1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/test/CodeGen/X86/shift_minsize.ll
Sjoerd Meijer 068d715728 [SelectionDAG] Codesize: don't expand SHIFT to SHIFT_PARTS
And instead just generate a libcall. My motivating example on ARM was a simple:
  
  shl i64 %A, %B

for which the code bloat is quite significant. For other targets that also
accept __int128/i128 such as AArch64 and X86, it is also beneficial for these
cases to generate a libcall when optimising for minsize. On these 64-bit targets,
the 64-bits shifts are of course unaffected because the SHIFT/SHIFT_PARTS
lowering operation action is not set to custom/expand.

Differential Revision: https://reviews.llvm.org/D57386

llvm-svn: 352736
2019-01-31 08:07:30 +00:00

135 lines
5.0 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown | FileCheck %s
define i64 @f0(i64 %val, i64 %amt) minsize optsize {
; CHECK-LABEL: f0:
; CHECK: # %bb.0:
; CHECK-NEXT: movq %rsi, %rcx
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: # kill: def $cl killed $cl killed $rcx
; CHECK-NEXT: shlq %cl, %rax
; CHECK-NEXT: retq
%res = shl i64 %val, %amt
ret i64 %res
}
define i32 @f1(i64 %x, i64 %y) minsize optsize {
; CHECK-LABEL: f1:
; CHECK: # %bb.0:
; CHECK-NEXT: movq %rsi, %rcx
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: # kill: def $cl killed $cl killed $rcx
; CHECK-NEXT: shlq %cl, %rax
; CHECK-NEXT: # kill: def $eax killed $eax killed $rax
; CHECK-NEXT: retq
%a = shl i64 %x, %y
%b = trunc i64 %a to i32
ret i32 %b
}
define i32 @f2(i64 %x, i64 %y) minsize optsize {
; CHECK-LABEL: f2:
; CHECK: # %bb.0:
; CHECK-NEXT: movq %rsi, %rcx
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: # kill: def $cl killed $cl killed $rcx
; CHECK-NEXT: sarq %cl, %rax
; CHECK-NEXT: # kill: def $eax killed $eax killed $rax
; CHECK-NEXT: retq
%a = ashr i64 %x, %y
%b = trunc i64 %a to i32
ret i32 %b
}
define i32 @f3(i64 %x, i64 %y) minsize optsize {
; CHECK-LABEL: f3:
; CHECK: # %bb.0:
; CHECK-NEXT: movq %rsi, %rcx
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: # kill: def $cl killed $cl killed $rcx
; CHECK-NEXT: shrq %cl, %rax
; CHECK-NEXT: # kill: def $eax killed $eax killed $rax
; CHECK-NEXT: retq
%a = lshr i64 %x, %y
%b = trunc i64 %a to i32
ret i32 %b
}
define dso_local { i64, i64 } @shl128(i64 %x.coerce0, i64 %x.coerce1, i8 signext %y) minsize optsize {
; CHECK-LABEL: shl128:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: .cfi_def_cfa_offset 16
; CHECK-NEXT: movzbl %dl, %edx
; CHECK-NEXT: callq __ashlti3
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: .cfi_def_cfa_offset 8
; CHECK-NEXT: retq
entry:
%x.sroa.2.0.insert.ext = zext i64 %x.coerce1 to i128
%x.sroa.2.0.insert.shift = shl nuw i128 %x.sroa.2.0.insert.ext, 64
%x.sroa.0.0.insert.ext = zext i64 %x.coerce0 to i128
%x.sroa.0.0.insert.insert = or i128 %x.sroa.2.0.insert.shift, %x.sroa.0.0.insert.ext
%conv = sext i8 %y to i32
%sh_prom = zext i32 %conv to i128
%shl = shl i128 %x.sroa.0.0.insert.insert, %sh_prom
%retval.sroa.0.0.extract.trunc = trunc i128 %shl to i64
%retval.sroa.2.0.extract.shift = lshr i128 %shl, 64
%retval.sroa.2.0.extract.trunc = trunc i128 %retval.sroa.2.0.extract.shift to i64
%.fca.0.insert = insertvalue { i64, i64 } undef, i64 %retval.sroa.0.0.extract.trunc, 0
%.fca.1.insert = insertvalue { i64, i64 } %.fca.0.insert, i64 %retval.sroa.2.0.extract.trunc, 1
ret { i64, i64 } %.fca.1.insert
}
define dso_local { i64, i64 } @ashr128(i64 %x.coerce0, i64 %x.coerce1, i8 signext %y) minsize optsize {
; CHECK-LABEL: ashr128:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: .cfi_def_cfa_offset 16
; CHECK-NEXT: callq __ashrti3
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: .cfi_def_cfa_offset 8
; CHECK-NEXT: retq
entry:
%x.sroa.2.0.insert.ext = zext i64 %x.coerce1 to i128
%x.sroa.2.0.insert.shift = shl nuw i128 %x.sroa.2.0.insert.ext, 64
%x.sroa.0.0.insert.ext = zext i64 %x.coerce0 to i128
%x.sroa.0.0.insert.insert = or i128 %x.sroa.2.0.insert.shift, %x.sroa.0.0.insert.ext
%conv = sext i8 %y to i32
%sh_prom = zext i32 %conv to i128
%shr = ashr i128 %x.sroa.0.0.insert.insert, %sh_prom
%retval.sroa.0.0.extract.trunc = trunc i128 %shr to i64
%retval.sroa.2.0.extract.shift = lshr i128 %shr, 64
%retval.sroa.2.0.extract.trunc = trunc i128 %retval.sroa.2.0.extract.shift to i64
%.fca.0.insert = insertvalue { i64, i64 } undef, i64 %retval.sroa.0.0.extract.trunc, 0
%.fca.1.insert = insertvalue { i64, i64 } %.fca.0.insert, i64 %retval.sroa.2.0.extract.trunc, 1
ret { i64, i64 } %.fca.1.insert
}
define dso_local { i64, i64 } @lshr128(i64 %x.coerce0, i64 %x.coerce1, i8 signext %y) minsize optsize {
; CHECK-LABEL: lshr128:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: .cfi_def_cfa_offset 16
; CHECK-NEXT: movzbl %dl, %edx
; CHECK-NEXT: callq __lshrti3
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: .cfi_def_cfa_offset 8
; CHECK-NEXT: retq
entry:
%x.sroa.2.0.insert.ext = zext i64 %x.coerce1 to i128
%x.sroa.2.0.insert.shift = shl nuw i128 %x.sroa.2.0.insert.ext, 64
%x.sroa.0.0.insert.ext = zext i64 %x.coerce0 to i128
%x.sroa.0.0.insert.insert = or i128 %x.sroa.2.0.insert.shift, %x.sroa.0.0.insert.ext
%conv = sext i8 %y to i32
%sh_prom = zext i32 %conv to i128
%shr = lshr i128 %x.sroa.0.0.insert.insert, %sh_prom
%retval.sroa.0.0.extract.trunc = trunc i128 %shr to i64
%retval.sroa.2.0.extract.shift = lshr i128 %shr, 64
%retval.sroa.2.0.extract.trunc = trunc i128 %retval.sroa.2.0.extract.shift to i64
%.fca.0.insert = insertvalue { i64, i64 } undef, i64 %retval.sroa.0.0.extract.trunc, 0
%.fca.1.insert = insertvalue { i64, i64 } %.fca.0.insert, i64 %retval.sroa.2.0.extract.trunc, 1
ret { i64, i64 } %.fca.1.insert
}