1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 04:52:54 +02:00
llvm-mirror/lib/LTO/LTOBackend.cpp
Peter Collingbourne a2ab4a5c5d LTO: Mark undefined module asm symbols as used.
Marking them as used causes them to be considered visible outside of LTO. This
prevents the symbols from being internalized or discarded, either by GlobalDCE
or by summary-based dead stripping in ThinLTO.

This change makes it unnecessary to add these symbols to llvm.compiler.used
in the backend, as the symbols are kept alive by virtue of being external,
so remove the backend code that handles that.

Fixes PR32798.

Differential Revision: https://reviews.llvm.org/D32544

llvm-svn: 301438
2017-04-26 17:53:39 +00:00

449 lines
16 KiB
C++

//===-LTOBackend.cpp - LLVM Link Time Optimizer Backend -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the "backend" phase of LTO, i.e. it performs
// optimization and code generation on a loaded module. It is generally used
// internally by the LTO class but can also be used independently, for example
// to implement a standalone ThinLTO backend.
//
//===----------------------------------------------------------------------===//
#include "llvm/LTO/LTOBackend.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/LTO/LTO.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
#include "llvm/Transforms/Utils/SplitModule.h"
using namespace llvm;
using namespace lto;
static cl::opt<bool>
LTOUseNewPM("lto-use-new-pm",
cl::desc("Run LTO passes using the new pass manager"),
cl::init(false), cl::Hidden);
LLVM_ATTRIBUTE_NORETURN static void reportOpenError(StringRef Path, Twine Msg) {
errs() << "failed to open " << Path << ": " << Msg << '\n';
errs().flush();
exit(1);
}
Error Config::addSaveTemps(std::string OutputFileName,
bool UseInputModulePath) {
ShouldDiscardValueNames = false;
std::error_code EC;
ResolutionFile = llvm::make_unique<raw_fd_ostream>(
OutputFileName + "resolution.txt", EC, sys::fs::OpenFlags::F_Text);
if (EC)
return errorCodeToError(EC);
auto setHook = [&](std::string PathSuffix, ModuleHookFn &Hook) {
// Keep track of the hook provided by the linker, which also needs to run.
ModuleHookFn LinkerHook = Hook;
Hook = [=](unsigned Task, const Module &M) {
// If the linker's hook returned false, we need to pass that result
// through.
if (LinkerHook && !LinkerHook(Task, M))
return false;
std::string PathPrefix;
// If this is the combined module (not a ThinLTO backend compile) or the
// user hasn't requested using the input module's path, emit to a file
// named from the provided OutputFileName with the Task ID appended.
if (M.getModuleIdentifier() == "ld-temp.o" || !UseInputModulePath) {
PathPrefix = OutputFileName + utostr(Task);
} else
PathPrefix = M.getModuleIdentifier();
std::string Path = PathPrefix + "." + PathSuffix + ".bc";
std::error_code EC;
raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::F_None);
// Because -save-temps is a debugging feature, we report the error
// directly and exit.
if (EC)
reportOpenError(Path, EC.message());
WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false);
return true;
};
};
setHook("0.preopt", PreOptModuleHook);
setHook("1.promote", PostPromoteModuleHook);
setHook("2.internalize", PostInternalizeModuleHook);
setHook("3.import", PostImportModuleHook);
setHook("4.opt", PostOptModuleHook);
setHook("5.precodegen", PreCodeGenModuleHook);
CombinedIndexHook = [=](const ModuleSummaryIndex &Index) {
std::string Path = OutputFileName + "index.bc";
std::error_code EC;
raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::F_None);
// Because -save-temps is a debugging feature, we report the error
// directly and exit.
