mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
2914 lines
107 KiB
C++
2914 lines
107 KiB
C++
//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This program is a utility that works like binutils "objdump", that is, it
|
|
// dumps out a plethora of information about an object file depending on the
|
|
// flags.
|
|
//
|
|
// The flags and output of this program should be near identical to those of
|
|
// binutils objdump.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm-objdump.h"
|
|
#include "COFFDump.h"
|
|
#include "ELFDump.h"
|
|
#include "MachODump.h"
|
|
#include "WasmDump.h"
|
|
#include "XCOFFDump.h"
|
|
#include "llvm/ADT/IndexedMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/FaultMaps.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
|
|
#include "llvm/Demangle/Demangle.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCInstrAnalysis.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Object/COFFImportFile.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/MachO.h"
|
|
#include "llvm/Object/MachOUniversal.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Object/Wasm.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/Support/InitLLVM.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/WithColor.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cctype>
|
|
#include <cstring>
|
|
#include <system_error>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::objdump;
|
|
|
|
#define DEBUG_TYPE "objdump"
|
|
|
|
static cl::OptionCategory ObjdumpCat("llvm-objdump Options");
|
|
|
|
static cl::opt<uint64_t> AdjustVMA(
|
|
"adjust-vma",
|
|
cl::desc("Increase the displayed address by the specified offset"),
|
|
cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<bool>
|
|
AllHeaders("all-headers",
|
|
cl::desc("Display all available header information"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(AllHeaders));
|
|
|
|
static cl::opt<std::string>
|
|
ArchName("arch-name",
|
|
cl::desc("Target arch to disassemble for, "
|
|
"see -version for available targets"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
cl::opt<bool>
|
|
objdump::ArchiveHeaders("archive-headers",
|
|
cl::desc("Display archive header information"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias ArchiveHeadersShort("a",
|
|
cl::desc("Alias for --archive-headers"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(ArchiveHeaders));
|
|
|
|
cl::opt<bool> objdump::Demangle("demangle", cl::desc("Demangle symbols names"),
|
|
cl::init(false), cl::cat(ObjdumpCat));
|
|
static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(Demangle));
|
|
|
|
cl::opt<bool> objdump::Disassemble(
|
|
"disassemble",
|
|
cl::desc("Display assembler mnemonics for the machine instructions"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(Disassemble));
|
|
|
|
cl::opt<bool> objdump::DisassembleAll(
|
|
"disassemble-all",
|
|
cl::desc("Display assembler mnemonics for the machine instructions"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias DisassembleAllShort("D",
|
|
cl::desc("Alias for --disassemble-all"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(DisassembleAll));
|
|
|
|
cl::opt<bool> objdump::SymbolDescription(
|
|
"symbol-description",
|
|
cl::desc("Add symbol description for disassembly. This "
|
|
"option is for XCOFF files only"),
|
|
cl::init(false), cl::cat(ObjdumpCat));
|
|
|
|
static cl::list<std::string>
|
|
DisassembleSymbols("disassemble-symbols", cl::CommaSeparated,
|
|
cl::desc("List of symbols to disassemble. "
|
|
"Accept demangled names when --demangle is "
|
|
"specified, otherwise accept mangled names"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<bool> DisassembleZeroes(
|
|
"disassemble-zeroes",
|
|
cl::desc("Do not skip blocks of zeroes when disassembling"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias
|
|
DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(DisassembleZeroes));
|
|
|
|
static cl::list<std::string>
|
|
DisassemblerOptions("disassembler-options",
|
|
cl::desc("Pass target specific disassembler options"),
|
|
cl::value_desc("options"), cl::CommaSeparated,
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias
|
|
DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
|
|
cl::NotHidden, cl::Grouping, cl::Prefix,
|
|
cl::CommaSeparated,
|
|
cl::aliasopt(DisassemblerOptions));
|
|
|
|
cl::opt<DIDumpType> objdump::DwarfDumpType(
|
|
"dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
|
|
cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<bool> DynamicRelocations(
|
|
"dynamic-reloc",
|
|
cl::desc("Display the dynamic relocation entries in the file"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias DynamicRelocationShort("R",
|
|
cl::desc("Alias for --dynamic-reloc"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(DynamicRelocations));
|
|
|
|
static cl::opt<bool>
|
|
FaultMapSection("fault-map-section",
|
|
cl::desc("Display contents of faultmap section"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<bool>
|
|
FileHeaders("file-headers",
|
|
cl::desc("Display the contents of the overall file header"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(FileHeaders));
|
|
|
|
cl::opt<bool>
|
|
objdump::SectionContents("full-contents",
|
|
cl::desc("Display the content of each section"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias SectionContentsShort("s",
|
|
cl::desc("Alias for --full-contents"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(SectionContents));
|
|
|
|
static cl::list<std::string> InputFilenames(cl::Positional,
|
|
cl::desc("<input object files>"),
|
|
cl::ZeroOrMore,
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<bool>
|
|
PrintLines("line-numbers",
|
|
cl::desc("Display source line numbers with "
|
|
"disassembly. Implies disassemble object"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(PrintLines));
|
|
|
|
static cl::opt<bool> MachOOpt("macho",
|
|
cl::desc("Use MachO specific object file parser"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
|
|
cl::Grouping, cl::aliasopt(MachOOpt));
|
|
|
|
cl::opt<std::string> objdump::MCPU(
|
|
"mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"),
|
|
cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
|
|
|
|
cl::list<std::string> objdump::MAttrs("mattr", cl::CommaSeparated,
|
|
cl::desc("Target specific attributes"),
|
|
cl::value_desc("a1,+a2,-a3,..."),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
cl::opt<bool> objdump::NoShowRawInsn(
|
|
"no-show-raw-insn",
|
|
cl::desc(
|
|
"When disassembling instructions, do not print the instruction bytes."),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
cl::opt<bool> objdump::NoLeadingAddr("no-leading-addr",
|
|
cl::desc("Print no leading address"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<bool> RawClangAST(
|
|
"raw-clang-ast",
|
|
cl::desc("Dump the raw binary contents of the clang AST section"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
cl::opt<bool>
|
|
objdump::Relocations("reloc",
|
|
cl::desc("Display the relocation entries in the file"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(Relocations));
|
|
|
|
cl::opt<bool>
|
|
objdump::PrintImmHex("print-imm-hex",
|
|
cl::desc("Use hex format for immediate values"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
cl::opt<bool>
|
|
objdump::PrivateHeaders("private-headers",
|
|
cl::desc("Display format specific file headers"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias PrivateHeadersShort("p",
|
|
cl::desc("Alias for --private-headers"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(PrivateHeaders));
|
|
|
|
cl::list<std::string>
|
|
objdump::FilterSections("section",
|
|
cl::desc("Operate on the specified sections only. "
|
|
"With -macho dump segment,section"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
|
|
cl::NotHidden, cl::Grouping, cl::Prefix,
|
|
cl::aliasopt(FilterSections));
|
|
|
|
cl::opt<bool> objdump::SectionHeaders(
|
|
"section-headers",
|
|
cl::desc("Display summaries of the headers for each section."),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias SectionHeadersShort("headers",
|
|
cl::desc("Alias for --section-headers"),
|
|
cl::NotHidden,
|
|
cl::aliasopt(SectionHeaders));
|
|
static cl::alias SectionHeadersShorter("h",
|
|
cl::desc("Alias for --section-headers"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(SectionHeaders));
|
|
|
|
static cl::opt<bool>
|
|
ShowLMA("show-lma",
|
|
cl::desc("Display LMA column when dumping ELF section headers"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<bool> PrintSource(
|
|
"source",
|
|
cl::desc(
|
|
"Display source inlined with disassembly. Implies disassemble object"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(PrintSource));
|
|
|
|
static cl::opt<uint64_t>
|
|
StartAddress("start-address", cl::desc("Disassemble beginning at address"),
|
|
cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
|
|
static cl::opt<uint64_t> StopAddress("stop-address",
|
|
cl::desc("Stop disassembly at address"),
|
|
cl::value_desc("address"),
|
|
cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
|
|
|
|
cl::opt<bool> objdump::SymbolTable("syms", cl::desc("Display the symbol table"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(SymbolTable));
|
|
|
|
static cl::opt<bool> DynamicSymbolTable(
|
|
"dynamic-syms",
|
|
cl::desc("Display the contents of the dynamic symbol table"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias DynamicSymbolTableShort("T",
|
|
cl::desc("Alias for --dynamic-syms"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(DynamicSymbolTable));
|
|
|
|
cl::opt<std::string> objdump::TripleName(
|
|
"triple",
|
|
cl::desc(
|
|
"Target triple to disassemble for, see -version for available targets"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
cl::opt<bool> objdump::UnwindInfo("unwind-info",
|
|
cl::desc("Display unwind information"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
|
|
cl::NotHidden, cl::Grouping,
|
|
cl::aliasopt(UnwindInfo));
|
|
|
|
static cl::opt<bool>
|
|
Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
|
|
cl::cat(ObjdumpCat));
|
|
static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
|
|
|
|
enum DebugVarsFormat {
|
|
DVDisabled,
|
|
DVUnicode,
|
|
DVASCII,
|
|
};
|
|
|
|
static cl::opt<DebugVarsFormat> DbgVariables(
|
|
"debug-vars", cl::init(DVDisabled),
|
|
cl::desc("Print the locations (in registers or memory) of "
|
|
"source-level variables alongside disassembly"),
|
|
cl::ValueOptional,
|
|
cl::values(clEnumValN(DVUnicode, "", "unicode"),
|
|
clEnumValN(DVUnicode, "unicode", "unicode"),
|
|
clEnumValN(DVASCII, "ascii", "unicode")),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::opt<int>
|
|
DbgIndent("debug-vars-indent", cl::init(40),
|
|
cl::desc("Distance to indent the source-level variable display, "
|
|
"relative to the start of the disassembly"),
|
|
cl::cat(ObjdumpCat));
|
|
|
|
static cl::extrahelp
|
|
HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
|
|
|
|
static StringSet<> DisasmSymbolSet;
|
|
StringSet<> objdump::FoundSectionSet;
|
|
static StringRef ToolName;
|
|
|
|
namespace {
|
|
struct FilterResult {
|
|
// True if the section should not be skipped.
|
|
bool Keep;
|
|
|
|
// True if the index counter should be incremented, even if the section should
|
|
// be skipped. For example, sections may be skipped if they are not included
|
|
// in the --section flag, but we still want those to count toward the section
|
|
// count.
|
|
bool IncrementIndex;
|
|
};
|
|
} // namespace
|
|
|
|
static FilterResult checkSectionFilter(object::SectionRef S) {
|
|
if (FilterSections.empty())
|
|
return {/*Keep=*/true, /*IncrementIndex=*/true};
|
|
|
|
Expected<StringRef> SecNameOrErr = S.getName();
|
|
if (!SecNameOrErr) {
|
|
consumeError(SecNameOrErr.takeError());
|
|
return {/*Keep=*/false, /*IncrementIndex=*/false};
|
|
}
|
|
StringRef SecName = *SecNameOrErr;
|
|
|
|
// StringSet does not allow empty key so avoid adding sections with
|
|
// no name (such as the section with index 0) here.
|
|
if (!SecName.empty())
|
|
FoundSectionSet.insert(SecName);
|
|
|
|
// Only show the section if it's in the FilterSections list, but always
|
|
// increment so the indexing is stable.
|
|
return {/*Keep=*/is_contained(FilterSections, SecName),
|
|
/*IncrementIndex=*/true};
|
|
}
|
|
|
|
SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
|
|
uint64_t *Idx) {
|
|
// Start at UINT64_MAX so that the first index returned after an increment is
|
|
// zero (after the unsigned wrap).
|
|
if (Idx)
|
|
*Idx = UINT64_MAX;
|
|
return SectionFilter(
|
|
[Idx](object::SectionRef S) {
|
|
FilterResult Result = checkSectionFilter(S);
|
|
if (Idx != nullptr && Result.IncrementIndex)
|
|
*Idx += 1;
|
|
return Result.Keep;
|
|
},
|
|
O);
|
|
}
|
|
|
|
std::string objdump::getFileNameForError(const object::Archive::Child &C,
|
|
unsigned Index) {
|
|
Expected<StringRef> NameOrErr = C.getName();
|
|
if (NameOrErr)
|
|
return std::string(NameOrErr.get());
|
|
// If we have an error getting the name then we print the index of the archive
|
|
// member. Since we are already in an error state, we just ignore this error.
|
|
consumeError(NameOrErr.takeError());
|
|
return "<file index: " + std::to_string(Index) + ">";
|
|
}
|
|
|
|
void objdump::reportWarning(Twine Message, StringRef File) {
|
|
// Output order between errs() and outs() matters especially for archive
|
|
// files where the output is per member object.
