1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00
llvm-mirror/test/CodeGen/RISCV/double-imm.ll
Alex Bradbury 16ca26b4d0 [RISCV] Add DAGCombine for (SplitF64 (ConstantFP x))
The SplitF64 node is used on RV32D to convert an f64 directly to a pair of i32
(necessary as bitcasting to i64 isn't legal). When performed on a ConstantFP,
this will result in a FP load from the constant pool followed by a store to
the stack and two integer loads from the stack (necessary as there is no way
to directly move between f64 FPRs and i32 GPRs on RV32D). It's always cheaper
to just materialise integers for the lo and hi parts of the FP constant, so do
that instead.

llvm-svn: 357341
2019-03-30 09:15:47 +00:00

62 lines
2.0 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=riscv32 -mattr=+d -verify-machineinstrs < %s \
; RUN: | FileCheck -check-prefix=RV32IFD %s
; RUN: llc -mtriple=riscv64 -mattr=+d -verify-machineinstrs < %s \
; RUN: | FileCheck -check-prefix=RV64IFD %s
define double @double_imm() nounwind {
; TODO: Should probably prefer fld or ld on RV64 rather than materialising an
; expensive constant.
;
; RV32IFD-LABEL: double_imm:
; RV32IFD: # %bb.0:
; RV32IFD-NEXT: lui a0, 345155
; RV32IFD-NEXT: addi a0, a0, -744
; RV32IFD-NEXT: lui a1, 262290
; RV32IFD-NEXT: addi a1, a1, 507
; RV32IFD-NEXT: ret
;
; RV64IFD-LABEL: double_imm:
; RV64IFD: # %bb.0:
; RV64IFD-NEXT: lui a0, 512
; RV64IFD-NEXT: addiw a0, a0, 1169
; RV64IFD-NEXT: slli a0, a0, 15
; RV64IFD-NEXT: addi a0, a0, -299
; RV64IFD-NEXT: slli a0, a0, 14
; RV64IFD-NEXT: addi a0, a0, 1091
; RV64IFD-NEXT: slli a0, a0, 12
; RV64IFD-NEXT: addi a0, a0, -744
; RV64IFD-NEXT: ret
ret double 3.1415926535897931159979634685441851615905761718750
}
define double @double_imm_op(double %a) nounwind {
; RV32IFD-LABEL: double_imm_op:
; RV32IFD: # %bb.0:
; RV32IFD-NEXT: addi sp, sp, -16
; RV32IFD-NEXT: sw a0, 8(sp)
; RV32IFD-NEXT: sw a1, 12(sp)
; RV32IFD-NEXT: fld ft0, 8(sp)
; RV32IFD-NEXT: lui a0, %hi(.LCPI1_0)
; RV32IFD-NEXT: addi a0, a0, %lo(.LCPI1_0)
; RV32IFD-NEXT: fld ft1, 0(a0)
; RV32IFD-NEXT: fadd.d ft0, ft0, ft1
; RV32IFD-NEXT: fsd ft0, 8(sp)
; RV32IFD-NEXT: lw a0, 8(sp)
; RV32IFD-NEXT: lw a1, 12(sp)
; RV32IFD-NEXT: addi sp, sp, 16
; RV32IFD-NEXT: ret
;
; RV64IFD-LABEL: double_imm_op:
; RV64IFD: # %bb.0:
; RV64IFD-NEXT: fmv.d.x ft0, a0
; RV64IFD-NEXT: lui a0, %hi(.LCPI1_0)
; RV64IFD-NEXT: addi a0, a0, %lo(.LCPI1_0)
; RV64IFD-NEXT: fld ft1, 0(a0)
; RV64IFD-NEXT: fadd.d ft0, ft0, ft1
; RV64IFD-NEXT: fmv.x.d a0, ft0
; RV64IFD-NEXT: ret
%1 = fadd double %a, 1.0
ret double %1
}