if (EC)
reportOpenError(Path, EC.message());
WriteIndexToFile(Index, OS);
return true;
};
return Error::success();
}
namespace {
std::unique_ptr<TargetMachine>
createTargetMachine(Config &Conf, StringRef TheTriple,
const Target *TheTarget) {
SubtargetFeatures Features;
Features.getDefaultSubtargetFeatures(Triple(TheTriple));
for (const std::string &A : Conf.MAttrs)
Features.AddFeature(A);
return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
TheTriple, Conf.CPU, Features.getString(), Conf.Options, Conf.RelocModel,
Conf.CodeModel, Conf.CGOptLevel));
}
static void runNewPMPasses(Module &Mod, TargetMachine *TM, unsigned OptLevel) {
PassBuilder PB(TM);
AAManager AA;
// Parse a custom AA pipeline if asked to.
assert(PB.parseAAPipeline(AA, "default"));
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
// Register the AA manager first so that our version is the one used.
FAM.registerPass([&] { return std::move(AA); });
// Register all the basic analyses with the managers.
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM;
// FIXME (davide): verify the input.
PassBuilder::OptimizationLevel OL;
switch (OptLevel) {
default:
llvm_unreachable("Invalid optimization level");
case 0:
OL = PassBuilder::O0;
break;
case 1:
OL = PassBuilder::O1;
break;
case 2:
OL = PassBuilder::O2;
break;
case 3:
OL = PassBuilder::O3;
break;
}
MPM = PB.buildLTODefaultPipeline(OL, false /* DebugLogging */);
MPM.run(Mod, MAM);
// FIXME (davide): verify the output.
}
static void runNewPMCustomPasses(Module &Mod, TargetMachine *TM,
std::string PipelineDesc,
std::string AAPipelineDesc,
bool DisableVerify) {
PassBuilder PB(TM);
AAManager AA;
// Parse a custom AA pipeline if asked to.
if (!AAPipelineDesc.empty())
if (!PB.parseAAPipeline(AA, AAPipelineDesc))
report_fatal_error("unable to parse AA pipeline description: " +
AAPipelineDesc);
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
// Register the AA manager first so that our version is the one used.
FAM.registerPass([&] { return std::move(AA); });
// Register all the basic analyses with the managers.
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM;
// Always verify the input.
MPM.addPass(VerifierPass());
// Now, add all the passes we've been requested to.
if (!PB.parsePassPipeline(MPM, PipelineDesc))
report_fatal_error("unable to parse pass pipeline description: " +
PipelineDesc);
if (!DisableVerify)
MPM.addPass(VerifierPass());
MPM.run(Mod, MAM);
}
static void runOldPMPasses(Config &Conf, Module &Mod, TargetMachine *TM,
bool IsThinLTO, ModuleSummaryIndex *ExportSummary,
const ModuleSummaryIndex *ImportSummary) {
legacy::PassManager passes;
passes.add(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis()));
PassManagerBuilder PMB;
PMB.LibraryInfo = new TargetLibraryInfoImpl(Triple(TM->getTargetTriple()));
PMB.Inliner = createFunctionInliningPass();
PMB.ExportSummary = ExportSummary;
PMB.ImportSummary = ImportSummary;
// Unconditionally verify input since it is not verified before this
// point and has unknown origin.
PMB.VerifyInput = true;
PMB.VerifyOutput = !Conf.DisableVerify;
PMB.LoopVectorize = true;
PMB.SLPVectorize = true;
PMB.OptLevel = Conf.OptLevel;
PMB.PGOSampleUse = Conf.SampleProfile;
if (IsThinLTO)
PMB.populateThinLTOPassManager(passes);
else
PMB.populateLTOPassManager(passes);
passes.run(Mod);
}
bool opt(Config &Conf, TargetMachine *TM, unsigned Task, Module &Mod,
bool IsThinLTO, ModuleSummaryIndex *ExportSummary,
const ModuleSummaryIndex *ImportSummary) {
// There's still no ThinLTO pipeline hooked up in the new pass manager,
// once there is one, we can just remove this.