|
|
outs().flush();
|
|
WithColor::warning(errs(), ToolName)
|
|
<< "'" << File << "': " << Message << "\n";
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
|
|
Twine Message) {
|
|
outs().flush();
|
|
WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
|
|
exit(1);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
|
|
StringRef ArchiveName,
|
|
StringRef ArchitectureName) {
|
|
assert(E);
|
|
outs().flush();
|
|
WithColor::error(errs(), ToolName);
|
|
if (ArchiveName != "")
|
|
errs() << ArchiveName << "(" << FileName << ")";
|
|
else
|
|
errs() << "'" << FileName << "'";
|
|
if (!ArchitectureName.empty())
|
|
errs() << " (for architecture " << ArchitectureName << ")";
|
|
errs() << ": ";
|
|
logAllUnhandledErrors(std::move(E), errs());
|
|
exit(1);
|
|
}
|
|
|
|
static void reportCmdLineWarning(Twine Message) {
|
|
WithColor::warning(errs(), ToolName) << Message << "\n";
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
|
|
WithColor::error(errs(), ToolName) << Message << "\n";
|
|
exit(1);
|
|
}
|
|
|
|
static void warnOnNoMatchForSections() {
|
|
SetVector<StringRef> MissingSections;
|
|
for (StringRef S : FilterSections) {
|
|
if (FoundSectionSet.count(S))
|
|
return;
|
|
// User may specify a unnamed section. Don't warn for it.
|
|
if (!S.empty())
|
|
MissingSections.insert(S);
|
|
}
|
|
|
|
// Warn only if no section in FilterSections is matched.
|
|
for (StringRef S : MissingSections)
|
|
reportCmdLineWarning("section '" + S +
|
|
"' mentioned in a -j/--section option, but not "
|
|
"found in any input file");
|
|
}
|
|
|
|
static const Target *getTarget(const ObjectFile *Obj) {
|
|
// Figure out the target triple.
|
|
Triple TheTriple("unknown-unknown-unknown");
|
|
if (TripleName.empty()) {
|
|
TheTriple = Obj->makeTriple();
|
|
} else {
|
|
TheTriple.setTriple(Triple::normalize(TripleName));
|
|
auto Arch = Obj->getArch();
|
|
if (Arch == Triple::arm || Arch == Triple::armeb)
|
|
Obj->setARMSubArch(TheTriple);
|
|
}
|
|
|
|
// Get the target specific parser.
|
|
std::string Error;
|
|
const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
|
|
Error);
|
|
if (!TheTarget)
|
|
reportError(Obj->getFileName(), "can't find target: " + Error);
|
|
|
|
// Update the triple name and return the found target.
|
|
TripleName = TheTriple.getTriple();
|
|
return TheTarget;
|
|
}
|
|
|
|
bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
|
|
return A.getOffset() < B.getOffset();
|
|
}
|
|
|
|
static Error getRelocationValueString(const RelocationRef &Rel,
|
|
SmallVectorImpl<char> &Result) {
|
|
const ObjectFile *Obj = Rel.getObject();
|
|
if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
|
|
return getELFRelocationValueString(ELF, Rel, Result);
|
|
if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
|
|
return getCOFFRelocationValueString(COFF, Rel, Result);
|
|
if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
|
|
return getWasmRelocationValueString(Wasm, Rel, Result);
|
|
if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
|
|
return getMachORelocationValueString(MachO, Rel, Result);
|
|
if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
|
|
return getXCOFFRelocationValueString(XCOFF, Rel, Result);
|
|
llvm_unreachable("unknown object file format");
|
|
}
|
|
|
|
/// Indicates whether this relocation should hidden when listing
|
|
/// relocations, usually because it is the trailing part of a multipart
|
|
/// relocation that will be printed as part of the leading relocation.
|
|
static bool getHidden(RelocationRef RelRef) {
|
|
auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
|
|
if (!MachO)
|
|
return false;
|
|
|
|
unsigned Arch = MachO->getArch();
|
|
DataRefImpl Rel = RelRef.getRawDataRefImpl();
|
|
uint64_t Type = MachO->getRelocationType(Rel);
|
|
|
|
// On arches that use the generic relocations, GENERIC_RELOC_PAIR
|
|
// is always hidden.
|
|
if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
|
|
return Type == MachO::GENERIC_RELOC_PAIR;
|
|
|
|
if (Arch == Triple::x86_64) {
|
|
// On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
|
|
// an X86_64_RELOC_SUBTRACTOR.
|
|
if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
|
|
DataRefImpl RelPrev = Rel;
|
|
RelPrev.d.a--;
|
|
uint64_t PrevType = MachO->getRelocationType(RelPrev);
|
|
if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Get the column at which we want to start printing the instruction
|
|
/// disassembly, taking into account anything which appears to the left of it.
|
|
unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
|
|
return NoShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
|
|
}
|
|
|
|
/// Stores a single expression representing the location of a source-level
|
|
/// variable, along with the PC range for which that expression is valid.
|
|
struct LiveVariable {
|
|
DWARFLocationExpression LocExpr;
|
|
const char *VarName;
|
|
DWARFUnit *Unit;
|
|
const DWARFDie FuncDie;
|
|
|
|
LiveVariable(const DWARFLocationExpression &LocExpr, const char *VarName,
|
|
DWARFUnit *Unit, const DWARFDie FuncDie)
|
|
: LocExpr(LocExpr), VarName(VarName), Unit(Unit), FuncDie(FuncDie) {}
|
|
|
|
bool liveAtAddress(object::SectionedAddress Addr) {
|
|
if (LocExpr.Range == None)
|
|
return false;
|
|
return LocExpr.Range->SectionIndex == Addr.SectionIndex &&
|
|
LocExpr.Range->LowPC <= Addr.Address &&
|
|
LocExpr.Range->HighPC > Addr.Address;
|
|
}
|
|
|
|
void print(raw_ostream &OS, const MCRegisterInfo &MRI) const {
|
|
DataExtractor Data({LocExpr.Expr.data(), LocExpr.Expr.size()},
|
|
Unit->getContext().isLittleEndian(), 0);
|
|
DWARFExpression Expression(Data, Unit->getAddressByteSize());
|
|
Expression.printCompact(OS, MRI);
|
|
}
|
|
};
|
|
|
|
/// Helper class for printing source variable locations alongside disassembly.
|
|
class LiveVariablePrinter {
|
|
// Information we want to track about one column in which we are printing a
|
|
// variable live range.
|
|
struct Column {
|
|
unsigned VarIdx = NullVarIdx;
|
|
bool LiveIn = false;
|
|
bool LiveOut = false;
|
|
bool MustDrawLabel = false;
|
|
|
|
bool isActive() const { return VarIdx != NullVarIdx; }
|
|
|
|
static constexpr unsigned NullVarIdx = std::numeric_limits<unsigned>::max();
|
|
};
|
|
|
|
// All live variables we know about in the object/image file.
|
|
std::vector<LiveVariable> LiveVariables;
|
|
|
|
// The columns we are currently drawing.
|
|
IndexedMap<Column> ActiveCols;
|
|
|
|
const MCRegisterInfo &MRI;
|
|
const MCSubtargetInfo &STI;
|
|
|
|
void addVariable(DWARFDie FuncDie, DWARFDie VarDie) {
|
|
uint64_t FuncLowPC, FuncHighPC, SectionIndex;
|
|
FuncDie.getLowAndHighPC(FuncLowPC, FuncHighPC, SectionIndex);
|
|
const char *VarName = VarDie.getName(DINameKind::ShortName);
|
|
DWARFUnit *U = VarDie.getDwarfUnit();
|
|
|
|
Expected<DWARFLocationExpressionsVector> Locs =
|
|
VarDie.getLocations(dwarf::DW_AT_location);
|
|
if (!Locs) {
|
|
// If the variable doesn't have any locations, just ignore it. We don't
|
|
// report an error or warning here as that could be noisy on optimised
|
|
// code.
|
|
consumeError(Locs.takeError());
|
|
return;
|
|
}
|
|
|
|
for (const DWARFLocationExpression &LocExpr : *Locs) {
|
|
if (LocExpr.Range) {
|
|
LiveVariables.emplace_back(LocExpr, VarName, U, FuncDie);
|
|
} else {
|
|
// If the LocExpr does not have an associated range, it is valid for
|
|
// the whole of the function.
|
|
// TODO: technically it is not valid for any range covered by another
|
|
// LocExpr, does that happen in reality?
|
|
DWARFLocationExpression WholeFuncExpr{
|
|
DWARFAddressRange(FuncLowPC, FuncHighPC, SectionIndex),
|
|
LocExpr.Expr};
|
|
LiveVariables.emplace_back(WholeFuncExpr, VarName, U, FuncDie);
|
|
}
|
|
}
|
|
}
|
|
|
|
void addFunction(DWARFDie D) {
|
|
for (const DWARFDie &Child : D.children()) {
|
|
if (Child.getTag() == dwarf::DW_TAG_variable ||
|
|
Child.getTag() == dwarf::DW_TAG_formal_parameter)
|
|
addVariable(D, Child);
|
|
else
|
|
addFunction(Child);
|
|
}
|
|
}
|
|
|
|
// Get the column number (in characters) at which the first live variable
|
|
// line should be printed.
|
|
unsigned getIndentLevel() const {
|
|
return DbgIndent + getInstStartColumn(STI);
|
|
}
|
|
|
|
// Indent to the first live-range column to the right of the currently
|
|
// printed line, and return the index of that column.
|
|
// TODO: formatted_raw_ostream uses "column" to mean a number of characters
|
|
// since the last \n, and we use it to mean the number of slots in which we
|
|
// put live variable lines. Pick a less overloaded word.
|
|
unsigned moveToFirstVarColumn(formatted_raw_ostream &OS) {
|
|
// Logical column number: column zero is the first column we print in, each
|
|
// logical column is 2 physical columns wide.
|
|
unsigned FirstUnprintedLogicalColumn =
|
|
std::max((int)(OS.getColumn() - getIndentLevel() + 1) / 2, 0);
|
|
// Physical column number: the actual column number in characters, with
|
|
// zero being the left-most side of the screen.
|
|
unsigned FirstUnprintedPhysicalColumn =
|
|
getIndentLevel() + FirstUnprintedLogicalColumn * 2;
|
|
|
|
if (FirstUnprintedPhysicalColumn > OS.getColumn())
|
|
OS.PadToColumn(FirstUnprintedPhysicalColumn);
|
|
|
|
return FirstUnprintedLogicalColumn;
|
|
}
|
|
|
|
unsigned findFreeColumn() {
|
|
for (unsigned ColIdx = 0; ColIdx < ActiveCols.size(); ++ColIdx)
|
|
if (!ActiveCols[ColIdx].isActive())
|
|
return ColIdx;
|
|
|
|
size_t OldSize = ActiveCols.size();
|
|
ActiveCols.grow(std::max<size_t>(OldSize * 2, 1));
|
|
return OldSize;
|
|
}
|
|
|
|
public:
|
|
LiveVariablePrinter(const MCRegisterInfo &MRI, const MCSubtargetInfo &STI)
|
|
: LiveVariables(), ActiveCols(Column()), MRI(MRI), STI(STI) {}
|
|
|
|
void dump() const {
|
|
for (const LiveVariable &LV : LiveVariables) {
|
|
dbgs() << LV.VarName << " @ " << LV.LocExpr.Range << ": ";
|
|
LV.print(dbgs(), MRI);
|
|
dbgs() << "\n";
|
|
}
|
|
}
|
|
|
|
void addCompileUnit(DWARFDie D) {
|
|
if (D.getTag() == dwarf::DW_TAG_subprogram)
|
|
addFunction(D);
|
|
else
|
|
for (const DWARFDie &Child : D.children())
|
|
addFunction(Child);
|
|
}
|
|
|
|
/// Update to match the state of the instruction between ThisAddr and
|
|
/// NextAddr. In the common case, any live range active at ThisAddr is
|
|
/// live-in to the instruction, and any live range active at NextAddr is
|
|
/// live-out of the instruction. If IncludeDefinedVars is false, then live
|
|
/// ranges starting at NextAddr will be ignored.
|
|
void update(object::SectionedAddress ThisAddr,
|
|
object::SectionedAddress NextAddr, bool IncludeDefinedVars) {
|
|
// First, check variables which have already been assigned a column, so
|
|
// that we don't change their order.
|
|
SmallSet<unsigned, 8> CheckedVarIdxs;
|
|
for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
|
|
if (!ActiveCols[ColIdx].isActive())
|
|
continue;
|
|
CheckedVarIdxs.insert(ActiveCols[ColIdx].VarIdx);
|
|
LiveVariable &LV = LiveVariables[ActiveCols[ColIdx].VarIdx];
|
|
ActiveCols[ColIdx].LiveIn = LV.liveAtAddress(ThisAddr);
|
|
ActiveCols[ColIdx].LiveOut = LV.liveAtAddress(NextAddr);
|
|
LLVM_DEBUG(dbgs() << "pass 1, " << ThisAddr.Address << "-"
|
|
<< NextAddr.Address << ", " << LV.VarName << ", Col "
|
|
<< ColIdx << ": LiveIn=" << ActiveCols[ColIdx].LiveIn
|
|
<< ", LiveOut=" << ActiveCols[ColIdx].LiveOut << "\n");
|
|
|
|
if (!ActiveCols[ColIdx].LiveIn && !ActiveCols[ColIdx].LiveOut)
|
|
ActiveCols[ColIdx].VarIdx = Column::NullVarIdx;
|
|
}
|
|
|
|
// Next, look for variables which don't already have a column, but which
|
|
// are now live.
