1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/examples/OrcV2Examples/LLJITWithRemoteDebugging/LLJITWithRemoteDebugging.cpp

259 lines
9.7 KiB
C++

//===--- LLJITWithRemoteDebugging.cpp - LLJIT targeting a child process ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This example shows how to use LLJIT and JITLink for out-of-process execution
// with debug support. A few notes beforehand:
//
// * Debuggers must implement the GDB JIT interface (gdb, udb, lldb 12+).
// * Debug support is currently limited to ELF on x86-64 platforms that run
// Unix-like systems.
// * There is a test for this example and it ships an IR file that is prepared
// for the instructions below.
//
//
// The following command line session provides a complete walkthrough of the
// feature using LLDB 12:
//
// [Terminal 1] Prepare a debuggable out-of-process JIT session:
//
// > cd llvm-project/build
// > ninja LLJITWithRemoteDebugging llvm-jitlink-executor
// > cp ../llvm/test/Examples/OrcV2Examples/Inputs/argc_sub1_elf.ll .
// > bin/LLJITWithRemoteDebugging --wait-for-debugger argc_sub1_elf.ll
// Found out-of-process executor: bin/llvm-jitlink-executor
// Launched executor in subprocess: 65535
// Attach a debugger and press any key to continue.
//
//
// [Terminal 2] Attach a debugger to the child process:
//
// (lldb) log enable lldb jit
// (lldb) settings set plugin.jit-loader.gdb.enable on
// (lldb) settings set target.source-map Inputs/ \
// /path/to/llvm-project/llvm/test/Examples/OrcV2Examples/Inputs/
// (lldb) attach -p 65535
// JITLoaderGDB::SetJITBreakpoint looking for JIT register hook
// JITLoaderGDB::SetJITBreakpoint setting JIT breakpoint
// Process 65535 stopped
// (lldb) b sub1
// Breakpoint 1: no locations (pending).
// WARNING: Unable to resolve breakpoint to any actual locations.
// (lldb) c
// Process 65535 resuming
//
//
// [Terminal 1] Press a key to start code generation and execution:
//
// Parsed input IR code from: argc_sub1_elf.ll
// Initialized LLJIT for remote executor
// Running: argc_sub1_elf.ll
//
//
// [Terminal 2] Breakpoint hits; we change the argc value from 1 to 42:
//
// (lldb) JITLoaderGDB::JITDebugBreakpointHit hit JIT breakpoint
// JITLoaderGDB::ReadJITDescriptorImpl registering JIT entry at 0x106b34000
// 1 location added to breakpoint 1
// Process 65535 stopped
// * thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
// frame #0: JIT(0x106b34000)`sub1(x=1) at argc_sub1.c:1:28
// -> 1 int sub1(int x) { return x - 1; }
// 2 int main(int argc, char **argv) { return sub1(argc); }
// (lldb) p x
// (int) $0 = 1
// (lldb) expr x = 42
// (int) $1 = 42
// (lldb) c
//
//
// [Terminal 1] Example output reflects the modified value:
//
// Exit code: 41
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/ExecutionEngine/Orc/ThreadSafeModule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "../ExampleModules.h"
#include "RemoteJITUtils.h"
#include <memory>
#include <string>
using namespace llvm;
using namespace llvm::orc;
// The LLVM IR file to run.
static cl::list<std::string> InputFiles(cl::Positional, cl::OneOrMore,
cl::desc("<input files>"));
// Command line arguments to pass to the JITed main function.
static cl::list<std::string> InputArgv("args", cl::Positional,
cl::desc("<program arguments>..."),
cl::ZeroOrMore, cl::PositionalEatsArgs);
// Given paths must exist on the remote target.
static cl::list<std::string>
Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking"),
cl::value_desc("filename"), cl::ZeroOrMore);
// File path of the executable to launch for execution in a child process.
// Inter-process communication will go through stdin/stdout pipes.
static cl::opt<std::string>
OOPExecutor("executor", cl::desc("Set the out-of-process executor"),
cl::value_desc("filename"));
// Network address of a running executor process that we can connected through a
// TCP socket. It may run locally or on a remote machine.
static cl::opt<std::string> OOPExecutorConnect(
"connect",
cl::desc("Connect to an out-of-process executor through a TCP socket"),
cl::value_desc("<hostname>:<port>"));
// Give the user a chance to connect a debugger. Once we connected the executor
// process, wait for the user to press a key (and print out its PID if it's a
// child process).
static cl::opt<bool>
WaitForDebugger("wait-for-debugger",
cl::desc("Wait for user input before entering JITed code"),
cl::init(false));
ExitOnError ExitOnErr;
static std::unique_ptr<JITLinkExecutor> connectExecutor(const char *Argv0,
ExecutionSession &ES) {
// Connect to a running out-of-process executor through a TCP socket.