if (LTOUseNewPM && IsThinLTO)
report_fatal_error("ThinLTO not supported with the new PM yet!");
// FIXME: Plumb the combined index into the new pass manager.
if (!Conf.OptPipeline.empty())
runNewPMCustomPasses(Mod, TM, Conf.OptPipeline, Conf.AAPipeline,
Conf.DisableVerify);
else if (LTOUseNewPM)
runNewPMPasses(Mod, TM, Conf.OptLevel);
else
runOldPMPasses(Conf, Mod, TM, IsThinLTO, ExportSummary, ImportSummary);
return !Conf.PostOptModuleHook || Conf.PostOptModuleHook(Task, Mod);
}
void codegen(Config &Conf, TargetMachine *TM, AddStreamFn AddStream,
unsigned Task, Module &Mod) {
if (Conf.PreCodeGenModuleHook && !Conf.PreCodeGenModuleHook(Task, Mod))
return;
auto Stream = AddStream(Task);
legacy::PassManager CodeGenPasses;
if (TM->addPassesToEmitFile(CodeGenPasses, *Stream->OS, Conf.CGFileType))
report_fatal_error("Failed to setup codegen");
CodeGenPasses.run(Mod);
}
void splitCodeGen(Config &C, TargetMachine *TM, AddStreamFn AddStream,
unsigned ParallelCodeGenParallelismLevel,
std::unique_ptr<Module> Mod) {
ThreadPool CodegenThreadPool(ParallelCodeGenParallelismLevel);
unsigned ThreadCount = 0;
const Target *T = &TM->getTarget();
SplitModule(
std::move(Mod), ParallelCodeGenParallelismLevel,
[&](std::unique_ptr<Module> MPart) {
// We want to clone the module in a new context to multi-thread the
// codegen. We do it by serializing partition modules to bitcode
// (while still on the main thread, in order to avoid data races) and
// spinning up new threads which deserialize the partitions into
// separate contexts.
// FIXME: Provide a more direct way to do this in LLVM.
SmallString<0> BC;
raw_svector_ostream BCOS(BC);
WriteBitcodeToFile(MPart.get(), BCOS);
// Enqueue the task
CodegenThreadPool.async(
[&](const SmallString<0> &BC, unsigned ThreadId) {
LTOLLVMContext Ctx(C);
Expected<std::unique_ptr<Module>> MOrErr = parseBitcodeFile(
MemoryBufferRef(StringRef(BC.data(), BC.size()), "ld-temp.o"),
Ctx);
if (!MOrErr)
report_fatal_error("Failed to read bitcode");
std::unique_ptr<Module> MPartInCtx = std::move(MOrErr.get());
std::unique_ptr<TargetMachine> TM =
createTargetMachine(C, MPartInCtx->getTargetTriple(), T);
codegen(C, TM.get(), AddStream, ThreadId, *MPartInCtx);
},
// Pass BC using std::move to ensure that it get moved rather than
// copied into the thread's context.
std::move(BC), ThreadCount++);
},
false);
// Because the inner lambda (which runs in a worker thread) captures our local
// variables, we need to wait for the worker threads to terminate before we
// can leave the function scope.
CodegenThreadPool.wait();
}
Expected<const Target *> initAndLookupTarget(Config &C, Module &Mod) {
if (!C.OverrideTriple.empty())
Mod.setTargetTriple(C.OverrideTriple);
else if (Mod.getTargetTriple().empty())
Mod.setTargetTriple(C.DefaultTriple);
std::string Msg;
const Target *T = TargetRegistry::lookupTarget(Mod.getTargetTriple(), Msg);
if (!T)
return make_error<StringError>(Msg, inconvertibleErrorCode());
return T;
}
}
static void
finalizeOptimizationRemarks(std::unique_ptr<tool_output_file> DiagOutputFile) {
// Make sure we flush the diagnostic remarks file in case the linker doesn't
// call the global destructors before exiting.