|
|
if (IncludeDefinedVars) {
|
|
for (unsigned VarIdx = 0, End = LiveVariables.size(); VarIdx < End;
|
|
++VarIdx) {
|
|
if (CheckedVarIdxs.count(VarIdx))
|
|
continue;
|
|
LiveVariable &LV = LiveVariables[VarIdx];
|
|
bool LiveIn = LV.liveAtAddress(ThisAddr);
|
|
bool LiveOut = LV.liveAtAddress(NextAddr);
|
|
if (!LiveIn && !LiveOut)
|
|
continue;
|
|
|
|
unsigned ColIdx = findFreeColumn();
|
|
LLVM_DEBUG(dbgs() << "pass 2, " << ThisAddr.Address << "-"
|
|
<< NextAddr.Address << ", " << LV.VarName << ", Col "
|
|
<< ColIdx << ": LiveIn=" << LiveIn
|
|
<< ", LiveOut=" << LiveOut << "\n");
|
|
ActiveCols[ColIdx].VarIdx = VarIdx;
|
|
ActiveCols[ColIdx].LiveIn = LiveIn;
|
|
ActiveCols[ColIdx].LiveOut = LiveOut;
|
|
ActiveCols[ColIdx].MustDrawLabel = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
enum class LineChar {
|
|
RangeStart,
|
|
RangeMid,
|
|
RangeEnd,
|
|
LabelVert,
|
|
LabelCornerNew,
|
|
LabelCornerActive,
|
|
LabelHoriz,
|
|
};
|
|
const char *getLineChar(LineChar C) const {
|
|
bool IsASCII = DbgVariables == DVASCII;
|
|
switch (C) {
|
|
case LineChar::RangeStart:
|
|
return IsASCII ? "^" : u8"\u2548";
|
|
case LineChar::RangeMid:
|
|
return IsASCII ? "|" : u8"\u2503";
|
|
case LineChar::RangeEnd:
|
|
return IsASCII ? "v" : u8"\u253b";
|
|
case LineChar::LabelVert:
|
|
return IsASCII ? "|" : u8"\u2502";
|
|
case LineChar::LabelCornerNew:
|
|
return IsASCII ? "/" : u8"\u250c";
|
|
case LineChar::LabelCornerActive:
|
|
return IsASCII ? "|" : u8"\u2520";
|
|
case LineChar::LabelHoriz:
|
|
return IsASCII ? "-" : u8"\u2500";
|
|
}
|
|
llvm_unreachable("Unhandled LineChar enum");
|
|
}
|
|
|
|
/// Print live ranges to the right of an existing line. This assumes the
|
|
/// line is not an instruction, so doesn't start or end any live ranges, so
|
|
/// we only need to print active ranges or empty columns. If AfterInst is
|
|
/// true, this is being printed after the last instruction fed to update(),
|
|
/// otherwise this is being printed before it.
|
|
void printAfterOtherLine(formatted_raw_ostream &OS, bool AfterInst) {
|
|
if (ActiveCols.size()) {
|
|
unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
|
|
for (size_t ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
|
|
ColIdx < End; ++ColIdx) {
|
|
if (ActiveCols[ColIdx].isActive()) {
|
|
if ((AfterInst && ActiveCols[ColIdx].LiveOut) ||
|
|
(!AfterInst && ActiveCols[ColIdx].LiveIn))
|
|
OS << getLineChar(LineChar::RangeMid);
|
|
else if (!AfterInst && ActiveCols[ColIdx].LiveOut)
|
|
OS << getLineChar(LineChar::LabelVert);
|
|
else
|
|
OS << " ";
|
|
}
|
|
OS << " ";
|
|
}
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
/// Print any live variable range info needed to the right of a
|
|
/// non-instruction line of disassembly. This is where we print the variable
|
|
/// names and expressions, with thin line-drawing characters connecting them
|
|
/// to the live range which starts at the next instruction. If MustPrint is
|
|
/// true, we have to print at least one line (with the continuation of any
|
|
/// already-active live ranges) because something has already been printed
|
|
/// earlier on this line.
|
|
void printBetweenInsts(formatted_raw_ostream &OS, bool MustPrint) {
|
|
bool PrintedSomething = false;
|
|
for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
|
|
if (ActiveCols[ColIdx].isActive() && ActiveCols[ColIdx].MustDrawLabel) {
|
|
// First we need to print the live range markers for any active
|
|
// columns to the left of this one.
|
|
OS.PadToColumn(getIndentLevel());
|
|
for (unsigned ColIdx2 = 0; ColIdx2 < ColIdx; ++ColIdx2) {
|
|
if (ActiveCols[ColIdx2].isActive()) {
|
|
if (ActiveCols[ColIdx2].MustDrawLabel &&
|
|
!ActiveCols[ColIdx2].LiveIn)
|
|
OS << getLineChar(LineChar::LabelVert) << " ";
|
|
else
|
|
OS << getLineChar(LineChar::RangeMid) << " ";
|
|
} else
|
|
OS << " ";
|
|
}
|
|
|
|
// Then print the variable name and location of the new live range,
|
|
// with box drawing characters joining it to the live range line.
|
|
OS << getLineChar(ActiveCols[ColIdx].LiveIn
|
|
? LineChar::LabelCornerActive
|
|
: LineChar::LabelCornerNew)
|
|
<< getLineChar(LineChar::LabelHoriz) << " ";
|
|
WithColor(OS, raw_ostream::GREEN)
|
|
<< LiveVariables[ActiveCols[ColIdx].VarIdx].VarName;
|
|
OS << " = ";
|
|
{
|
|
WithColor ExprColor(OS, raw_ostream::CYAN);
|
|
LiveVariables[ActiveCols[ColIdx].VarIdx].print(OS, MRI);
|
|
}
|
|
|
|
// If there are any columns to the right of the expression we just
|
|
// printed, then continue their live range lines.
|
|
unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
|
|
for (unsigned ColIdx2 = FirstUnprintedColumn, End = ActiveCols.size();
|
|
ColIdx2 < End; ++ColIdx2) {
|
|
if (ActiveCols[ColIdx2].isActive() && ActiveCols[ColIdx2].LiveIn)
|
|
OS << getLineChar(LineChar::RangeMid) << " ";
|
|
else
|
|
OS << " ";
|
|
}
|
|
|
|
OS << "\n";
|
|
PrintedSomething = true;
|
|
}
|
|
}
|
|
|
|
for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx)
|
|
if (ActiveCols[ColIdx].isActive())
|
|
ActiveCols[ColIdx].MustDrawLabel = false;
|
|
|
|
// If we must print something (because we printed a line/column number),
|
|
// but don't have any new variables to print, then print a line which
|
|
// just continues any existing live ranges.
|
|
if (MustPrint && !PrintedSomething)
|
|
printAfterOtherLine(OS, false);
|
|
}
|
|
|
|
/// Print the live variable ranges to the right of a disassembled instruction.
|
|
void printAfterInst(formatted_raw_ostream &OS) {
|
|
if (!ActiveCols.size())
|
|
return;
|
|
unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
|
|
for (unsigned ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
|
|
ColIdx < End; ++ColIdx) {
|
|
if (!ActiveCols[ColIdx].isActive())
|
|
OS << " ";
|
|
else if (ActiveCols[ColIdx].LiveIn && ActiveCols[ColIdx].LiveOut)
|
|
OS << getLineChar(LineChar::RangeMid) << " ";
|
|
else if (ActiveCols[ColIdx].LiveOut)
|
|
OS << getLineChar(LineChar::RangeStart) << " ";
|
|
else if (ActiveCols[ColIdx].LiveIn)
|
|
OS << getLineChar(LineChar::RangeEnd) << " ";
|
|
else
|
|
llvm_unreachable("var must be live in or out!");
|
|
}
|
|
}
|
|
};
|
|
|
|
class SourcePrinter {
|
|
protected:
|
|
DILineInfo OldLineInfo;
|
|
const ObjectFile *Obj = nullptr;
|
|
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
|
|
// File name to file contents of source.
|
|
std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
|
|
// Mark the line endings of the cached source.
|
|
std::unordered_map<std::string, std::vector<StringRef>> LineCache;
|
|
// Keep track of missing sources.
|
|
StringSet<> MissingSources;
|
|
// Only emit 'no debug info' warning once.
|
|
bool WarnedNoDebugInfo;
|
|
|
|
private:
|
|
bool cacheSource(const DILineInfo& LineInfoFile);
|
|
|
|
void printLines(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
|
|
StringRef Delimiter, LiveVariablePrinter &LVP);
|
|
|
|
void printSources(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
|
|
StringRef ObjectFilename, StringRef Delimiter,
|
|
LiveVariablePrinter &LVP);
|
|
|
|
public:
|
|
SourcePrinter() = default;
|
|
SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
|
|
: Obj(Obj), WarnedNoDebugInfo(false) {
|
|
symbolize::LLVMSymbolizer::Options SymbolizerOpts;
|
|
SymbolizerOpts.PrintFunctions =
|
|
DILineInfoSpecifier::FunctionNameKind::LinkageName;
|
|
SymbolizerOpts.Demangle = Demangle;
|
|
SymbolizerOpts.DefaultArch = std::string(DefaultArch);
|
|
Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
|
|
}
|
|
virtual ~SourcePrinter() = default;
|
|
virtual void printSourceLine(formatted_raw_ostream &OS,
|
|
object::SectionedAddress Address,
|
|
StringRef ObjectFilename,
|
|
LiveVariablePrinter &LVP,
|
|
StringRef Delimiter = "; ");
|
|
};
|
|
|
|
bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
|
|
std::unique_ptr<MemoryBuffer> Buffer;
|
|
if (LineInfo.Source) {
|
|
Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
|
|
} else {
|
|
auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
|
|
if (!BufferOrError) {
|
|
if (MissingSources.insert(LineInfo.FileName).second)
|
|
reportWarning("failed to find source " + LineInfo.FileName,
|
|
Obj->getFileName());
|
|
return false;
|
|
}
|
|
Buffer = std::move(*BufferOrError);
|
|
}
|
|
// Chomp the file to get lines
|
|
const char *BufferStart = Buffer->getBufferStart(),
|
|
*BufferEnd = Buffer->getBufferEnd();
|
|
std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
|
|
const char *Start = BufferStart;
|
|
for (const char *I = BufferStart; I != BufferEnd; ++I)
|
|
if (*I == '\n') {
|
|
Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
|
|
Start = I + 1;
|
|
}
|
|
if (Start < BufferEnd)
|
|
Lines.emplace_back(Start, BufferEnd - Start);
|
|
SourceCache[LineInfo.FileName] = std::move(Buffer);
|
|
return true;
|
|
}
|
|
|
|
void SourcePrinter::printSourceLine(formatted_raw_ostream &OS,
|
|
object::SectionedAddress Address,
|
|
StringRef ObjectFilename,
|
|
LiveVariablePrinter &LVP,
|
|
StringRef Delimiter) {
|
|
if (!Symbolizer)
|
|
return;
|
|
|
|
DILineInfo LineInfo = DILineInfo();
|
|
auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
|
|
std::string ErrorMessage;
|
|
if (!ExpectedLineInfo)
|
|
ErrorMessage = toString(ExpectedLineInfo.takeError());
|
|
else
|
|
LineInfo = *ExpectedLineInfo;
|
|
|
|
if (LineInfo.FileName == DILineInfo::BadString) {
|
|
if (!WarnedNoDebugInfo) {
|
|
std::string Warning =
|
|
"failed to parse debug information for " + ObjectFilename.str();
|
|
if (!ErrorMessage.empty())
|
|
Warning += ": " + ErrorMessage;
|
|
reportWarning(Warning, ObjectFilename);
|
|
WarnedNoDebugInfo = true;
|
|
}
|
|
}
|
|
|
|
if (PrintLines)
|
|
printLines(OS, LineInfo, Delimiter, LVP);
|
|
if (PrintSource)
|
|
printSources(OS, LineInfo, ObjectFilename, Delimiter, LVP);
|
|
OldLineInfo = LineInfo;
|
|
}
|
|
|
|
void SourcePrinter::printLines(formatted_raw_ostream &OS,
|
|
const DILineInfo &LineInfo, StringRef Delimiter,
|
|
LiveVariablePrinter &LVP) {
|
|
bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
|
|
LineInfo.FunctionName != OldLineInfo.FunctionName;
|
|
if (PrintFunctionName) {
|
|
OS << Delimiter << LineInfo.FunctionName;
|
|
// If demangling is successful, FunctionName will end with "()". Print it
|
|
// only if demangling did not run or was unsuccessful.
