isNoopCast(DL) || isa<ZExtInst>(&I))
|
|
return SrcDIExpr;
|
|
return nullptr;
|
|
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
unsigned BitWidth =
|
|
M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
|
|
// Rewrite a constant GEP into a DIExpression.
|
|
APInt Offset(BitWidth, 0);
|
|
if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
|
|
return applyOffset(Offset.getSExtValue());
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
} else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
|
|
// Rewrite binary operations with constant integer operands.
|
|
auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
|
|
if (!ConstInt || ConstInt->getBitWidth() > 64)
|
|
return nullptr;
|
|
|
|
uint64_t Val = ConstInt->getSExtValue();
|
|
switch (BI->getOpcode()) {
|
|
case Instruction::Add:
|
|
return applyOffset(Val);
|
|
case Instruction::Sub:
|
|
return applyOffset(-int64_t(Val));
|
|
case Instruction::Mul:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
|
|
case Instruction::SDiv:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
|
|
case Instruction::SRem:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
|
|
case Instruction::Or:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
|
|
case Instruction::And:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
|
|
case Instruction::Xor:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
|
|
case Instruction::Shl:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
|
|
case Instruction::LShr:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
|
|
case Instruction::AShr:
|
|
return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
|
|
default:
|
|
// TODO: Salvage constants from each kind of binop we know about.
|
|
return nullptr;
|
|
}
|
|
// *Not* to do: we should not attempt to salvage load instructions,
|
|
// because the validity and lifetime of a dbg.value containing
|
|
// DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// A replacement for a dbg.value expression.
|
|
using DbgValReplacement = Optional<DIExpression *>;
|
|
|
|
/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
|
|
/// possibly moving/deleting users to prevent use-before-def. Returns true if
|
|
/// changes are made.
|
|
static bool rewriteDebugUsers(
|
|
Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
|
|
function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
|
|
// Find debug users of From.
|
|
SmallVector<DbgVariableIntrinsic *, 1> Users;
|
|
findDbgUsers(Users, &From);
|
|
if (Users.empty())
|
|
return false;
|
|
|
|
// Prevent use-before-def of To.
|
|
bool Changed = false;
|
|
SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
|
|
if (isa<Instruction>(&To)) {
|
|
bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
|
|
|
|
for (auto *DII : Users) {
|
|
// It's common to see a debug user between From and DomPoint. Move it
|
|
// after DomPoint to preserve the variable update without any reordering.
|
|
if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
|
|
LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
|
|
DII->moveAfter(&DomPoint);
|
|
Changed = true;
|
|
|
|
// Users which otherwise aren't dominated by the replacement value must
|
|
// be salvaged or deleted.
|
|
} else if (!DT.dominates(&DomPoint, DII)) {
|
|
DeleteOrSalvage.insert(DII);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update debug users without use-before-def risk.
|
|
for (auto *DII : Users) {
|
|
if (DeleteOrSalvage.count(DII))
|
|
continue;
|
|
|
|
LLVMContext &Ctx = DII->getContext();
|
|
DbgValReplacement DVR = RewriteExpr(*DII);
|
|
if (!DVR)
|
|
continue;
|
|
|
|
DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
|
|
DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
|
|
LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
|
|
Changed = true;
|
|
}
|
|
|
|
if (!DeleteOrSalvage.empty()) {
|
|
// Try to salvage the remaining debug users.
|
|
Changed |= salvageDebugInfo(From);
|
|
|
|
// Delete the debug users which weren't salvaged.
|
|
for (auto *DII : DeleteOrSalvage) {
|
|
if (DII->getVariableLocation() == &From) {
|
|
LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n');
|
|
DII->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
|
|
/// losslessly preserve the bits and semantics of the value. This predicate is
|
|
/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
|
|
///
|
|
/// Note that Type::canLosslesslyBitCastTo is not suitable here because it
|
|
/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
|
|
/// and also does not allow lossless pointer <-> integer conversions.
|
|
static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
|
|
Type *ToTy) {
|
|
// Trivially compatible types.
|
|
if (FromTy == ToTy)
|
|
return true;
|
|
|
|
// Handle compatible pointer <-> integer conversions.
|
|
if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
|
|
bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
|
|
bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
|
|
!DL.isNonIntegralPointerType(ToTy);
|
|
return SameSize && LosslessConversion;
|
|
}
|
|
|
|
// TODO: This is not exhaustive.
|
|
return false;
|
|
}
|
|
|
|
bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
|
|
Instruction &DomPoint, DominatorTree &DT) {
|
|
// Exit early if From has no debug users.
|
|
if (!From.isUsedByMetadata())
|
|
return false;
|
|
|
|
assert(&From != &To && "Can't replace something with itself");
|
|
|
|
Type *FromTy = From.getType();
|
|
Type *ToTy = To.getType();
|
|
|
|
auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
|
|
return DII.getExpression();
|
|
};
|
|
|
|
// Handle no-op conversions.
|
|
Module &M = *From.getModule();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
|
|
return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
|
|
|
|
// Handle integer-to-integer widening and narrowing.
|
|
// FIXME: Use DW_OP_convert when it's available everywhere.
|
|
if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
|
|
uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
|
|
uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
|
|
assert(FromBits != ToBits && "Unexpected no-op conversion");
|
|
|
|
// When the width of the result grows, assume that a debugger will only
|
|
// access the low `FromBits` bits when inspecting the source variable.
|
|
if (FromBits < ToBits)
|
|
return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
|
|
|
|
// The width of the result has shrunk. Use sign/zero extension to describe
|
|
// the source variable's high bits.
|
|
auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
|
|
DILocalVariable *Var = DII.getVariable();
|
|
|
|
// Without knowing signedness, sign/zero extension isn't possible.