if (!DiagOutputFile)
return;
DiagOutputFile->keep();
DiagOutputFile->os().flush();
}
Error lto::backend(Config &C, AddStreamFn AddStream,
unsigned ParallelCodeGenParallelismLevel,
std::unique_ptr<Module> Mod,
ModuleSummaryIndex &CombinedIndex) {
Expected<const Target *> TOrErr = initAndLookupTarget(C, *Mod);
if (!TOrErr)
return TOrErr.takeError();
std::unique_ptr<TargetMachine> TM =
createTargetMachine(C, Mod->getTargetTriple(), *TOrErr);
// Setup optimization remarks.
auto DiagFileOrErr = lto::setupOptimizationRemarks(
Mod->getContext(), C.RemarksFilename, C.RemarksWithHotness);
if (!DiagFileOrErr)
return DiagFileOrErr.takeError();
auto DiagnosticOutputFile = std::move(*DiagFileOrErr);
if (!C.CodeGenOnly) {
if (!opt(C, TM.get(), 0, *Mod, /*IsThinLTO=*/false,
/*ExportSummary=*/&CombinedIndex, /*ImportSummary=*/nullptr)) {
finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
return Error::success();
}
}
if (ParallelCodeGenParallelismLevel == 1) {
codegen(C, TM.get(), AddStream, 0, *Mod);
} else {
splitCodeGen(C, TM.get(), AddStream, ParallelCodeGenParallelismLevel,
std::move(Mod));
}
finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
return Error::success();
}
Error lto::thinBackend(Config &Conf, unsigned Task, AddStreamFn AddStream,
Module &Mod, const ModuleSummaryIndex &CombinedIndex,
const FunctionImporter::ImportMapTy &ImportList,
const GVSummaryMapTy &DefinedGlobals,
MapVector<StringRef, BitcodeModule> &ModuleMap) {
Expected<const Target *> TOrErr = initAndLookupTarget(Conf, Mod);
if (!TOrErr)
return TOrErr.takeError();
std::unique_ptr<TargetMachine> TM =
createTargetMachine(Conf, Mod.getTargetTriple(), *TOrErr);
if (Conf.CodeGenOnly) {
codegen(Conf, TM.get(), AddStream, Task, Mod);
return Error::success();
}
if (Conf.PreOptModuleHook && !Conf.PreOptModuleHook(Task, Mod))
return Error::success();
renameModuleForThinLTO(Mod, CombinedIndex);
thinLTOResolveWeakForLinkerModule(Mod, DefinedGlobals);
if (Conf.PostPromoteModuleHook && !Conf.PostPromoteModuleHook(Task, Mod))
return Error::success();
if (!DefinedGlobals.empty())
thinLTOInternalizeModule(Mod, DefinedGlobals);
if (Conf.PostInternalizeModuleHook &&
!Conf.PostInternalizeModuleHook(Task, Mod))
return Error::success();
auto ModuleLoader = [&](StringRef Identifier) {
assert(Mod.getContext().isODRUniquingDebugTypes() &&
"ODR Type uniquing should be enabled on the context");
auto I = ModuleMap.find(Identifier);
assert(I != ModuleMap.end());
return I->second.getLazyModule(Mod.getContext(),
/*ShouldLazyLoadMetadata=*/true,
/*IsImporting*/ true);
};
FunctionImporter Importer(CombinedIndex, ModuleLoader);
if (Error Err = Importer.importFunctions(Mod, ImportList).takeError())
return Err;
if (Conf.PostImportModuleHook && !Conf.PostImportModuleHook(Task, Mod))
return Error::success();
if (!opt(Conf, TM.get(), Task, Mod, /*IsThinLTO=*/true,
/*ExportSummary=*/nullptr, /*ImportSummary=*/&CombinedIndex))
return Error::success();
codegen(Conf, TM.get(), AddStream, Task, Mod);
return Error::success();
}