|
|
if (!StringRef(LineInfo.FunctionName).endswith("()"))
|
|
OS << "()";
|
|
OS << ":\n";
|
|
}
|
|
if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
|
|
(OldLineInfo.Line != LineInfo.Line ||
|
|
OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName)) {
|
|
OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line;
|
|
LVP.printBetweenInsts(OS, true);
|
|
}
|
|
}
|
|
|
|
void SourcePrinter::printSources(formatted_raw_ostream &OS,
|
|
const DILineInfo &LineInfo,
|
|
StringRef ObjectFilename, StringRef Delimiter,
|
|
LiveVariablePrinter &LVP) {
|
|
if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
|
|
(OldLineInfo.Line == LineInfo.Line &&
|
|
OldLineInfo.FileName == LineInfo.FileName))
|
|
return;
|
|
|
|
if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
|
|
if (!cacheSource(LineInfo))
|
|
return;
|
|
auto LineBuffer = LineCache.find(LineInfo.FileName);
|
|
if (LineBuffer != LineCache.end()) {
|
|
if (LineInfo.Line > LineBuffer->second.size()) {
|
|
reportWarning(
|
|
formatv(
|
|
"debug info line number {0} exceeds the number of lines in {1}",
|
|
LineInfo.Line, LineInfo.FileName),
|
|
ObjectFilename);
|
|
return;
|
|
}
|
|
// Vector begins at 0, line numbers are non-zero
|
|
OS << Delimiter << LineBuffer->second[LineInfo.Line - 1];
|
|
LVP.printBetweenInsts(OS, true);
|
|
}
|
|
}
|
|
|
|
static bool isAArch64Elf(const ObjectFile *Obj) {
|
|
const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
|
|
return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
|
|
}
|
|
|
|
static bool isArmElf(const ObjectFile *Obj) {
|
|
const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
|
|
return Elf && Elf->getEMachine() == ELF::EM_ARM;
|
|
}
|
|
|
|
static bool hasMappingSymbols(const ObjectFile *Obj) {
|
|
return isArmElf(Obj) || isAArch64Elf(Obj);
|
|
}
|
|
|
|
static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
|
|
const RelocationRef &Rel, uint64_t Address,
|
|
bool Is64Bits) {
|
|
StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": ";
|
|
SmallString<16> Name;
|
|
SmallString<32> Val;
|
|
Rel.getTypeName(Name);
|
|
if (Error E = getRelocationValueString(Rel, Val))
|
|
reportError(std::move(E), FileName);
|
|
OS << format(Fmt.data(), Address) << Name << "\t" << Val;
|
|
}
|
|
|
|
class PrettyPrinter {
|
|
public:
|
|
virtual ~PrettyPrinter() = default;
|
|
virtual void
|
|
printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
|
|
object::SectionedAddress Address, formatted_raw_ostream &OS,
|
|
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
|
|
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
|
|
LiveVariablePrinter &LVP) {
|
|
if (SP && (PrintSource || PrintLines))
|
|
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
|
|
LVP.printBetweenInsts(OS, false);
|
|
|
|
size_t Start = OS.tell();
|
|
if (!NoLeadingAddr)
|
|
OS << format("%8" PRIx64 ":", Address.Address);
|
|
if (!NoShowRawInsn) {
|
|
OS << ' ';
|
|
dumpBytes(Bytes, OS);
|
|
}
|
|
|
|
// The output of printInst starts with a tab. Print some spaces so that
|
|
// the tab has 1 column and advances to the target tab stop.
|
|
unsigned TabStop = getInstStartColumn(STI);
|
|
unsigned Column = OS.tell() - Start;
|
|
OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
|
|
|
|
if (MI) {
|
|
// See MCInstPrinter::printInst. On targets where a PC relative immediate
|
|
// is relative to the next instruction and the length of a MCInst is
|
|
// difficult to measure (x86), this is the address of the next
|
|
// instruction.
|
|
uint64_t Addr =
|
|
Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
|
|
IP.printInst(MI, Addr, "", STI, OS);
|
|
} else
|
|
OS << "\t<unknown>";
|
|
}
|
|
};
|
|
PrettyPrinter PrettyPrinterInst;
|
|
|
|
class HexagonPrettyPrinter : public PrettyPrinter {
|
|
public:
|
|
void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
|
|
formatted_raw_ostream &OS) {
|
|
uint32_t opcode =
|
|
(Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
|
|
if (!NoLeadingAddr)
|
|
OS << format("%8" PRIx64 ":", Address);
|
|
if (!NoShowRawInsn) {
|
|
OS << "\t";
|
|
dumpBytes(Bytes.slice(0, 4), OS);
|
|
OS << format("\t%08" PRIx32, opcode);
|
|
}
|
|
}
|
|
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
|
|
object::SectionedAddress Address, formatted_raw_ostream &OS,
|
|
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
|
|
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
|
|
LiveVariablePrinter &LVP) override {
|
|
if (SP && (PrintSource || PrintLines))
|
|
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
|
|
if (!MI) {
|
|
printLead(Bytes, Address.Address, OS);
|
|
OS << " <unknown>";
|
|
return;
|
|
}
|
|
std::string Buffer;
|
|
{
|
|
raw_string_ostream TempStream(Buffer);
|
|
IP.printInst(MI, Address.Address, "", STI, TempStream);
|
|
}
|
|
StringRef Contents(Buffer);
|
|
// Split off bundle attributes
|
|
auto PacketBundle = Contents.rsplit('\n');
|
|
// Split off first instruction from the rest
|
|
auto HeadTail = PacketBundle.first.split('\n');
|
|
auto Preamble = " { ";
|
|
auto Separator = "";
|
|
|
|
// Hexagon's packets require relocations to be inline rather than
|
|
// clustered at the end of the packet.
|
|
std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
|
|
std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
|
|
auto PrintReloc = [&]() -> void {
|
|
while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
|
|
if (RelCur->getOffset() == Address.Address) {
|
|
printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
|
|
return;
|
|
}
|
|
++RelCur;
|
|
}
|
|
};
|
|
|
|
while (!HeadTail.first.empty()) {
|
|
OS << Separator;
|
|
Separator = "\n";
|
|
if (SP && (PrintSource || PrintLines))
|
|
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
|
|
printLead(Bytes, Address.Address, OS);
|
|
OS << Preamble;
|
|
Preamble = " ";
|
|
StringRef Inst;
|
|
auto Duplex = HeadTail.first.split('\v');
|
|
if (!Duplex.second.empty()) {
|
|
OS << Duplex.first;
|
|
OS << "; ";
|
|
Inst = Duplex.second;
|
|
}
|
|
else
|
|
Inst = HeadTail.first;
|
|
OS << Inst;
|
|
HeadTail = HeadTail.second.split('\n');
|
|
if (HeadTail.first.empty())
|
|
OS << " } " << PacketBundle.second;
|
|
PrintReloc();
|
|
Bytes = Bytes.slice(4);
|
|
Address.Address += 4;
|
|
}
|
|
}
|
|
};
|
|
HexagonPrettyPrinter HexagonPrettyPrinterInst;
|
|
|
|
class AMDGCNPrettyPrinter : public PrettyPrinter {
|
|
public:
|
|
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
|
|
object::SectionedAddress Address, formatted_raw_ostream &OS,
|
|
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
|
|
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
|
|
LiveVariablePrinter &LVP) override {
|
|
if (SP && (PrintSource || PrintLines))
|
|
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
|
|
|
|
if (MI) {
|
|
SmallString<40> InstStr;
|
|
raw_svector_ostream IS(InstStr);
|
|
|
|
IP.printInst(MI, Address.Address, "", STI, IS);
|
|
|
|
OS << left_justify(IS.str(), 60);
|
|
} else {
|
|
// an unrecognized encoding - this is probably data so represent it
|
|
// using the .long directive, or .byte directive if fewer than 4 bytes
|
|
// remaining
|
|
if (Bytes.size() >= 4) {
|
|
OS << format("\t.long 0x%08" PRIx32 " ",
|
|
support::endian::read32<support::little>(Bytes.data()));
|
|
OS.indent(42);
|
|
} else {
|
|
OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
|
|
for (unsigned int i = 1; i < Bytes.size(); i++)
|
|
OS << format(", 0x%02" PRIx8, Bytes[i]);
|
|
OS.indent(55 - (6 * Bytes.size()));
|
|
}
|
|
}
|
|
|
|
OS << format("// %012" PRIX64 ":", Address.Address);
|
|
if (Bytes.size() >= 4) {
|
|
// D should be casted to uint32_t here as it is passed by format to
|
|
// snprintf as vararg.
|
|
for (uint32_t D : makeArrayRef(
|
|
reinterpret_cast<const support::little32_t *>(Bytes.data()),
|
|
Bytes.size() / 4))
|
|
OS << format(" %08" PRIX32, D);
|
|
} else {
|
|
for (unsigned char B : Bytes)
|
|
OS << format(" %02" PRIX8, B);
|
|
}
|
|
|
|
if (!Annot.empty())
|
|
OS << " // " << Annot;
|
|
}
|
|
};
|
|
AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
|
|
|
|
class BPFPrettyPrinter : public PrettyPrinter {
|
|
public:
|
|
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
|
|
object::SectionedAddress Address, formatted_raw_ostream &OS,
|
|
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
|
|
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
|
|
LiveVariablePrinter &LVP) override {
|
|
if (SP && (PrintSource || PrintLines))
|
|
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
|
|
if (!NoLeadingAddr)
|
|
OS << format("%8" PRId64 ":", Address.Address / 8);
|
|
if (!NoShowRawInsn) {
|
|
OS << "\t";
|
|
dumpBytes(Bytes, OS);
|
|
}
|
|
if (MI)
|
|
IP.printInst(MI, Address.Address, "", STI, OS);
|
|
else
|
|
OS << "\t<unknown>";
|
|
}
|
|
};
|
|
BPFPrettyPrinter BPFPrettyPrinterInst;
|
|
|
|
PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
|
|
switch(Triple.getArch()) {
|
|
default:
|
|
return PrettyPrinterInst;
|
|
case Triple::hexagon:
|
|
return HexagonPrettyPrinterInst;
|
|
case Triple::amdgcn:
|
|
return AMDGCNPrettyPrinterInst;
|
|
case Triple::bpfel:
|
|
case Triple::bpfeb:
|
|
return BPFPrettyPrinterInst;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
|
|
assert(Obj->isELF());
|
|
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
|
|
return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
|
|
if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
|
|
return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
|
|
if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
|
|
return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
|
|
if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
|
|
return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
|
|
llvm_unreachable("Unsupported binary format");
|
|
}
|
|
|
|
template <class ELFT> static void
|
|
addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
|
|
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
|
|
for (auto Symbol : Obj->getDynamicSymbolIterators()) {
|
|
uint8_t SymbolType = Symbol.getELFType();
|
|
if (SymbolType == ELF::STT_SECTION)
|
|
continue;
|
|
|
|
uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
|
|
// ELFSymbolRef::getAddress() returns size instead of value for common
|
|
// symbols which is not desirable for disassembly output. Overriding.
|
|
if (SymbolType == ELF::STT_COMMON)
|
|
Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
|
|
|
|
StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
|
|
if (Name.empty())
|
|
continue;
|
|
|
|
section_iterator SecI =
|
|
unwrapOrError(Symbol.getSection(), Obj->getFileName());
|
|
if (SecI == Obj->section_end())
|
|
continue;
|
|
|
|
AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
|
|
}
|
|
}
|
|
|
|
static void
|
|
addDynamicElfSymbols(const ObjectFile *Obj,
|
|
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
|
|
assert(Obj->isELF());
|
|
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
|
|
addDynamicElfSymbols(Elf32LEObj, AllSymbols);
|
|
else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
|
|
addDynamicElfSymbols(Elf64LEObj, AllSymbols);
|
|
else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
|
|
addDynamicElfSymbols(Elf32BEObj, AllSymbols);
|
|
else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
|
|
addDynamicElfSymbols(Elf64BEObj, AllSymbols);
|
|
else
|
|
llvm_unreachable("Unsupported binary format");
|
|
}
|
|
|
|
static void addPltEntries(const ObjectFile *Obj,
|
|
std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
|
|
StringSaver &Saver) {
|
|
Optional<SectionRef> Plt = None;
|
|
for (const SectionRef &Section : Obj->sections()) {
|
|
Expected<StringRef> SecNameOrErr = Section.getName();
|
|
if (!SecNameOrErr) {
|
|
consumeError(SecNameOrErr.takeError());
|
|
continue;
|
|
}
|
|
if (*SecNameOrErr == ".plt")
|
|
Plt = Section;
|
|
}
|
|
if (!Plt)
|
|
return;
|
|
if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
|
|
for (auto PltEntry : ElfObj->getPltAddresses()) {
|
|
SymbolRef Symbol(PltEntry.first, ElfObj);
|
|
uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
|
|
|
|
StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
|
|
if (!Name.empty())
|
|
AllSymbols[*Plt].emplace_back(
|
|
PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Normally the disassembly output will skip blocks of zeroes. This function
|
|
// returns the number of zero bytes that can be skipped when dumping the
|
|
// disassembly of the instructions in Buf.
|
|
static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
|
|
// Find the number of leading zeroes.
|
|
size_t N = 0;
|
|
while (N < Buf.size() && !Buf[N])
|
|
++N;
|
|
|
|
// We may want to skip blocks of zero bytes, but unless we see
|
|
// at least 8 of them in a row.
|
|
if (N < 8)
|
|
return 0;
|
|
|
|
// We skip zeroes in multiples of 4 because do not want to truncate an
|
|
// instruction if it starts with a zero byte.
|
|
return N & ~0x3;
|
|
}
|
|
|
|
// Returns a map from sections to their relocations.
|
|
static std::map<SectionRef, std::vector<RelocationRef>>
|
|
getRelocsMap(object::ObjectFile const &Obj) {
|
|
std::map<SectionRef, std::vector<RelocationRef>> Ret;
|
|
uint64_t I = (uint64_t)-1;
|
|
for (SectionRef Sec : Obj.sections()) {
|
|
++I;
|
|
Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
|
|
if (!RelocatedOrErr)
|
|
reportError(Obj.getFileName(),
|
|
"section (" + Twine(I) +
|
|
"): failed to get a relocated section: " +
|
|
toString(RelocatedOrErr.takeError()));
|
|
|
|
section_iterator Relocated = *RelocatedOrErr;
|
|
if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
|
|
continue;
|
|
std::vector<RelocationRef> &V = Ret[*Relocated];
|
|
for (const RelocationRef &R : Sec.relocations())
|
|
V.push_back(R);
|
|
// Sort relocations by address.
|
|
llvm::stable_sort(V, isRelocAddressLess);
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
// Used for --adjust-vma to check if address should be adjusted by the
|
|
// specified value for a given section.
|
|
// For ELF we do not adjust non-allocatable sections like debug ones,
|
|
// because they are not loadable.