|
|
auto Signedness = Var->getSignedness();
|
|
if (!Signedness)
|
|
return None;
|
|
|
|
bool Signed = *Signedness == DIBasicType::Signedness::Signed;
|
|
dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
|
|
SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_LLVM_convert, ToBits, TK,
|
|
dwarf::DW_OP_LLVM_convert, FromBits, TK});
|
|
return DIExpression::appendToStack(DII.getExpression(), Ops);
|
|
};
|
|
return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
|
|
}
|
|
|
|
// TODO: Floating-point conversions, vectors.
|
|
return false;
|
|
}
|
|
|
|
unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
|
|
unsigned NumDeadInst = 0;
|
|
// Delete the instructions backwards, as it has a reduced likelihood of
|
|
// having to update as many def-use and use-def chains.
|
|
Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
|
|
while (EndInst != &BB->front()) {
|
|
// Delete the next to last instruction.
|
|
Instruction *Inst = &*--EndInst->getIterator();
|
|
if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
|
|
Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
|
|
if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
|
|
EndInst = Inst;
|
|
continue;
|
|
}
|
|
if (!isa<DbgInfoIntrinsic>(Inst))
|
|
++NumDeadInst;
|
|
Inst->eraseFromParent();
|
|
}
|
|
return NumDeadInst;
|
|
}
|
|
|
|
unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
|
|
bool PreserveLCSSA, DomTreeUpdater *DTU,
|
|
MemorySSAUpdater *MSSAU) {
|
|
BasicBlock *BB = I->getParent();
|
|
std::vector <DominatorTree::UpdateType> Updates;
|
|
|
|
if (MSSAU)
|
|
MSSAU->changeToUnreachable(I);
|
|
|
|
// Loop over all of the successors, removing BB's entry from any PHI
|
|
// nodes.
|
|
if (DTU)
|
|
Updates.reserve(BB->getTerminator()->getNumSuccessors());
|
|
for (BasicBlock *Successor : successors(BB)) {
|
|
Successor->removePredecessor(BB, PreserveLCSSA);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, BB, Successor});
|
|
}
|
|
// Insert a call to llvm.trap right before this. This turns the undefined
|
|
// behavior into a hard fail instead of falling through into random code.
|
|
if (UseLLVMTrap) {
|
|
Function *TrapFn =
|
|
Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
|
|
CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
|
|
CallTrap->setDebugLoc(I->getDebugLoc());
|
|
}
|
|
auto *UI = new UnreachableInst(I->getContext(), I);
|
|
UI->setDebugLoc(I->getDebugLoc());
|
|
|
|
// All instructions after this are dead.
|
|
unsigned NumInstrsRemoved = 0;
|
|
BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
|
|
while (BBI != BBE) {
|
|
if (!BBI->use_empty())
|
|
BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
|
|
BB->getInstList().erase(BBI++);
|
|
++NumInstrsRemoved;
|
|
}
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive(Updates);
|
|
return NumInstrsRemoved;
|
|
}
|
|
|
|
CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
|
|
SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
II->getOperandBundlesAsDefs(OpBundles);
|
|
CallInst *NewCall = CallInst::Create(II->getFunctionType(),
|
|
II->getCalledValue(), Args, OpBundles);
|
|
NewCall->setCallingConv(II->getCallingConv());
|
|
NewCall->setAttributes(II->getAttributes());
|
|
NewCall->setDebugLoc(II->getDebugLoc());
|
|
NewCall->copyMetadata(*II);
|
|
return NewCall;
|
|
}
|
|
|
|
/// changeToCall - Convert the specified invoke into a normal call.
|
|
void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
|
|
CallInst *NewCall = createCallMatchingInvoke(II);
|
|
NewCall->takeName(II);
|
|
NewCall->insertBefore(II);
|
|
II->replaceAllUsesWith(NewCall);
|
|
|
|
// Follow the call by a branch to the normal destination.
|
|
BasicBlock *NormalDestBB = II->getNormalDest();
|
|
BranchInst::Create(NormalDestBB, II);
|
|
|
|
// Update PHI nodes in the unwind destination
|
|
BasicBlock *BB = II->getParent();
|
|
BasicBlock *UnwindDestBB = II->getUnwindDest();
|
|
UnwindDestBB->removePredecessor(BB);
|
|
II->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
|
|
}
|
|
|
|
BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
|
|
BasicBlock *UnwindEdge) {
|
|
BasicBlock *BB = CI->getParent();
|
|
|
|
// Convert this function call into an invoke instruction. First, split the
|
|
// basic block.
|
|
BasicBlock *Split =
|
|
BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
|
|
|
|
// Delete the unconditional branch inserted by splitBasicBlock
|
|
BB->getInstList().pop_back();
|
|
|
|
// Create the new invoke instruction.
|
|
SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
|
|
CI->getOperandBundlesAsDefs(OpBundles);
|
|
|
|
// Note: we're round tripping operand bundles through memory here, and that
|
|
// can potentially be avoided with a cleverer API design that we do not have
|
|
// as of this time.
|
|
|
|
InvokeInst *II =
|
|
InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
|
|
UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
|
|
II->setDebugLoc(CI->getDebugLoc());
|
|
II->setCallingConv(CI->getCallingConv());
|
|
II->setAttributes(CI->getAttributes());
|
|
|
|
// Make sure that anything using the call now uses the invoke! This also
|
|
// updates the CallGraph if present, because it uses a WeakTrackingVH.
|
|
CI->replaceAllUsesWith(II);
|
|
|
|
// Delete the original call
|
|
Split->getInstList().pop_front();
|
|
return Split;
|
|
}
|
|
|
|
static bool markAliveBlocks(Function &F,
|
|
SmallPtrSetImpl<BasicBlock *> &Reachable,
|
|
DomTreeUpdater *DTU = nullptr) {
|
|
SmallVector<BasicBlock*, 128> Worklist;
|
|
BasicBlock *BB = &F.front();
|
|
Worklist.push_back(BB);
|
|
Reachable.insert(BB);
|
|
bool Changed = false;
|
|
do {
|
|
BB = Worklist.pop_back_val();
|
|
|
|
// Do a quick scan of the basic block, turning any obviously unreachable
|
|
// instructions into LLVM unreachable insts. The instruction combining pass
|
|
// canonicalizes unreachable insts into stores to null or undef.