if (!OOPExecutorConnect.empty()) {
std::unique_ptr<TCPSocketJITLinkExecutor> Exec =
ExitOnErr(JITLinkExecutor::ConnectTCPSocket(OOPExecutorConnect, ES));
outs() << "Connected to executor at " << OOPExecutorConnect << "\n";
if (WaitForDebugger) {
outs() << "Attach a debugger and press any key to continue.\n";
fflush(stdin);
getchar();
}
return std::move(Exec);
}
// Launch a out-of-process executor locally in a child process.
std::unique_ptr<ChildProcessJITLinkExecutor> Exec = ExitOnErr(
OOPExecutor.empty() ? JITLinkExecutor::FindLocal(Argv0)
: JITLinkExecutor::CreateLocal(OOPExecutor));
outs() << "Found out-of-process executor: " << Exec->getPath() << "\n";
ExitOnErr(Exec->launch(ES));
if (WaitForDebugger) {
outs() << "Launched executor in subprocess: " << Exec->getPID() << "\n"
<< "Attach a debugger and press any key to continue.\n";
fflush(stdin);
getchar();
}
return std::move(Exec);
}
int main(int argc, char *argv[]) {
InitLLVM X(argc, argv);
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
ExitOnErr.setBanner(std::string(argv[0]) + ": ");
cl::ParseCommandLineOptions(argc, argv, "LLJITWithRemoteDebugging");
auto ES = std::make_unique<ExecutionSession>();
ES->setErrorReporter([&](Error Err) { ExitOnErr(std::move(Err)); });
// Launch/connect the out-of-process executor.
std::unique_ptr<JITLinkExecutor> Executor = connectExecutor(argv[0], *ES);
// Load the given IR files.
std::vector<ThreadSafeModule> TSMs;
for (const std::string &Path : InputFiles) {
outs() << "Parsing input IR code from: " << Path << "\n";
TSMs.push_back(ExitOnErr(parseExampleModuleFromFile(Path)));
}
StringRef TT;
StringRef MainModuleName;
TSMs.front().withModuleDo([&MainModuleName, &TT](Module &M) {
MainModuleName = M.getName();
TT = M.getTargetTriple();
});
for (const ThreadSafeModule &TSM : TSMs)
ExitOnErr(TSM.withModuleDo([TT, MainModuleName](Module &M) -> Error {
if (M.getTargetTriple() != TT)
return make_error<StringError>(
formatv("Different target triples in input files:\n"
" '{0}' in '{1}'\n '{2}' in '{3}'",
TT, MainModuleName, M.getTargetTriple(), M.getName()),
inconvertibleErrorCode());
return Error::success();
}));
// Create a target machine that matches the input triple.
JITTargetMachineBuilder JTMB((Triple(TT)));
JTMB.setCodeModel(CodeModel::Small);
JTMB.setRelocationModel(Reloc::PIC_);
// Create LLJIT and destroy it before disconnecting the target process.
{
outs() << "Initializing LLJIT for remote executor\n";
auto J = ExitOnErr(LLJITBuilder()
.setExecutionSession(std::move(ES))
.setJITTargetMachineBuilder(std::move(JTMB))
.setObjectLinkingLayerCreator(std::ref(*Executor))
.create());
// Add plugin for debug support.
ExitOnErr(Executor->addDebugSupport(J->getObjLinkingLayer()));
// Load required shared libraries on the remote target and add a generator
// for each of it, so the compiler can lookup their symbols.
for (const std::string &Path : Dylibs)
J->getMainJITDylib().addGenerator(ExitOnErr(Executor->loadDylib(Path)));
// Add the loaded IR module to the JIT. This will set up symbol tables and
// prepare for materialization.
for (ThreadSafeModule &TSM : TSMs)
ExitOnErr(J->addIRModule(std::move(TSM)));
// The example uses a non-lazy JIT for simplicity. Thus, looking up the main
// function will materialize all reachable code. It also triggers debug
// registration in the remote target process.
JITEvaluatedSymbol MainFn = ExitOnErr(J->lookup("main"));
outs() << "Running: main(";
int Pos = 0;
for (const std::string &Arg : InputArgv)
outs() << (Pos++ == 0 ? "" : ", ") << "\"" << Arg << "\"";
outs() << ")\n";
// Execute the code in the remote target process and dump the result. With
// the debugger attached to the target, it should be possible to inspect the
// JITed code as if it was compiled statically.
int Result = ExitOnErr(Executor->runAsMain(MainFn, InputArgv));
outs() << "Exit code: " << Result << "\n";
}
ExitOnErr(Executor->disconnect());
return 0;
}