|
|
// TODO: implement for other file formats.
|
|
static bool shouldAdjustVA(const SectionRef &Section) {
|
|
const ObjectFile *Obj = Section.getObject();
|
|
if (Obj->isELF())
|
|
return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
|
|
return false;
|
|
}
|
|
|
|
|
|
typedef std::pair<uint64_t, char> MappingSymbolPair;
|
|
static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
|
|
uint64_t Address) {
|
|
auto It =
|
|
partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
|
|
return Val.first <= Address;
|
|
});
|
|
// Return zero for any address before the first mapping symbol; this means
|
|
// we should use the default disassembly mode, depending on the target.
|
|
if (It == MappingSymbols.begin())
|
|
return '\x00';
|
|
return (It - 1)->second;
|
|
}
|
|
|
|
static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
|
|
uint64_t End, const ObjectFile *Obj,
|
|
ArrayRef<uint8_t> Bytes,
|
|
ArrayRef<MappingSymbolPair> MappingSymbols,
|
|
raw_ostream &OS) {
|
|
support::endianness Endian =
|
|
Obj->isLittleEndian() ? support::little : support::big;
|
|
OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
|
|
if (Index + 4 <= End) {
|
|
dumpBytes(Bytes.slice(Index, 4), OS);
|
|
OS << "\t.word\t"
|
|
<< format_hex(support::endian::read32(Bytes.data() + Index, Endian),
|
|
10);
|
|
return 4;
|
|
}
|
|
if (Index + 2 <= End) {
|
|
dumpBytes(Bytes.slice(Index, 2), OS);
|
|
OS << "\t\t.short\t"
|
|
<< format_hex(support::endian::read16(Bytes.data() + Index, Endian),
|
|
6);
|
|
return 2;
|
|
}
|
|
dumpBytes(Bytes.slice(Index, 1), OS);
|
|
OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
|
|
return 1;
|
|
}
|
|
|
|
static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
|
|
ArrayRef<uint8_t> Bytes) {
|
|
// print out data up to 8 bytes at a time in hex and ascii
|
|
uint8_t AsciiData[9] = {'\0'};
|
|
uint8_t Byte;
|
|
int NumBytes = 0;
|
|
|
|
for (; Index < End; ++Index) {
|
|
if (NumBytes == 0)
|
|
outs() << format("%8" PRIx64 ":", SectionAddr + Index);
|
|
Byte = Bytes.slice(Index)[0];
|
|
outs() << format(" %02x", Byte);
|
|
AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
|
|
|
|
uint8_t IndentOffset = 0;
|
|
NumBytes++;
|
|
if (Index == End - 1 || NumBytes > 8) {
|
|
// Indent the space for less than 8 bytes data.
|
|
// 2 spaces for byte and one for space between bytes
|
|
IndentOffset = 3 * (8 - NumBytes);
|
|
for (int Excess = NumBytes; Excess < 8; Excess++)
|
|
AsciiData[Excess] = '\0';
|
|
NumBytes = 8;
|
|
}
|
|
if (NumBytes == 8) {
|
|
AsciiData[8] = '\0';
|
|
outs() << std::string(IndentOffset, ' ') << " ";
|
|
outs() << reinterpret_cast<char *>(AsciiData);
|
|
outs() << '\n';
|
|
NumBytes = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
|
|
const SymbolRef &Symbol) {
|
|
const StringRef FileName = Obj->getFileName();
|
|
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
|
|
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
|
|
|
|
if (Obj->isXCOFF() && SymbolDescription) {
|
|
const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
|
|
DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
|
|
|
|
const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
|
|
Optional<XCOFF::StorageMappingClass> Smc =
|
|
getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
|
|
return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
|
|
isLabel(XCOFFObj, Symbol));
|
|
} else
|
|
return SymbolInfoTy(Addr, Name,
|
|
Obj->isELF() ? getElfSymbolType(Obj, Symbol)
|
|
: (uint8_t)ELF::STT_NOTYPE);
|
|
}
|
|
|
|
static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
|
|
const uint64_t Addr, StringRef &Name,
|
|
uint8_t Type) {
|
|
if (Obj->isXCOFF() && SymbolDescription)
|
|
return SymbolInfoTy(Addr, Name, None, None, false);
|
|
else
|
|
return SymbolInfoTy(Addr, Name, Type);
|
|
}
|
|
|
|
static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
|
|
MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
|
|
MCDisassembler *SecondaryDisAsm,
|
|
const MCInstrAnalysis *MIA, MCInstPrinter *IP,
|
|
const MCSubtargetInfo *PrimarySTI,
|
|
const MCSubtargetInfo *SecondarySTI,
|
|
PrettyPrinter &PIP,
|
|
SourcePrinter &SP, bool InlineRelocs) {
|
|
const MCSubtargetInfo *STI = PrimarySTI;
|
|
MCDisassembler *DisAsm = PrimaryDisAsm;
|
|
bool PrimaryIsThumb = false;
|
|
if (isArmElf(Obj))
|
|
PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
|
|
|
|
std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
|
|
if (InlineRelocs)
|
|
RelocMap = getRelocsMap(*Obj);
|
|
bool Is64Bits = Obj->getBytesInAddress() > 4;
|
|
|
|
// Create a mapping from virtual address to symbol name. This is used to
|
|
// pretty print the symbols while disassembling.
|
|
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
|
|
SectionSymbolsTy AbsoluteSymbols;
|
|
const StringRef FileName = Obj->getFileName();
|
|
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
|
|
for (const SymbolRef &Symbol : Obj->symbols()) {
|
|
StringRef Name = unwrapOrError(Symbol.getName(), FileName);
|
|
if (Name.empty() && !(Obj->isXCOFF() && SymbolDescription))
|
|
continue;
|
|
|
|
if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
|
|
continue;
|
|
|
|
// Don't ask a Mach-O STAB symbol for its section unless you know that
|
|
// STAB symbol's section field refers to a valid section index. Otherwise
|
|
// the symbol may error trying to load a section that does not exist.
|
|
if (MachO) {
|
|
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
|
|
uint8_t NType = (MachO->is64Bit() ?
|
|
MachO->getSymbol64TableEntry(SymDRI).n_type:
|
|
MachO->getSymbolTableEntry(SymDRI).n_type);
|
|
if (NType & MachO::N_STAB)
|
|
continue;
|
|
}
|
|
|
|
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
|
|
if (SecI != Obj->section_end())
|
|
AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
|
|
else
|
|
AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
|
|
}
|
|
|
|
if (AllSymbols.empty() && Obj->isELF())
|
|
addDynamicElfSymbols(Obj, AllSymbols);
|
|
|
|
BumpPtrAllocator A;
|
|
StringSaver Saver(A);
|
|
addPltEntries(Obj, AllSymbols, Saver);
|
|
|
|
// Create a mapping from virtual address to section. An empty section can
|
|
// cause more than one section at the same address. Sort such sections to be
|
|
// before same-addressed non-empty sections so that symbol lookups prefer the
|
|
// non-empty section.
|
|
std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
|
|
for (SectionRef Sec : Obj->sections())
|
|
SectionAddresses.emplace_back(Sec.getAddress(), Sec);
|
|
llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
|
|
if (LHS.first != RHS.first)
|
|
return LHS.first < RHS.first;
|
|
return LHS.second.getSize() < RHS.second.getSize();
|
|
});
|
|
|
|
// Linked executables (.exe and .dll files) typically don't include a real
|
|
// symbol table but they might contain an export table.
|
|
if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
|
|
for (const auto &ExportEntry : COFFObj->export_directories()) {
|
|
StringRef Name;
|
|
if (Error E = ExportEntry.getSymbolName(Name))
|
|
reportError(std::move(E), Obj->getFileName());
|
|
if (Name.empty())
|
|
continue;
|
|
|
|
uint32_t RVA;
|
|
if (Error E = ExportEntry.getExportRVA(RVA))
|
|
reportError(std::move(E), Obj->getFileName());
|
|
|
|
uint64_t VA = COFFObj->getImageBase() + RVA;
|
|
auto Sec = partition_point(
|
|
SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
|
|
return O.first <= VA;
|
|
});
|
|
if (Sec != SectionAddresses.begin()) {
|
|
--Sec;
|
|
AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
|
|
} else
|
|
AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
|
|
}
|
|
}
|
|
|
|
// Sort all the symbols, this allows us to use a simple binary search to find
|
|
// Multiple symbols can have the same address. Use a stable sort to stabilize
|
|
// the output.
|
|
StringSet<> FoundDisasmSymbolSet;
|
|
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
|
|
stable_sort(SecSyms.second);
|
|
stable_sort(AbsoluteSymbols);
|
|
|
|
std::unique_ptr<DWARFContext> DICtx;
|
|
LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
|
|
|
|
if (DbgVariables != DVDisabled) {
|
|
DICtx = DWARFContext::create(*Obj);
|
|
for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
|
|
LVP.addCompileUnit(CU->getUnitDIE(false));
|
|
}
|
|
|
|
LLVM_DEBUG(LVP.dump());
|
|
|
|
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
|
|
if (FilterSections.empty() && !DisassembleAll &&
|
|
(!Section.isText() || Section.isVirtual()))
|
|
continue;
|
|
|
|
uint64_t SectionAddr = Section.getAddress();
|
|
uint64_t SectSize = Section.getSize();
|
|
if (!SectSize)
|
|
continue;
|
|
|
|
// Get the list of all the symbols in this section.
|
|
SectionSymbolsTy &Symbols = AllSymbols[Section];
|
|
std::vector<MappingSymbolPair> MappingSymbols;
|
|
if (hasMappingSymbols(Obj)) {
|
|
for (const auto &Symb : Symbols) {
|
|
uint64_t Address = Symb.Addr;
|
|
StringRef Name = Symb.Name;
|
|
if (Name.startswith("$d"))
|
|
MappingSymbols.emplace_back(Address - SectionAddr, 'd');
|
|
if (Name.startswith("$x"))
|
|
MappingSymbols.emplace_back(Address - SectionAddr, 'x');
|
|
if (Name.startswith("$a"))
|
|
MappingSymbols.emplace_back(Address - SectionAddr, 'a');
|
|
if (Name.startswith("$t"))
|
|
MappingSymbols.emplace_back(Address - SectionAddr, 't');
|
|
}
|
|
}
|
|
|
|
llvm::sort(MappingSymbols);
|
|
|
|
if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
|
|
// AMDGPU disassembler uses symbolizer for printing labels
|
|
std::unique_ptr<MCRelocationInfo> RelInfo(
|
|
TheTarget->createMCRelocationInfo(TripleName, Ctx));
|
|
if (RelInfo) {
|
|
std::unique_ptr<MCSymbolizer> Symbolizer(
|
|
TheTarget->createMCSymbolizer(
|
|
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
|
|
DisAsm->setSymbolizer(std::move(Symbolizer));
|
|
}
|
|
}
|
|
|
|
StringRef SegmentName = "";
|
|
if (MachO) {
|
|
DataRefImpl DR = Section.getRawDataRefImpl();
|
|
SegmentName = MachO->getSectionFinalSegmentName(DR);
|
|
}
|
|
|
|
StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
|
|
// If the section has no symbol at the start, just insert a dummy one.
|
|
if (Symbols.empty() || Symbols[0].Addr != 0) {
|
|
Symbols.insert(Symbols.begin(),
|
|
createDummySymbolInfo(Obj, SectionAddr, SectionName,
|
|
Section.isText() ? ELF::STT_FUNC
|
|
: ELF::STT_OBJECT));
|
|
}
|
|
|
|
SmallString<40> Comments;
|
|
raw_svector_ostream CommentStream(Comments);
|
|
|
|
ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
|
|
unwrapOrError(Section.getContents(), Obj->getFileName()));
|
|
|
|
uint64_t VMAAdjustment = 0;
|
|
if (shouldAdjustVA(Section))
|
|
VMAAdjustment = AdjustVMA;
|
|
|
|
uint64_t Size;
|
|
uint64_t Index;
|
|
bool PrintedSection = false;
|
|
std::vector<RelocationRef> Rels = RelocMap[Section];
|
|
std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
|
|
std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
|
|
// Disassemble symbol by symbol.
|
|
for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
|
|
std::string SymbolName = Symbols[SI].Name.str();
|
|
if (Demangle)
|
|
SymbolName = demangle(SymbolName);
|
|
|
|
// Skip if --disassemble-symbols is not empty and the symbol is not in
|
|
// the list.
|
|
if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
|
|
continue;
|
|
|
|
uint64_t Start = Symbols[SI].Addr;
|
|
if (Start < SectionAddr || StopAddress <= Start)
|
|
continue;
|
|
else
|
|
FoundDisasmSymbolSet.insert(SymbolName);
|
|
|
|
// The end is the section end, the beginning of the next symbol, or
|
|
// --stop-address.