|
|
for (Instruction &I : *BB) {
|
|
if (auto *CI = dyn_cast<CallInst>(&I)) {
|
|
Value *Callee = CI->getCalledValue();
|
|
// Handle intrinsic calls.
|
|
if (Function *F = dyn_cast<Function>(Callee)) {
|
|
auto IntrinsicID = F->getIntrinsicID();
|
|
// Assumptions that are known to be false are equivalent to
|
|
// unreachable. Also, if the condition is undefined, then we make the
|
|
// choice most beneficial to the optimizer, and choose that to also be
|
|
// unreachable.
|
|
if (IntrinsicID == Intrinsic::assume) {
|
|
if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
|
|
// Don't insert a call to llvm.trap right before the unreachable.
|
|
changeToUnreachable(CI, false, false, DTU);
|
|
Changed = true;
|
|
break;
|
|
}
|
|
} else if (IntrinsicID == Intrinsic::experimental_guard) {
|
|
// A call to the guard intrinsic bails out of the current
|
|
// compilation unit if the predicate passed to it is false. If the
|
|
// predicate is a constant false, then we know the guard will bail
|
|
// out of the current compile unconditionally, so all code following
|
|
// it is dead.
|
|
//
|
|
// Note: unlike in llvm.assume, it is not "obviously profitable" for
|
|
// guards to treat `undef` as `false` since a guard on `undef` can
|
|
// still be useful for widening.
|
|
if (match(CI->getArgOperand(0), m_Zero()))
|
|
if (!isa<UnreachableInst>(CI->getNextNode())) {
|
|
changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
|
|
false, DTU);
|
|
Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
} else if ((isa<ConstantPointerNull>(Callee) &&
|
|
!NullPointerIsDefined(CI->getFunction())) ||
|
|
isa<UndefValue>(Callee)) {
|
|
changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
|
|
Changed = true;
|
|
break;
|
|
}
|
|
if (CI->doesNotReturn() && !CI->isMustTailCall()) {
|
|
// If we found a call to a no-return function, insert an unreachable
|
|
// instruction after it. Make sure there isn't *already* one there
|
|
// though.
|
|
if (!isa<UnreachableInst>(CI->getNextNode())) {
|
|
// Don't insert a call to llvm.trap right before the unreachable.
|
|
changeToUnreachable(CI->getNextNode(), false, false, DTU);
|
|
Changed = true;
|
|
}
|
|
break;
|
|
}
|
|
} else if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
// Store to undef and store to null are undefined and used to signal
|
|
// that they should be changed to unreachable by passes that can't
|
|
// modify the CFG.
|
|
|
|
// Don't touch volatile stores.
|
|
if (SI->isVolatile()) continue;
|
|
|
|
Value *Ptr = SI->getOperand(1);
|
|
|
|
if (isa<UndefValue>(Ptr) ||
|
|
(isa<ConstantPointerNull>(Ptr) &&
|
|
!NullPointerIsDefined(SI->getFunction(),
|
|
SI->getPointerAddressSpace()))) {
|
|
changeToUnreachable(SI, true, false, DTU);
|
|
Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
Instruction *Terminator = BB->getTerminator();
|
|
if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
|
|
// Turn invokes that call 'nounwind' functions into ordinary calls.
|
|
Value *Callee = II->getCalledValue();
|
|
if ((isa<ConstantPointerNull>(Callee) &&
|
|
!NullPointerIsDefined(BB->getParent())) ||
|
|
isa<UndefValue>(Callee)) {
|
|
changeToUnreachable(II, true, false, DTU);
|
|
Changed = true;
|
|
} else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
|
|
if (II->use_empty() && II->onlyReadsMemory()) {
|
|
// jump to the normal destination branch.
|
|
BasicBlock *NormalDestBB = II->getNormalDest();
|
|
BasicBlock *UnwindDestBB = II->getUnwindDest();
|
|
BranchInst::Create(NormalDestBB, II);
|
|
UnwindDestBB->removePredecessor(II->getParent());
|
|
II->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive(
|
|
{{DominatorTree::Delete, BB, UnwindDestBB}});
|
|
} else
|
|
changeToCall(II, DTU);
|
|
Changed = true;
|
|
}
|
|
} else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
|
|
// Remove catchpads which cannot be reached.
|
|
struct CatchPadDenseMapInfo {
|
|
static CatchPadInst *getEmptyKey() {
|
|
return DenseMapInfo<CatchPadInst *>::getEmptyKey();
|
|
}
|
|
|
|
static CatchPadInst *getTombstoneKey() {
|
|
return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
|
|
}
|
|
|
|
static unsigned getHashValue(CatchPadInst *CatchPad) {
|
|
return static_cast<unsigned>(hash_combine_range(
|
|
CatchPad->value_op_begin(), CatchPad->value_op_end()));
|
|
}
|
|
|
|
static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
|
|
if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
|
|
RHS == getEmptyKey() || RHS == getTombstoneKey())
|
|
return LHS == RHS;
|
|
return LHS->isIdenticalTo(RHS);
|
|
}
|
|
};
|
|
|
|
// Set of unique CatchPads.