|
|
uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
|
|
if (SI + 1 < SE)
|
|
End = std::min(End, Symbols[SI + 1].Addr);
|
|
if (Start >= End || End <= StartAddress)
|
|
continue;
|
|
Start -= SectionAddr;
|
|
End -= SectionAddr;
|
|
|
|
if (!PrintedSection) {
|
|
PrintedSection = true;
|
|
outs() << "\nDisassembly of section ";
|
|
if (!SegmentName.empty())
|
|
outs() << SegmentName << ",";
|
|
outs() << SectionName << ":\n";
|
|
}
|
|
|
|
if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
|
|
if (Symbols[SI].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
|
|
// skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
|
|
Start += 256;
|
|
}
|
|
if (SI == SE - 1 ||
|
|
Symbols[SI + 1].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
|
|
// cut trailing zeroes at the end of kernel
|
|
// cut up to 256 bytes
|
|
const uint64_t EndAlign = 256;
|
|
const auto Limit = End - (std::min)(EndAlign, End - Start);
|
|
while (End > Limit &&
|
|
*reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
|
|
End -= 4;
|
|
}
|
|
}
|
|
|
|
outs() << '\n';
|
|
if (!NoLeadingAddr)
|
|
outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
|
|
SectionAddr + Start + VMAAdjustment);
|
|
if (Obj->isXCOFF() && SymbolDescription) {
|
|
outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
|
|
} else
|
|
outs() << '<' << SymbolName << ">:\n";
|
|
|
|
// Don't print raw contents of a virtual section. A virtual section
|
|
// doesn't have any contents in the file.
|
|
if (Section.isVirtual()) {
|
|
outs() << "...\n";
|
|
continue;
|
|
}
|
|
|
|
auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
|
|
Bytes.slice(Start, End - Start),
|
|
SectionAddr + Start, CommentStream);
|
|
// To have round trippable disassembly, we fall back to decoding the
|
|
// remaining bytes as instructions.
|
|
//
|
|
// If there is a failure, we disassemble the failed region as bytes before
|
|
// falling back. The target is expected to print nothing in this case.
|
|
//
|
|
// If there is Success or SoftFail i.e no 'real' failure, we go ahead by
|
|
// Size bytes before falling back.
|
|
// So if the entire symbol is 'eaten' by the target:
|
|
// Start += Size // Now Start = End and we will never decode as
|
|
// // instructions
|
|
//
|
|
// Right now, most targets return None i.e ignore to treat a symbol
|
|
// separately. But WebAssembly decodes preludes for some symbols.
|
|
//
|
|
if (Status.hasValue()) {
|
|
if (Status.getValue() == MCDisassembler::Fail) {
|
|
outs() << "// Error in decoding " << SymbolName
|
|
<< " : Decoding failed region as bytes.\n";
|
|
for (uint64_t I = 0; I < Size; ++I) {
|
|
outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
|
|
<< "\n";
|
|
}
|
|
}
|
|
} else {
|
|
Size = 0;
|
|
}
|
|
|
|
Start += Size;
|
|
|
|
Index = Start;
|
|
if (SectionAddr < StartAddress)
|
|
Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
|
|
|
|
// If there is a data/common symbol inside an ELF text section and we are
|
|
// only disassembling text (applicable all architectures), we are in a
|
|
// situation where we must print the data and not disassemble it.
|
|
if (Obj->isELF() && !DisassembleAll && Section.isText()) {
|
|
uint8_t SymTy = Symbols[SI].Type;
|
|
if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
|
|
dumpELFData(SectionAddr, Index, End, Bytes);
|
|
Index = End;
|
|
}
|
|
}
|
|
|
|
bool CheckARMELFData = hasMappingSymbols(Obj) &&
|
|
Symbols[SI].Type != ELF::STT_OBJECT &&
|
|
!DisassembleAll;
|
|
bool DumpARMELFData = false;
|
|
formatted_raw_ostream FOS(outs());
|
|
while (Index < End) {
|
|
// ARM and AArch64 ELF binaries can interleave data and text in the
|
|
// same section. We rely on the markers introduced to understand what
|
|
// we need to dump. If the data marker is within a function, it is
|
|
// denoted as a word/short etc.
|
|
if (CheckARMELFData) {
|
|
char Kind = getMappingSymbolKind(MappingSymbols, Index);
|
|
DumpARMELFData = Kind == 'd';
|
|
if (SecondarySTI) {
|
|
if (Kind == 'a') {
|
|
STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
|
|
DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
|
|
} else if (Kind == 't') {
|
|
STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
|
|
DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DumpARMELFData) {
|
|
Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
|
|
MappingSymbols, FOS);
|
|
} else {
|
|
// When -z or --disassemble-zeroes are given we always dissasemble
|
|
// them. Otherwise we might want to skip zero bytes we see.
|
|
if (!DisassembleZeroes) {
|
|
uint64_t MaxOffset = End - Index;
|
|
// For --reloc: print zero blocks patched by relocations, so that
|
|
// relocations can be shown in the dump.
|
|
if (RelCur != RelEnd)
|
|
MaxOffset = RelCur->getOffset() - Index;
|
|
|
|
if (size_t N =
|
|
countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
|
|
FOS << "\t\t..." << '\n';
|
|
Index += N;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Disassemble a real instruction or a data when disassemble all is
|
|
// provided
|
|
MCInst Inst;
|
|
bool Disassembled =
|
|
DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
|
|
SectionAddr + Index, CommentStream);
|
|
if (Size == 0)
|
|
Size = 1;
|
|
|
|
LVP.update({Index, Section.getIndex()},
|
|
{Index + Size, Section.getIndex()}, Index + Size != End);
|
|
|
|
PIP.printInst(
|
|
*IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
|
|
{SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
|
|
"", *STI, &SP, Obj->getFileName(), &Rels, LVP);
|
|
FOS << CommentStream.str();
|
|
Comments.clear();
|
|
|
|
// If disassembly has failed, avoid analysing invalid/incomplete
|
|
// instruction information. Otherwise, try to resolve the target
|
|
// address (jump target or memory operand address) and print it on the
|
|
// right of the instruction.
|
|
if (Disassembled && MIA) {
|
|
uint64_t Target;
|
|
bool PrintTarget =
|
|
MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
|
|
if (!PrintTarget)
|
|
if (Optional<uint64_t> MaybeTarget =
|
|
MIA->evaluateMemoryOperandAddress(
|
|
Inst, SectionAddr + Index, Size)) {
|
|
Target = *MaybeTarget;
|
|
PrintTarget = true;
|
|
FOS << " # " << Twine::utohexstr(Target);
|
|
}
|
|
if (PrintTarget) {
|
|
// In a relocatable object, the target's section must reside in
|
|
// the same section as the call instruction or it is accessed
|
|
// through a relocation.
|
|
//
|
|
// In a non-relocatable object, the target may be in any section.
|
|
// In that case, locate the section(s) containing the target
|
|
// address and find the symbol in one of those, if possible.
|
|
//
|
|
// N.B. We don't walk the relocations in the relocatable case yet.
|
|
std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
|
|
if (!Obj->isRelocatableObject()) {
|
|
auto It = llvm::partition_point(
|
|
SectionAddresses,
|
|
[=](const std::pair<uint64_t, SectionRef> &O) {
|
|
return O.first <= Target;
|
|
});
|
|
uint64_t TargetSecAddr = 0;
|
|
while (It != SectionAddresses.begin()) {
|
|
--It;
|
|
if (TargetSecAddr == 0)
|
|
TargetSecAddr = It->first;
|
|
if (It->first != TargetSecAddr)
|
|
break;
|
|
TargetSectionSymbols.push_back(&AllSymbols[It->second]);
|
|
}
|
|
} else {
|
|
TargetSectionSymbols.push_back(&Symbols);
|
|
}
|
|
TargetSectionSymbols.push_back(&AbsoluteSymbols);
|
|
|
|
// Find the last symbol in the first candidate section whose
|
|
// offset is less than or equal to the target. If there are no
|
|
// such symbols, try in the next section and so on, before finally
|
|
// using the nearest preceding absolute symbol (if any), if there
|
|
// are no other valid symbols.
|
|
const SymbolInfoTy *TargetSym = nullptr;
|
|
for (const SectionSymbolsTy *TargetSymbols :
|
|
TargetSectionSymbols) {
|
|
auto It = llvm::partition_point(
|
|
*TargetSymbols,
|
|
[=](const SymbolInfoTy &O) { return O.Addr <= Target; });
|
|
if (It != TargetSymbols->begin()) {
|
|
TargetSym = &*(It - 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (TargetSym != nullptr) {
|
|
uint64_t TargetAddress = TargetSym->Addr;
|
|
std::string TargetName = TargetSym->Name.str();
|
|
if (Demangle)
|
|
TargetName = demangle(TargetName);
|
|
|
|
FOS << " <" << TargetName;
|
|
uint64_t Disp = Target - TargetAddress;
|
|
if (Disp)
|
|
FOS << "+0x" << Twine::utohexstr(Disp);
|
|
FOS << '>';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LVP.printAfterInst(FOS);
|
|
FOS << "\n";
|
|
|
|
// Hexagon does this in pretty printer
|
|
if (Obj->getArch() != Triple::hexagon) {
|
|
// Print relocation for instruction and data.
|
|
while (RelCur != RelEnd) {
|
|
uint64_t Offset = RelCur->getOffset();
|
|
// If this relocation is hidden, skip it.
|
|
if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
|
|
++RelCur;
|
|
continue;
|
|
}
|
|
|
|
// Stop when RelCur's offset is past the disassembled
|
|
// instruction/data. Note that it's possible the disassembled data
|
|
// is not the complete data: we might see the relocation printed in
|
|
// the middle of the data, but this matches the binutils objdump
|
|
// output.
|
|
if (Offset >= Index + Size)
|
|
break;
|
|
|
|
// When --adjust-vma is used, update the address printed.
|
|
if (RelCur->getSymbol() != Obj->symbol_end()) {
|
|
Expected<section_iterator> SymSI =
|
|
RelCur->getSymbol()->getSection();
|
|
if (SymSI && *SymSI != Obj->section_end() &&
|
|
shouldAdjustVA(**SymSI))
|
|
Offset += AdjustVMA;
|
|
}
|
|
|
|
printRelocation(FOS, Obj->getFileName(), *RelCur,
|
|
SectionAddr + Offset, Is64Bits);
|
|
LVP.printAfterOtherLine(FOS, true);
|
|
++RelCur;
|
|
}
|
|
}
|
|
|
|
Index += Size;
|
|
}
|
|
}
|
|
}
|
|
StringSet<> MissingDisasmSymbolSet =
|
|
set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
|
|
for (StringRef Sym : MissingDisasmSymbolSet.keys())
|
|
reportWarning("failed to disassemble missing symbol " + Sym, FileName);
|
|
}
|
|
|
|
static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
|
|
const Target *TheTarget = getTarget(Obj);
|
|
|
|
// Package up features to be passed to target/subtarget
|
|
SubtargetFeatures Features = Obj->getFeatures();
|
|
if (!MAttrs.empty())
|
|
for (unsigned I = 0; I != MAttrs.size(); ++I)
|
|
Features.AddFeature(MAttrs[I]);
|
|
|
|
std::unique_ptr<const MCRegisterInfo> MRI(
|
|
TheTarget->createMCRegInfo(TripleName));
|
|
if (!MRI)
|
|
reportError(Obj->getFileName(),
|
|
"no register info for target " + TripleName);
|
|
|
|
// Set up disassembler.
|
|
MCTargetOptions MCOptions;
|
|
std::unique_ptr<const MCAsmInfo> AsmInfo(
|
|
TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
|
|
if (!AsmInfo)
|
|
reportError(Obj->getFileName(),
|
|
"no assembly info for target " + TripleName);
|
|
std::unique_ptr<const MCSubtargetInfo> STI(
|
|
TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
|
|
if (!STI)
|
|
reportError(Obj->getFileName(),
|
|
"no subtarget info for target " + TripleName);
|
|
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
|
|
if (!MII)
|
|
reportError(Obj->getFileName(),
|
|
"no instruction info for target " + TripleName);
|
|
MCObjectFileInfo MOFI;
|
|
MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
|
|
// FIXME: for now initialize MCObjectFileInfo with default values
|
|
MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
|
|
|
|
std::unique_ptr<MCDisassembler> DisAsm(
|
|
TheTarget->createMCDisassembler(*STI, Ctx));
|
|
if (!DisAsm)
|
|
reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
|
|
|
|
// If we have an ARM object file, we need a second disassembler, because
|
|
// ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
|
|
// We use mapping symbols to switch between the two assemblers, where
|
|
// appropriate.
|
|
std::unique_ptr<MCDisassembler> SecondaryDisAsm;
|
|
std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
|
|
if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
|
|
if (STI->checkFeatures("+thumb-mode"))
|
|
Features.AddFeature("-thumb-mode");
|
|
else
|
|
Features.AddFeature("+thumb-mode");
|
|
SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
|
|
Features.getString()));
|
|
SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
|
|
}
|
|
|
|
std::unique_ptr<const MCInstrAnalysis> MIA(
|
|
TheTarget->createMCInstrAnalysis(MII.get()));
|
|
|
|
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
|
|
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
|
|
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
|
|
if (!IP)
|
|
reportError(Obj->getFileName(),
|
|
"no instruction printer for target " + TripleName);
|
|
IP->setPrintImmHex(PrintImmHex);
|
|
IP->setPrintBranchImmAsAddress(true);
|
|
|
|
PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
|
|
SourcePrinter SP(Obj, TheTarget->getName());
|
|
|
|
for (StringRef Opt : DisassemblerOptions)
|
|
if (!IP->applyTargetSpecificCLOption(Opt))
|
|
reportError(Obj->getFileName(),
|
|
"Unrecognized disassembler option: " + Opt);
|
|
|
|
disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
|
|
MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
|
|
SP, InlineRelocs);
|
|
}
|
|
|
|
void objdump::printRelocations(const ObjectFile *Obj) {
|
|
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
|
|
"%08" PRIx64;
|
|
// Regular objdump doesn't print relocations in non-relocatable object
|
|
// files.
|
|
if (!Obj->isRelocatableObject())
|
|
return;
|
|
|
|
// Build a mapping from relocation target to a vector of relocation
|
|
// sections. Usually, there is an only one relocation section for
|
|
// each relocated section.
|
|
MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
|
|
uint64_t Ndx;
|
|
for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
|
|
if (Section.relocation_begin() == Section.relocation_end())
|
|
continue;
|
|
Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
|
|
if (!SecOrErr)
|
|
reportError(Obj->getFileName(),
|
|
"section (" + Twine(Ndx) +
|
|
"): unable to get a relocation target: " +
|
|
toString(SecOrErr.takeError()));
|
|
SecToRelSec[**SecOrErr].push_back(Section);
|
|
}
|
|
|
|
for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
|
|
StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
|
|
outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
|
|
uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
|
|
uint32_t TypePadding = 24;
|
|
outs() << left_justify("OFFSET", OffsetPadding) << " "
|
|
<< left_justify("TYPE", TypePadding) << " "
|
|
<< "VALUE\n";
|
|
|
|
for (SectionRef Section : P.second) {
|
|
for (const RelocationRef &Reloc : Section.relocations()) {
|
|
uint64_t Address = Reloc.getOffset();
|
|
SmallString<32> RelocName;
|
|
SmallString<32> ValueStr;
|
|
if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
|
|
continue;
|
|
Reloc.getTypeName(RelocName);
|
|
if (Error E = getRelocationValueString(Reloc, ValueStr))
|
|
reportError(std::move(E), Obj->getFileName());
|
|
|
|
outs() << format(Fmt.data(), Address) << " "
|
|
<< left_justify(RelocName, TypePadding) << " " << ValueStr
|
|
<< "\n";
|
|
}
|
|
}
|
|
outs() << "\n";
|
|
}
|
|
}
|
|
|
|
void objdump::printDynamicRelocations(const ObjectFile *Obj) {
|
|
// For the moment, this option is for ELF only
|
|
if (!Obj->isELF())
|
|
return;
|
|
|
|
const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
|
|
if (!Elf || Elf->getEType() != ELF::ET_DYN) {
|
|
reportError(Obj->getFileName(), "not a dynamic object");
|
|
return;
|
|
}
|
|
|
|
std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
|
|
if (DynRelSec.empty())
|
|
return;
|
|
|
|
outs() << "DYNAMIC RELOCATION RECORDS\n";
|
|
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
|
|
for (const SectionRef &Section : DynRelSec)
|
|
for (const RelocationRef &Reloc : Section.relocations()) {
|
|
uint64_t Address = Reloc.getOffset();
|
|
SmallString<32> RelocName;
|
|
SmallString<32> ValueStr;
|
|
Reloc.getTypeName(RelocName);
|
|
if (Error E = getRelocationValueString(Reloc, ValueStr))
|
|
reportError(std::move(E), Obj->getFileName());
|
|
outs() << format(Fmt.data(), Address) << " " << RelocName << " "
|
|
<< ValueStr << "\n";
|
|
}
|
|
}
|
|
|
|
// Returns true if we need to show LMA column when dumping section headers. We
|
|
// show it only when the platform is ELF and either we have at least one section
|
|
// whose VMA and LMA are different and/or when --show-lma flag is used.
|
|
static bool shouldDisplayLMA(const ObjectFile *Obj) {
|
|
if (!Obj->isELF())
|
|
return false;
|
|
for (const SectionRef &S : ToolSectionFilter(*Obj))
|
|
if (S.getAddress() != getELFSectionLMA(S))
|
|
return true;
|
|
return ShowLMA;
|
|
}
|
|
|
|
static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
|
|
// Default column width for names is 13 even if no names are that long.
|
|
size_t MaxWidth = 13;
|
|
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
|
|
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
|
|
MaxWidth = std::max(MaxWidth, Name.size());
|
|
}
|
|
return MaxWidth;
|
|
}
|
|
|
|
void objdump::printSectionHeaders(const ObjectFile *Obj) {
|
|
size_t NameWidth = getMaxSectionNameWidth(Obj);
|
|
size_t AddressWidth = 2 * Obj->getBytesInAddress();
|
|
bool HasLMAColumn = shouldDisplayLMA(Obj);
|
|
if (HasLMAColumn)
|
|
outs() << "Sections:\n"
|
|
"Idx "
|
|
<< left_justify("Name", NameWidth) << " Size "
|
|
<< left_justify("VMA", AddressWidth) << " "
|
|
<< left_justify("LMA", AddressWidth) << " Type\n";
|
|
else
|
|
outs() << "Sections:\n"
|
|
"Idx "
|
|
<< left_justify("Name", NameWidth) << " Size "
|
|
<< left_justify("VMA", AddressWidth) << " Type\n";
|
|
|
|
uint64_t Idx;
|
|
for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
|
|
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
|
|
uint64_t VMA = Section.getAddress();
|
|
if (shouldAdjustVA(Section))
|
|
VMA += AdjustVMA;
|
|
|
|
uint64_t Size = Section.getSize();
|
|
|
|
std::string Type = Section.isText() ? "TEXT" : "";
|
|
if (Section.isData())
|
|
Type += Type.empty() ? "DATA" : " DATA";
|
|
if (Section.isBSS())
|
|
Type += Type.empty() ? "BSS" : " BSS";
|
|
|
|
if (HasLMAColumn)
|
|
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
|
|
Name.str().c_str(), Size)
|
|
<< format_hex_no_prefix(VMA, AddressWidth) << " "
|
|
<< format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
|
|
<< " " << Type << "\n";
|
|
else
|
|
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
|
|
Name.str().c_str(), Size)
|
|
<< format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
|
|
}
|
|
outs() << "\n";
|
|
}
|
|
|
|
void objdump::printSectionContents(const ObjectFile *Obj) {
|
|
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
|
|
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
|
|
uint64_t BaseAddr = Section.getAddress();
|
|
uint64_t Size = Section.getSize();
|
|
if (!Size)
|
|
continue;
|
|
|
|
outs() << "Contents of section " << Name << ":\n";
|
|
if (Section.isBSS()) {
|
|
outs() << format("<skipping contents of bss section at [%04" PRIx64
|
|
", %04" PRIx64 ")>\n",
|
|
BaseAddr, BaseAddr + Size);
|
|
continue;
|
|
}
|
|
|
|
StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
|
|
|
|
// Dump out the content as hex and printable ascii characters.
|
|
for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
|
|
outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
|
|
// Dump line of hex.
|
|
for (std::size_t I = 0; I < 16; ++I) {
|
|
if (I != 0 && I % 4 == 0)
|
|
outs() << ' ';
|
|
if (Addr + I < End)
|
|
outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
|
|
<< hexdigit(Contents[Addr + I] & 0xF, true);
|
|
else
|
|
outs() << " ";
|
|
}
|
|
// Print ascii.
|
|
outs() << " ";
|
|
for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
|
|
if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
|
|
outs() << Contents[Addr + I];
|
|
else
|
|
outs() << ".";
|
|
}
|
|
outs() << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
|
|
StringRef ArchitectureName, bool DumpDynamic) {
|
|
if (O->isCOFF() && !DumpDynamic) {
|
|
outs() << "SYMBOL TABLE:\n";
|
|
printCOFFSymbolTable(cast<const COFFObjectFile>(O));
|
|
return;
|
|
}
|
|
|
|
const StringRef FileName = O->getFileName();
|
|
|
|
if (!DumpDynamic) {
|
|
outs() << "SYMBOL TABLE:\n";
|
|
for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
|
|
printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
|
|
return;
|
|
}
|
|
|
|
outs() << "DYNAMIC SYMBOL TABLE:\n";
|
|
if (!O->isELF()) {
|
|
reportWarning(
|
|
"this operation is not currently supported for this file format",
|
|
FileName);
|
|
return;
|
|
}
|
|
|
|
const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
|
|
for (auto I = ELF->getDynamicSymbolIterators().begin();
|
|
I != ELF->getDynamicSymbolIterators().end(); ++I)
|
|
printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
|
|
}
|
|
|
|
void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
|
|
StringRef FileName, StringRef ArchiveName,
|
|
StringRef ArchitectureName, bool DumpDynamic) {
|
|
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
|
|
uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
|
|
ArchitectureName);
|
|
if ((Address < StartAddress) || (Address > StopAddress))
|
|
return;
|
|
SymbolRef::Type Type =
|
|
unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
|
|
uint32_t Flags =
|
|
unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
|
|
|
|
// Don't ask a Mach-O STAB symbol for its section unless you know that
|
|
// STAB symbol's section field refers to a valid section index. Otherwise
|
|
// the symbol may error trying to load a section that does not exist.
|
|
bool IsSTAB = false;
|
|
if (MachO) {
|
|
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
|
|
uint8_t NType =
|
|
(MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
|
|
: MachO->getSymbolTableEntry(SymDRI).n_type);
|
|
if (NType & MachO::N_STAB)
|
|
IsSTAB = true;
|
|
}
|
|
section_iterator Section = IsSTAB
|
|
? O->section_end()
|
|
: unwrapOrError(Symbol.getSection(), FileName,
|
|
ArchiveName, ArchitectureName);
|
|
|
|
StringRef Name;
|
|
if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
|
|
if (Expected<StringRef> NameOrErr = Section->getName())
|
|
Name = *NameOrErr;
|
|
else
|
|
consumeError(NameOrErr.takeError());
|
|
|
|
} else {
|
|
Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
|
|
ArchitectureName);
|
|
}
|
|
|
|
bool Global = Flags & SymbolRef::SF_Global;
|
|
bool Weak = Flags & SymbolRef::SF_Weak;
|
|
bool Absolute = Flags & SymbolRef::SF_Absolute;
|
|
bool Common = Flags & SymbolRef::SF_Common;
|
|
bool Hidden = Flags & SymbolRef::SF_Hidden;
|
|
|
|
char GlobLoc = ' ';
|
|
if ((Section != O->section_end() || Absolute) && !Weak)
|
|
GlobLoc = Global ? 'g' : 'l';
|
|
char IFunc = ' ';
|
|
if (O->isELF()) {
|
|
if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
|
|
IFunc = 'i';
|
|
if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
|
|
GlobLoc = 'u';
|
|
}
|
|
|
|
char Debug = ' ';
|
|
if (DumpDynamic)
|
|
Debug = 'D';
|
|
else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
|
|
Debug = 'd';
|
|
|
|
char FileFunc = ' ';
|
|
if (Type == SymbolRef::ST_File)
|
|
FileFunc = 'f';
|
|
else if (Type == SymbolRef::ST_Function)
|
|
FileFunc = 'F';
|
|
else if (Type == SymbolRef::ST_Data)
|
|
FileFunc = 'O';
|
|
|
|
const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
|
|
|
|
outs() << format(Fmt, Address) << " "
|
|
<< GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
|
|
<< (Weak ? 'w' : ' ') // Weak?
|
|
<< ' ' // Constructor. Not supported yet.
|
|
<< ' ' // Warning. Not supported yet.
|
|
<< IFunc // Indirect reference to another symbol.
|
|
<< Debug // Debugging (d) or dynamic (D) symbol.
|
|
<< FileFunc // Name of function (F), file (f) or object (O).
|
|
<< ' ';
|
|
if (Absolute) {
|
|
outs() << "*ABS*";
|
|
} else if (Common) {
|
|
outs() << "*COM*";
|
|
} else if (Section == O->section_end()) {
|
|
outs() << "*UND*";
|
|
} else {
|
|
if (MachO) {
|
|
DataRefImpl DR = Section->getRawDataRefImpl();
|
|
StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
|
|
outs() << SegmentName << ",";
|
|
}
|
|
StringRef SectionName = unwrapOrError(Section->getName(), FileName);
|
|
outs() << SectionName;
|
|
}
|
|
|
|
if (Common || O->isELF()) {
|
|
uint64_t Val =
|
|
Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
|
|
outs() << '\t' << format(Fmt, Val);
|
|
}
|
|
|
|
if (O->isELF()) {
|
|
uint8_t Other = ELFSymbolRef(Symbol).getOther();
|
|
switch (Other) {
|
|
case ELF::STV_DEFAULT:
|
|
break;
|
|
case ELF::STV_INTERNAL:
|
|
outs() << " .internal";
|
|
break;
|
|
case ELF::STV_HIDDEN:
|
|
outs() << " .hidden";
|
|
break;
|
|
case ELF::STV_PROTECTED:
|
|
outs() << " .protected";
|
|
break;
|
|
default:
|
|
outs() << format(" 0x%02x", Other);
|
|
break;
|
|
}
|
|
} else if (Hidden) {
|
|
outs() << " .hidden";
|
|
}
|
|
|
|
if (Demangle)
|
|
outs() << ' ' << demangle(std::string(Name)) << '\n';
|
|
else
|
|
outs() << ' ' << Name << '\n';
|
|
}
|
|
|
|
static void printUnwindInfo(const ObjectFile *O) {
|
|
outs() << "Unwind info:\n\n";
|
|
|
|
if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
|
|
printCOFFUnwindInfo(Coff);
|
|
else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
|
|
printMachOUnwindInfo(MachO);
|
|
else
|
|
// TODO: Extract DWARF dump tool to objdump.
|
|
WithColor::error(errs(), ToolName)
|
|
<< "This operation is only currently supported "
|
|
"for COFF and MachO object files.\n";
|
|
}
|
|
|
|
/// Dump the raw contents of the __clangast section so the output can be piped
|
|
/// into llvm-bcanalyzer.