|
|
SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
|
|
CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
|
|
HandlerSet;
|
|
detail::DenseSetEmpty Empty;
|
|
for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
|
|
E = CatchSwitch->handler_end();
|
|
I != E; ++I) {
|
|
BasicBlock *HandlerBB = *I;
|
|
auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
|
|
if (!HandlerSet.insert({CatchPad, Empty}).second) {
|
|
CatchSwitch->removeHandler(I);
|
|
--I;
|
|
--E;
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
|
|
for (BasicBlock *Successor : successors(BB))
|
|
if (Reachable.insert(Successor).second)
|
|
Worklist.push_back(Successor);
|
|
} while (!Worklist.empty());
|
|
return Changed;
|
|
}
|
|
|
|
void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
|
|
Instruction *TI = BB->getTerminator();
|
|
|
|
if (auto *II = dyn_cast<InvokeInst>(TI)) {
|
|
changeToCall(II, DTU);
|
|
return;
|
|
}
|
|
|
|
Instruction *NewTI;
|
|
BasicBlock *UnwindDest;
|
|
|
|
if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
|
|
NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
|
|
UnwindDest = CRI->getUnwindDest();
|
|
} else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
|
|
auto *NewCatchSwitch = CatchSwitchInst::Create(
|
|
CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
|
|
CatchSwitch->getName(), CatchSwitch);
|
|
for (BasicBlock *PadBB : CatchSwitch->handlers())
|
|
NewCatchSwitch->addHandler(PadBB);
|
|
|
|
NewTI = NewCatchSwitch;
|
|
UnwindDest = CatchSwitch->getUnwindDest();
|
|
} else {
|
|
llvm_unreachable("Could not find unwind successor");
|
|
}
|
|
|
|
NewTI->takeName(TI);
|
|
NewTI->setDebugLoc(TI->getDebugLoc());
|
|
UnwindDest->removePredecessor(BB);
|
|
TI->replaceAllUsesWith(NewTI);
|
|
TI->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
|
|
}
|
|
|
|
/// removeUnreachableBlocks - Remove blocks that are not reachable, even
|
|
/// if they are in a dead cycle. Return true if a change was made, false
|
|
/// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
|
|
/// after modifying the CFG.
|
|
bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
|
|
DomTreeUpdater *DTU,
|
|
MemorySSAUpdater *MSSAU) {
|
|
SmallPtrSet<BasicBlock*, 16> Reachable;
|
|
bool Changed = markAliveBlocks(F, Reachable, DTU);
|
|
|
|
// If there are unreachable blocks in the CFG...
|
|
if (Reachable.size() == F.size())
|
|
return Changed;
|
|
|
|
assert(Reachable.size() < F.size());
|
|
NumRemoved += F.size()-Reachable.size();
|
|
|
|
SmallSetVector<BasicBlock *, 8> DeadBlockSet;
|
|
for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
|
|
auto *BB = &*I;
|
|
if (Reachable.count(BB))
|
|
continue;
|
|
DeadBlockSet.insert(BB);
|
|
}
|
|
|
|
if (MSSAU)
|
|
MSSAU->removeBlocks(DeadBlockSet);
|
|
|
|
// Loop over all of the basic blocks that are not reachable, dropping all of
|
|
// their internal references. Update DTU and LVI if available.
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
for (auto *BB : DeadBlockSet) {
|
|
for (BasicBlock *Successor : successors(BB)) {
|
|
if (!DeadBlockSet.count(Successor))
|
|
Successor->removePredecessor(BB);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, BB, Successor});
|
|
}
|
|
if (LVI)
|
|
LVI->eraseBlock(BB);
|
|
BB->dropAllReferences();
|
|
}
|
|
for (Function::iterator I = ++F.begin(); I != F.end();) {
|
|
auto *BB = &*I;
|
|
if (Reachable.count(BB)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
if (DTU) {
|
|
// Remove the terminator of BB to clear the successor list of BB.
|
|
if (BB->getTerminator())
|
|
BB->getInstList().pop_back();
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
assert(succ_empty(BB) && "The successor list of BB isn't empty before "
|
|
"applying corresponding DTU updates.");
|
|
++I;
|
|
} else {
|
|
I = F.getBasicBlockList().erase(I);
|
|
}
|
|
}
|
|
|
|
if (DTU) {
|
|
DTU->applyUpdatesPermissive(Updates);
|
|
bool Deleted = false;
|
|
for (auto *BB : DeadBlockSet) {
|
|
if (DTU->isBBPendingDeletion(BB))
|
|
--NumRemoved;
|
|
else
|
|
Deleted = true;
|
|
DTU->deleteBB(BB);
|
|
}
|
|
if (!Deleted)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void llvm::combineMetadata(Instruction *K, const Instruction *J,
|
|
ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
|
|
K->dropUnknownNonDebugMetadata(KnownIDs);
|
|
K->getAllMetadataOtherThanDebugLoc(Metadata);
|
|
for (const auto &MD : Metadata) {
|
|
unsigned Kind = MD.first;
|
|
MDNode *JMD = J->getMetadata(Kind);
|
|
MDNode *KMD = MD.second;
|
|
|
|
switch (Kind) {
|
|
default:
|
|
K->setMetadata(Kind, nullptr); // Remove unknown metadata
|
|
break;
|
|
case LLVMContext::MD_dbg:
|
|
llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
|
|
case LLVMContext::MD_tbaa:
|
|
K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
|
|
break;
|
|
case LLVMContext::MD_alias_scope:
|
|
K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
|
|
break;
|
|
case LLVMContext::MD_noalias:
|
|
case LLVMContext::MD_mem_parallel_loop_access:
|
|
K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
|
|
break;
|
|
case LLVMContext::MD_access_group:
|
|
K->setMetadata(LLVMContext::MD_access_group,
|
|
intersectAccessGroups(K, J));
|
|
break;
|
|
case LLVMContext::MD_range:
|
|
|
|
// If K does move, use most generic range. Otherwise keep the range of
|
|
// K.
|
|
if (DoesKMove)
|
|
// FIXME: If K does move, we should drop the range info and nonnull.
|
|
// Currently this function is used with DoesKMove in passes
|
|
// doing hoisting/sinking and the current behavior of using the
|
|
// most generic range is correct in those cases.
|
|
K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
|
|
break;
|
|
case LLVMContext::MD_fpmath:
|
|
K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
|
|
break;
|
|
case LLVMContext::MD_invariant_load:
|
|
// Only set the !invariant.load if it is present in both instructions.
|
|
K->setMetadata(Kind, JMD);
|
|
break;
|
|
case LLVMContext::MD_nonnull:
|
|
// If K does move, keep nonull if it is present in both instructions.