|
|
static void printRawClangAST(const ObjectFile *Obj) {
|
|
if (outs().is_displayed()) {
|
|
WithColor::error(errs(), ToolName)
|
|
<< "The -raw-clang-ast option will dump the raw binary contents of "
|
|
"the clang ast section.\n"
|
|
"Please redirect the output to a file or another program such as "
|
|
"llvm-bcanalyzer.\n";
|
|
return;
|
|
}
|
|
|
|
StringRef ClangASTSectionName("__clangast");
|
|
if (Obj->isCOFF()) {
|
|
ClangASTSectionName = "clangast";
|
|
}
|
|
|
|
Optional<object::SectionRef> ClangASTSection;
|
|
for (auto Sec : ToolSectionFilter(*Obj)) {
|
|
StringRef Name;
|
|
if (Expected<StringRef> NameOrErr = Sec.getName())
|
|
Name = *NameOrErr;
|
|
else
|
|
consumeError(NameOrErr.takeError());
|
|
|
|
if (Name == ClangASTSectionName) {
|
|
ClangASTSection = Sec;
|
|
break;
|
|
}
|
|
}
|
|
if (!ClangASTSection)
|
|
return;
|
|
|
|
StringRef ClangASTContents = unwrapOrError(
|
|
ClangASTSection.getValue().getContents(), Obj->getFileName());
|
|
outs().write(ClangASTContents.data(), ClangASTContents.size());
|
|
}
|
|
|
|
static void printFaultMaps(const ObjectFile *Obj) {
|
|
StringRef FaultMapSectionName;
|
|
|
|
if (Obj->isELF()) {
|
|
FaultMapSectionName = ".llvm_faultmaps";
|
|
} else if (Obj->isMachO()) {
|
|
FaultMapSectionName = "__llvm_faultmaps";
|
|
} else {
|
|
WithColor::error(errs(), ToolName)
|
|
<< "This operation is only currently supported "
|
|
"for ELF and Mach-O executable files.\n";
|
|
return;
|
|
}
|
|
|
|
Optional<object::SectionRef> FaultMapSection;
|
|
|
|
for (auto Sec : ToolSectionFilter(*Obj)) {
|
|
StringRef Name;
|
|
if (Expected<StringRef> NameOrErr = Sec.getName())
|
|
Name = *NameOrErr;
|
|
else
|
|
consumeError(NameOrErr.takeError());
|
|
|
|
if (Name == FaultMapSectionName) {
|
|
FaultMapSection = Sec;
|
|
break;
|
|
}
|
|
}
|
|
|
|
outs() << "FaultMap table:\n";
|
|
|
|
if (!FaultMapSection.hasValue()) {
|
|
outs() << "<not found>\n";
|
|
return;
|
|
}
|
|
|
|
StringRef FaultMapContents =
|
|
unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
|
|
FaultMapParser FMP(FaultMapContents.bytes_begin(),
|
|
FaultMapContents.bytes_end());
|
|
|
|
outs() << FMP;
|
|
}
|
|
|
|
static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
|
|
if (O->isELF()) {
|
|
printELFFileHeader(O);
|
|
printELFDynamicSection(O);
|
|
printELFSymbolVersionInfo(O);
|
|
return;
|
|
}
|
|
if (O->isCOFF())
|
|
return printCOFFFileHeader(O);
|
|
if (O->isWasm())
|
|
return printWasmFileHeader(O);
|
|
if (O->isMachO()) {
|
|
printMachOFileHeader(O);
|
|
if (!OnlyFirst)
|
|
printMachOLoadCommands(O);
|
|
return;
|
|
}
|
|
reportError(O->getFileName(), "Invalid/Unsupported object file format");
|
|
}
|
|
|
|
static void printFileHeaders(const ObjectFile *O) {
|
|
if (!O->isELF() && !O->isCOFF())
|
|
reportError(O->getFileName(), "Invalid/Unsupported object file format");
|
|
|
|
Triple::ArchType AT = O->getArch();
|
|
outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
|
|
uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
|
|
|
|
StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
|
|
outs() << "start address: "
|
|
<< "0x" << format(Fmt.data(), Address) << "\n\n";
|
|
}
|
|
|
|
static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
|
|
Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
|
|
if (!ModeOrErr) {
|
|
WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
|
|
consumeError(ModeOrErr.takeError());
|
|
return;
|
|
}
|
|
sys::fs::perms Mode = ModeOrErr.get();
|
|
outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
|
|
outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
|
|
outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
|
|
outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
|
|
outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
|
|
outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
|
|
outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
|
|
outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
|
|
outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
|
|
|
|
outs() << " ";
|
|
|
|
outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
|
|
unwrapOrError(C.getGID(), Filename),
|
|
unwrapOrError(C.getRawSize(), Filename));
|
|
|
|
StringRef RawLastModified = C.getRawLastModified();
|
|
unsigned Seconds;
|
|
if (RawLastModified.getAsInteger(10, Seconds))
|
|
outs() << "(date: \"" << RawLastModified
|
|
<< "\" contains non-decimal chars) ";
|
|
else {
|
|
// Since ctime(3) returns a 26 character string of the form:
|
|
// "Sun Sep 16 01:03:52 1973\n\0"
|
|
// just print 24 characters.
|
|
time_t t = Seconds;
|
|
outs() << format("%.24s ", ctime(&t));
|
|
}
|
|
|
|
StringRef Name = "";
|
|
Expected<StringRef> NameOrErr = C.getName();
|
|
if (!NameOrErr) {
|
|
consumeError(NameOrErr.takeError());
|
|
Name = unwrapOrError(C.getRawName(), Filename);
|
|
} else {
|
|
Name = NameOrErr.get();
|
|
}
|
|
outs() << Name << "\n";
|
|
}
|
|
|
|
// For ELF only now.
|
|
static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
|
|
if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
|
|
if (Elf->getEType() != ELF::ET_REL)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void checkForInvalidStartStopAddress(ObjectFile *Obj,
|
|
uint64_t Start, uint64_t Stop) {
|
|
if (!shouldWarnForInvalidStartStopAddress(Obj))
|
|
return;
|
|
|
|
for (const SectionRef &Section : Obj->sections())
|
|
if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
|
|
uint64_t BaseAddr = Section.getAddress();
|
|
uint64_t Size = Section.getSize();
|
|
if ((Start < BaseAddr + Size) && Stop > BaseAddr)
|
|
return;
|
|
}
|
|
|
|
if (StartAddress.getNumOccurrences() == 0)
|
|
reportWarning("no section has address less than 0x" +
|
|
Twine::utohexstr(Stop) + " specified by --stop-address",
|
|
Obj->getFileName());
|
|
else if (StopAddress.getNumOccurrences() == 0)
|
|
reportWarning("no section has address greater than or equal to 0x" +
|
|
Twine::utohexstr(Start) + " specified by --start-address",
|
|
Obj->getFileName());
|
|
else
|
|
reportWarning("no section overlaps the range [0x" +
|
|
Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
|
|
") specified by --start-address/--stop-address",
|
|
Obj->getFileName());
|
|
}
|
|
|
|
static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
|
|
const Archive::Child *C = nullptr) {
|
|
// Avoid other output when using a raw option.
|
|
if (!RawClangAST) {
|
|
outs() << '\n';
|
|
if (A)
|
|
outs() << A->getFileName() << "(" << O->getFileName() << ")";
|
|
else
|
|
outs() << O->getFileName();
|
|
outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
|
|
}
|
|
|
|
if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
|
|
checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
|
|
|
|
// Note: the order here matches GNU objdump for compatability.
|
|
StringRef ArchiveName = A ? A->getFileName() : "";
|
|
if (ArchiveHeaders && !MachOOpt && C)
|
|
printArchiveChild(ArchiveName, *C);
|
|
if (FileHeaders)
|
|
printFileHeaders(O);
|
|
if (PrivateHeaders || FirstPrivateHeader)
|
|
printPrivateFileHeaders(O, FirstPrivateHeader);
|
|
if (SectionHeaders)
|
|
printSectionHeaders(O);
|
|
if (SymbolTable)
|
|
printSymbolTable(O, ArchiveName);
|
|
if (DynamicSymbolTable)
|
|
printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
|
|
/*DumpDynamic=*/true);
|
|
if (DwarfDumpType != DIDT_Null) {
|
|
std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
|
|
// Dump the complete DWARF structure.
|
|
DIDumpOptions DumpOpts;
|
|
DumpOpts.DumpType = DwarfDumpType;
|
|
DICtx->dump(outs(), DumpOpts);
|
|
}
|
|
if (Relocations && !Disassemble)
|
|
printRelocations(O);
|
|
if (DynamicRelocations)
|
|
printDynamicRelocations(O);
|
|
if (SectionContents)
|
|
printSectionContents(O);
|
|
if (Disassemble)
|
|
disassembleObject(O, Relocations);
|
|
if (UnwindInfo)
|
|
printUnwindInfo(O);
|
|
|
|
// Mach-O specific options:
|
|
if (ExportsTrie)
|
|
printExportsTrie(O);
|
|
if (Rebase)
|
|
printRebaseTable(O);
|
|
if (Bind)
|
|
printBindTable(O);
|
|
if (LazyBind)
|
|
printLazyBindTable(O);
|
|
if (WeakBind)
|
|
printWeakBindTable(O);
|
|
|
|
// Other special sections:
|
|
if (RawClangAST)
|
|
printRawClangAST(O);
|
|
if (FaultMapSection)
|
|
printFaultMaps(O);
|
|
}
|
|
|
|
static void dumpObject(const COFFImportFile *I, const Archive *A,
|
|
const Archive::Child *C = nullptr) {
|
|
StringRef ArchiveName = A ? A->getFileName() : "";
|
|
|
|
// Avoid other output when using a raw option.
|
|
if (!RawClangAST)
|
|
outs() << '\n'
|
|
<< ArchiveName << "(" << I->getFileName() << ")"
|
|
<< ":\tfile format COFF-import-file"
|
|
<< "\n\n";
|
|
|
|
if (ArchiveHeaders && !MachOOpt && C)
|
|
printArchiveChild(ArchiveName, *C);
|
|
if (SymbolTable)
|
|
printCOFFSymbolTable(I);
|
|
}
|
|
|
|
/// Dump each object file in \a a;
|
|
static void dumpArchive(const Archive *A) {
|
|
Error Err = Error::success();
|
|
unsigned I = -1;
|
|
for (auto &C : A->children(Err)) {
|
|
++I;
|
|
Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
|
|
if (!ChildOrErr) {
|
|
if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
|
|
reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
|
|
continue;
|
|
}
|
|
if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
|
|
dumpObject(O, A, &C);
|
|
else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
|
|
dumpObject(I, A, &C);
|
|
else
|
|
reportError(errorCodeToError(object_error::invalid_file_type),
|
|
A->getFileName());
|
|
}
|
|
if (Err)
|
|
reportError(std::move(Err), A->getFileName());
|
|
}
|
|
|
|
/// Open file and figure out how to dump it.
|
|
static void dumpInput(StringRef file) {
|
|
// If we are using the Mach-O specific object file parser, then let it parse
|
|
// the file and process the command line options. So the -arch flags can
|
|
// be used to select specific slices, etc.
|
|
if (MachOOpt) {
|
|
parseInputMachO(file);
|
|
return;
|
|
}
|
|
|
|
// Attempt to open the binary.
|
|
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
|
|
Binary &Binary = *OBinary.getBinary();
|
|
|
|
if (Archive *A = dyn_cast<Archive>(&Binary))
|
|
dumpArchive(A);
|
|
else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
|
|
dumpObject(O);
|
|
else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
|
|
parseInputMachO(UB);
|
|
else
|
|
reportError(errorCodeToError(object_error::invalid_file_type), file);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
using namespace llvm;
|
|
InitLLVM X(argc, argv);
|
|
const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
|
|
cl::HideUnrelatedOptions(OptionFilters);
|
|
|
|
// Initialize targets and assembly printers/parsers.
|
|
InitializeAllTargetInfos();
|
|
InitializeAllTargetMCs();
|
|
InitializeAllDisassemblers();
|
|
|
|
// Register the target printer for --version.
|
|
cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
|
|
|
|
cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr,
|
|
/*EnvVar=*/nullptr,
|
|
/*LongOptionsUseDoubleDash=*/true);
|
|
|
|
if (StartAddress >= StopAddress)
|
|
reportCmdLineError("start address should be less than stop address");
|
|
|
|
ToolName = argv[0];
|
|
|
|
// Defaults to a.out if no filenames specified.
|
|
if (InputFilenames.empty())
|
|
InputFilenames.push_back("a.out");
|
|
|
|
if (AllHeaders)
|
|
ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
|
|
SectionHeaders = SymbolTable = true;
|
|
|
|
if (DisassembleAll || PrintSource || PrintLines ||
|
|
!DisassembleSymbols.empty())
|
|
Disassemble = true;
|
|
|
|
if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
|
|
!DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
|
|
!Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
|
|
!DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
|
|
!(MachOOpt &&
|
|
(Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
|
|
FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
|
|
LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
|
|
WeakBind || !FilterSections.empty()))) {
|
|
cl::PrintHelpMessage();
|
|
return 2;
|
|
}
|
|
|
|
DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
|
|
|
|
llvm::for_each(InputFilenames, dumpInput);
|
|
|
|
warnOnNoMatchForSections();
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|