|
|
if (DoesKMove)
|
|
K->setMetadata(Kind, JMD);
|
|
break;
|
|
case LLVMContext::MD_invariant_group:
|
|
// Preserve !invariant.group in K.
|
|
break;
|
|
case LLVMContext::MD_align:
|
|
K->setMetadata(Kind,
|
|
MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
|
|
break;
|
|
case LLVMContext::MD_dereferenceable:
|
|
case LLVMContext::MD_dereferenceable_or_null:
|
|
K->setMetadata(Kind,
|
|
MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
|
|
break;
|
|
case LLVMContext::MD_preserve_access_index:
|
|
// Preserve !preserve.access.index in K.
|
|
break;
|
|
}
|
|
}
|
|
// Set !invariant.group from J if J has it. If both instructions have it
|
|
// then we will just pick it from J - even when they are different.
|
|
// Also make sure that K is load or store - f.e. combining bitcast with load
|
|
// could produce bitcast with invariant.group metadata, which is invalid.
|
|
// FIXME: we should try to preserve both invariant.group md if they are
|
|
// different, but right now instruction can only have one invariant.group.
|
|
if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
|
|
if (isa<LoadInst>(K) || isa<StoreInst>(K))
|
|
K->setMetadata(LLVMContext::MD_invariant_group, JMD);
|
|
}
|
|
|
|
void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
|
|
bool KDominatesJ) {
|
|
unsigned KnownIDs[] = {
|
|
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias, LLVMContext::MD_range,
|
|
LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
|
|
LLVMContext::MD_invariant_group, LLVMContext::MD_align,
|
|
LLVMContext::MD_dereferenceable,
|
|
LLVMContext::MD_dereferenceable_or_null,
|
|
LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
|
|
combineMetadata(K, J, KnownIDs, KDominatesJ);
|
|
}
|
|
|
|
void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
|
|
Source.getAllMetadata(MD);
|
|
MDBuilder MDB(Dest.getContext());
|
|
Type *NewType = Dest.getType();
|
|
const DataLayout &DL = Source.getModule()->getDataLayout();
|
|
for (const auto &MDPair : MD) {
|
|
unsigned ID = MDPair.first;
|
|
MDNode *N = MDPair.second;
|
|
// Note, essentially every kind of metadata should be preserved here! This
|
|
// routine is supposed to clone a load instruction changing *only its type*.
|
|
// The only metadata it makes sense to drop is metadata which is invalidated
|
|
// when the pointer type changes. This should essentially never be the case
|
|
// in LLVM, but we explicitly switch over only known metadata to be
|
|
// conservatively correct. If you are adding metadata to LLVM which pertains
|
|
// to loads, you almost certainly want to add it here.
|
|
switch (ID) {
|
|
case LLVMContext::MD_dbg:
|
|
case LLVMContext::MD_tbaa:
|
|
case LLVMContext::MD_prof:
|
|
case LLVMContext::MD_fpmath:
|
|
case LLVMContext::MD_tbaa_struct:
|
|
case LLVMContext::MD_invariant_load:
|
|
case LLVMContext::MD_alias_scope:
|
|
case LLVMContext::MD_noalias:
|
|
case LLVMContext::MD_nontemporal:
|
|
case LLVMContext::MD_mem_parallel_loop_access:
|
|
case LLVMContext::MD_access_group:
|
|
// All of these directly apply.
|
|
Dest.setMetadata(ID, N);
|
|
break;
|
|
|
|
case LLVMContext::MD_nonnull:
|
|
copyNonnullMetadata(Source, N, Dest);
|
|
break;
|
|
|
|
case LLVMContext::MD_align:
|
|
case LLVMContext::MD_dereferenceable:
|
|
case LLVMContext::MD_dereferenceable_or_null:
|
|
// These only directly apply if the new type is also a pointer.
|
|
if (NewType->isPointerTy())
|
|
Dest.setMetadata(ID, N);
|
|
break;
|
|
|
|
case LLVMContext::MD_range:
|
|
copyRangeMetadata(DL, Source, N, Dest);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
|
|
auto *ReplInst = dyn_cast<Instruction>(Repl);
|
|
if (!ReplInst)
|
|
return;
|
|
|
|
// Patch the replacement so that it is not more restrictive than the value
|
|
// being replaced.
|
|
// Note that if 'I' is a load being replaced by some operation,
|
|
// for example, by an arithmetic operation, then andIRFlags()
|
|
// would just erase all math flags from the original arithmetic
|
|
// operation, which is clearly not wanted and not needed.
|
|
if (!isa<LoadInst>(I))
|
|
ReplInst->andIRFlags(I);
|
|
|
|
// FIXME: If both the original and replacement value are part of the
|
|
// same control-flow region (meaning that the execution of one
|
|
// guarantees the execution of the other), then we can combine the
|
|
// noalias scopes here and do better than the general conservative
|
|
// answer used in combineMetadata().
|
|
|
|
// In general, GVN unifies expressions over different control-flow
|
|
// regions, and so we need a conservative combination of the noalias
|
|
// scopes.
|
|
static const unsigned KnownIDs[] = {
|
|
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias, LLVMContext::MD_range,
|
|
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
|
|
LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
|
|
LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
|
|
combineMetadata(ReplInst, I, KnownIDs, false);
|
|
}
|
|
|
|
template <typename RootType, typename DominatesFn>
|
|
static unsigned replaceDominatedUsesWith(Value *From, Value *To,
|
|
const RootType &Root,
|
|
const DominatesFn &Dominates) {
|
|
assert(From->getType() == To->getType());
|
|
|
|
unsigned Count = 0;
|
|
for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI++;
|
|
if (!Dominates(Root, U))
|
|
continue;
|
|
U.set(To);
|
|
LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
|
|
<< "' as " << *To << " in " << *U << "\n");
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
|
|
assert(From->getType() == To->getType());
|
|
auto *BB = From->getParent();
|
|
unsigned Count = 0;
|
|
|
|
for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI++;
|
|
auto *I = cast<Instruction>(U.getUser());
|
|
if (I->getParent() == BB)
|
|
continue;
|
|
U.set(To);
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
|
|
DominatorTree &DT,
|
|
const BasicBlockEdge &Root) {
|
|
auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
|
|
return DT.dominates(Root, U);
|
|
};
|
|
return ::replaceDominatedUsesWith(From, To, Root, Dominates);
|
|
}
|
|
|
|
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
|
|
DominatorTree &DT,
|
|
const BasicBlock *BB) {
|
|
auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
|
|
auto *I = cast<Instruction>(U.getUser())->getParent();
|
|
return DT.properlyDominates(BB, I);
|
|
};
|
|
return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
|
|
}
|
|
|
|
bool llvm::callsGCLeafFunction(const CallBase *Call,
|
|
const TargetLibraryInfo &TLI) {
|
|
// Check if the function is specifically marked as a gc leaf function.
|
|
if (Call->hasFnAttr("gc-leaf-function"))
|
|
return true;
|
|
if (const Function *F = Call->getCalledFunction()) {
|
|
if (F->hasFnAttribute("gc-leaf-function"))
|
|
return true;
|
|
|
|
if (auto IID = F->getIntrinsicID())
|
|
// Most LLVM intrinsics do not take safepoints.
|
|
return IID != Intrinsic::experimental_gc_statepoint &&
|
|
IID != Intrinsic::experimental_deoptimize;
|
|
}
|
|
|
|
// Lib calls can be materialized by some passes, and won't be
|
|
// marked as 'gc-leaf-function.' All available Libcalls are
|
|
// GC-leaf.
|
|
LibFunc LF;
|
|
if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
|
|
return TLI.has(LF);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
|
|
LoadInst &NewLI) {
|
|
auto *NewTy = NewLI.getType();
|
|
|
|
// This only directly applies if the new type is also a pointer.
|
|
if (NewTy->isPointerTy()) {
|
|
NewLI.setMetadata(LLVMContext::MD_nonnull, N);
|
|
return;
|
|
}
|
|
|
|
// The only other translation we can do is to integral loads with !range
|
|
// metadata.
|
|
if (!NewTy->isIntegerTy())
|
|
return;
|
|
|
|
MDBuilder MDB(NewLI.getContext());
|
|
const Value *Ptr = OldLI.getPointerOperand();
|
|
auto *ITy = cast<IntegerType>(NewTy);
|
|
auto *NullInt = ConstantExpr::getPtrToInt(
|
|
ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
|
|
auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
|
|
NewLI.setMetadata(LLVMContext::MD_range,
|
|
MDB.createRange(NonNullInt, NullInt));
|
|
}
|
|
|
|
void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
|
|
MDNode *N, LoadInst &NewLI) {
|
|
auto *NewTy = NewLI.getType();
|
|
|
|
// Give up unless it is converted to a pointer where there is a single very
|
|
// valuable mapping we can do reliably.
|
|
// FIXME: It would be nice to propagate this in more ways, but the type
|
|
// conversions make it hard.
|
|
if (!NewTy->isPointerTy())
|
|
return;
|
|
|
|
unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
|
|
if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
|
|
MDNode *NN = MDNode::get(OldLI.getContext(), None);
|
|
NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
|
|
}
|
|
}
|
|
|
|
void llvm::dropDebugUsers(Instruction &I) {
|
|
SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
|
|
findDbgUsers(DbgUsers, &I);
|
|
for (auto *DII : DbgUsers)
|
|
DII->eraseFromParent();
|
|
}
|
|
|
|
void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
|
|
BasicBlock *BB) {
|
|
// Since we are moving the instructions out of its basic block, we do not
|
|
// retain their original debug locations (DILocations) and debug intrinsic
|
|
// instructions.
|
|
//
|
|
// Doing so would degrade the debugging experience and adversely affect the
|
|
// accuracy of profiling information.
|
|
//
|
|
// Currently, when hoisting the instructions, we take the following actions:
|
|
// - Remove their debug intrinsic instructions.
|
|
// - Set their debug locations to the values from the insertion point.
|
|
//
|
|
// As per PR39141 (comment #8), the more fundamental reason why the dbg.values
|
|
// need to be deleted, is because there will not be any instructions with a
|
|
// DILocation in either branch left after performing the transformation. We
|
|
// can only insert a dbg.value after the two branches are joined again.
|
|
//
|
|
// See PR38762, PR39243 for more details.
|
|
//
|
|
// TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
|
|
// encode predicated DIExpressions that yield different results on different
|
|
// code paths.
|
|
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
|
|
Instruction *I = &*II;
|
|
I->dropUnknownNonDebugMetadata();
|
|
if (I->isUsedByMetadata())
|
|
dropDebugUsers(*I);
|
|
if (isa<DbgInfoIntrinsic>(I)) {
|
|
// Remove DbgInfo Intrinsics.
|
|
II = I->eraseFromParent();
|
|
continue;
|
|
}
|
|
I->setDebugLoc(InsertPt->getDebugLoc());
|
|
++II;
|
|
}
|
|
DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
|
|
BB->begin(),
|
|
BB->getTerminator()->getIterator());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A potential constituent of a bitreverse or bswap expression. See
|
|
/// collectBitParts for a fuller explanation.
|
|
struct BitPart {
|
|
BitPart(Value *P, unsigned BW) : Provider(P) {
|
|
Provenance.resize(BW);
|
|
}
|
|
|
|
/// The Value that this is a bitreverse/bswap of.
|
|
Value *Provider;
|
|
|
|
/// The "provenance" of each bit. Provenance[A] = B means that bit A
|
|
/// in Provider becomes bit B in the result of this expression.
|
|
SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
|
|
|
|
enum { Unset = -1 };
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Analyze the specified subexpression and see if it is capable of providing
|
|
/// pieces of a bswap or bitreverse. The subexpression provides a potential
|
|
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
|
|
/// the output of the expression came from a corresponding bit in some other
|
|
/// value. This function is recursive, and the end result is a mapping of
|
|
/// bitnumber to bitnumber. It is the caller's responsibility to validate that
|
|
/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
|
|
///
|
|
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
|
|
/// that the expression deposits the low byte of %X into the high byte of the
|
|
/// result and that all other bits are zero. This expression is accepted and a
|
|
/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
|
|
/// [0-7].
|
|
///
|
|
/// To avoid revisiting values, the BitPart results are memoized into the
|
|
/// provided map. To avoid unnecessary copying of BitParts, BitParts are
|
|
/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
|
|
/// store BitParts objects, not pointers. As we need the concept of a nullptr
|
|
/// BitParts (Value has been analyzed and the analysis failed), we an Optional
|
|
/// type instead to provide the same functionality.
|
|
///
|
|
/// Because we pass around references into \c BPS, we must use a container that
|
|
/// does not invalidate internal references (std::map instead of DenseMap).
|
|
static const Optional<BitPart> &
|
|
collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
|
|
std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
|
|
auto I = BPS.find(V);
|
|
if (I != BPS.end())
|
|
return I->second;
|
|
|
|
auto &Result = BPS[V] = None;
|
|
auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
|
|
|
|
// Prevent stack overflow by limiting the recursion depth
|
|
if (Depth == BitPartRecursionMaxDepth) {
|
|
LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
|
|
return Result;
|
|
}
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// If this is an or instruction, it may be an inner node of the bswap.
|
|
if (I->getOpcode() == Instruction::Or) {
|
|
auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
|
|
MatchBitReversals, BPS, Depth + 1);
|
|
auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
|
|
MatchBitReversals, BPS, Depth + 1);
|
|
if (!A || !B)
|
|
return Result;
|
|
|
|
// Try and merge the two together.
|
|
if (!A->Provider || A->Provider != B->Provider)
|
|
return Result;
|
|
|
|
Result = BitPart(A->Provider, BitWidth);
|
|
for (unsigned i = 0; i < A->Provenance.size(); ++i) {
|
|
if (A->Provenance[i] != BitPart::Unset &&
|
|
B->Provenance[i] != BitPart::Unset &&
|
|
A->Provenance[i] != B->Provenance[i])
|
|
return Result = None;
|
|
|
|
if (A->Provenance[i] == BitPart::Unset)
|
|
Result->Provenance[i] = B->Provenance[i];
|
|
else
|
|
Result->Provenance[i] = A->Provenance[i];
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// If this is a logical shift by a constant, recurse then shift the result.
|
|
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
|
|
unsigned BitShift =
|
|
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
|
|
// Ensure the shift amount is defined.
|
|
if (BitShift > BitWidth)
|
|
return Result;
|
|
|
|
auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
|
|
MatchBitReversals, BPS, Depth + 1);
|
|
if (!Res)
|
|
return Result;
|
|
Result = Res;
|
|
|
|
// Perform the "shift" on BitProvenance.
|
|
auto &P = Result->Provenance;
|
|
if (I->getOpcode() == Instruction::Shl) {
|
|
P.erase(std::prev(P.end(), BitShift), P.end());
|
|
P.insert(P.begin(), BitShift, BitPart::Unset);
|
|
} else {
|
|
P.erase(P.begin(), std::next(P.begin(), BitShift));
|
|
P.insert(P.end(), BitShift, BitPart::Unset);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// If this is a logical 'and' with a mask that clears bits, recurse then
|
|
// unset the appropriate bits.
|
|
if (I->getOpcode() == Instruction::And &&
|
|
isa<ConstantInt>(I->getOperand(1))) {
|
|
APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
|
|
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
|
|
|
|
// Check that the mask allows a multiple of 8 bits for a bswap, for an
|
|
// early exit.
|
|
unsigned NumMaskedBits = AndMask.countPopulation();
|
|
if (!MatchBitReversals && NumMaskedBits % 8 != 0)
|
|
return Result;
|
|
|
|
auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
|
|
MatchBitReversals, BPS, Depth + 1);
|
|
if (!Res)
|
|
return Result;
|
|
Result = Res;
|
|
|
|
for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
|
|
// If the AndMask is zero for this bit, clear the bit.
|
|
if ((AndMask & Bit) == 0)
|
|
Result->Provenance[i] = BitPart::Unset;
|
|
return Result;
|
|
}
|
|
|
|
// If this is a zext instruction zero extend the result.
|
|
if (I->getOpcode() == Instruction::ZExt) {
|
|
auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
|
|
MatchBitReversals, BPS, Depth + 1);
|
|
if (!Res)
|
|
return Result;
|
|
|
|
Result = BitPart(Res->Provider, BitWidth);
|
|
auto NarrowBitWidth =
|
|
cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
|
|
for (unsigned i = 0; i < NarrowBitWidth; ++i)
|
|
Result->Provenance[i] = Res->Provenance[i];
|
|
for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
|
|
Result->Provenance[i] = BitPart::Unset;
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
|
|
// the input value to the bswap/bitreverse.
|
|
Result = BitPart(V, BitWidth);
|
|
for (unsigned i = 0; i < BitWidth; ++i)
|
|
Result->Provenance[i] = i;
|
|
return Result;
|
|
}
|
|
|
|
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
|
|
unsigned BitWidth) {
|
|
if (From % 8 != To % 8)
|
|
return false;
|
|
// Convert from bit indices to byte indices and check for a byte reversal.
|
|
From >>= 3;
|
|
To >>= 3;
|
|
BitWidth >>= 3;
|
|
return From == BitWidth - To - 1;
|
|
}
|
|
|
|
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
|
|
unsigned BitWidth) {
|
|
return From == BitWidth - To - 1;
|
|
}
|
|
|
|
bool llvm::recognizeBSwapOrBitReverseIdiom(
|
|
Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
|
|
SmallVectorImpl<Instruction *> &InsertedInsts) {
|
|
if (Operator::getOpcode(I) != Instruction::Or)
|
|
return false;
|
|
if (!MatchBSwaps && !MatchBitReversals)
|
|
return false;
|
|
IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
|
|
if (!ITy || ITy->getBitWidth() > 128)
|
|
return false; // Can't do vectors or integers > 128 bits.
|
|
unsigned BW = ITy->getBitWidth();
|
|
|
|
unsigned DemandedBW = BW;
|
|
IntegerType *DemandedTy = ITy;
|
|
if (I->hasOneUse()) {
|
|
if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
|
|
DemandedTy = cast<IntegerType>(Trunc->getType());
|
|
DemandedBW = DemandedTy->getBitWidth();
|
|
}
|
|
}
|
|
|
|
// Try to find all the pieces corresponding to the bswap.
|
|
std::map<Value *, Optional<BitPart>> BPS;
|
|
auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
|
|
if (!Res)
|
|
return false;
|
|
auto &BitProvenance = Res->Provenance;
|
|
|
|
// Now, is the bit permutation correct for a bswap or a bitreverse? We can
|
|
// only byteswap values with an even number of bytes.
|
|
bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
|
|
for (unsigned i = 0; i < DemandedBW; ++i) {
|
|
OKForBSwap &=
|
|
bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
|
|
OKForBitReverse &=
|
|
bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
|
|
}
|
|
|
|
Intrinsic::ID Intrin;
|
|
if (OKForBSwap && MatchBSwaps)
|
|
Intrin = Intrinsic::bswap;
|
|
else if (OKForBitReverse && MatchBitReversals)
|
|
Intrin = Intrinsic::bitreverse;
|
|
else
|
|
return false;
|
|
|
|
if (ITy != DemandedTy) {
|
|
Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
|
|
Value *Provider = Res->Provider;
|
|
IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
|
|
// We may need to truncate the provider.
|
|
if (DemandedTy != ProviderTy) {
|
|
auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
|
|
"trunc", I);
|
|
InsertedInsts.push_back(Trunc);
|
|
Provider = Trunc;
|
|
}
|
|
auto *CI = CallInst::Create(F, Provider, "rev", I);
|
|
InsertedInsts.push_back(CI);
|
|
auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
|
|
InsertedInsts.push_back(ExtInst);
|
|
return true;
|
|
}
|
|
|
|
Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
|
|
InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
|
|
return true;
|
|
}
|
|
|
|
// CodeGen has special handling for some string functions that may replace
|
|
// them with target-specific intrinsics. Since that'd skip our interceptors
|
|
// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
|
|
// we mark affected calls as NoBuiltin, which will disable optimization
|
|
// in CodeGen.
|
|
void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
|
|
CallInst *CI, const TargetLibraryInfo *TLI) {
|
|
Function *F = CI->getCalledFunction();
|
|
LibFunc Func;
|
|
if (F && !F->hasLocalLinkage() && F->hasName() &&
|
|
TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
|
|
!F->doesNotAccessMemory())
|
|
CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
|
|
}
|
|
|
|
bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
|
|
// We can't have a PHI with a metadata type.
|
|
if (I->getOperand(OpIdx)->getType()->isMetadataTy())
|
|
return false;
|
|
|
|
// Early exit.
|
|
if (!isa<Constant>(I->getOperand(OpIdx)))
|
|
return true;
|
|
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
return true;
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
// Can't handle inline asm. Skip it.
|
|
if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
|
|
return false;
|
|
// Many arithmetic intrinsics have no issue taking a
|
|
// variable, however it's hard to distingish these from
|
|
// specials such as @llvm.frameaddress that require a constant.
|
|
if (isa<IntrinsicInst>(I))
|
|
return false;
|
|
|
|
// Constant bundle operands may need to retain their constant-ness for
|
|
// correctness.
|
|
if (ImmutableCallSite(I).isBundleOperand(OpIdx))
|
|
return false;
|
|
return true;
|
|
case Instruction::ShuffleVector:
|
|
// Shufflevector masks are constant.
|
|
return OpIdx != 2;
|
|
case Instruction::Switch:
|
|
case Instruction::ExtractValue:
|
|
// All operands apart from the first are constant.
|
|
return OpIdx == 0;
|
|
case Instruction::InsertValue:
|
|
// All operands apart from the first and the second are constant.
|
|
return OpIdx < 2;
|
|
case Instruction::Alloca:
|
|
// Static allocas (constant size in the entry block) are handled by
|
|
// prologue/epilogue insertion so they're free anyway. We definitely don't
|
|
// want to make them non-constant.
|
|
return !cast<AllocaInst>(I)->isStaticAlloca();
|
|
case Instruction::GetElementPtr:
|
|
if (OpIdx == 0)
|
|
return true;
|
|
gep_type_iterator It = gep_type_begin(I);
|
|
for (auto E = std::next(It, OpIdx); It != E; ++It)
|
|
if (It.isStruct())
|
|
return false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
|
|
AllocaInst *llvm::findAllocaForValue(Value *V,
|
|
AllocaForValueMapTy &AllocaForValue) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
|
|
return AI;
|
|
// See if we've already calculated (or started to calculate) alloca for a
|
|
// given value.
|
|
AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
|
|
if (I != AllocaForValue.end())
|
|
return I->second;
|
|
// Store 0 while we're calculating alloca for value V to avoid
|
|
// infinite recursion if the value references itself.
|
|
AllocaForValue[V] = nullptr;
|
|
AllocaInst *Res = nullptr;
|
|
if (CastInst *CI = dyn_cast<CastInst>(V))
|
|
Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
|
|
else if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
for (Value *IncValue : PN->incoming_values()) {
|
|
// Allow self-referencing phi-nodes.
|
|
if (IncValue == PN)
|
|
continue;
|
|
AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
|
|
// AI for incoming values should exist and should all be equal.
|
|
if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
|
|
return nullptr;
|
|
Res = IncValueAI;
|
|
}
|
|
} else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
|
|
Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
|
|
<< *V << "\n");
|
|
}
|
|
if (Res)
|
|
AllocaForValue[V] = Res;
|
|
return Res;
|
|
}
|