mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
cd147e5596
comparisons with a constant. This allows us to compile isnan to: _foo: fcmpu cr7, f1, f1 mfcr r2 rlwinm r3, r2, 0, 31, 31 blr instead of: LCPI1_0: ; float .space 4 _foo: lis r2, ha16(LCPI1_0) lfs f0, lo16(LCPI1_0)(r2) fcmpu cr7, f1, f0 mfcr r2 rlwinm r3, r2, 0, 31, 31 blr llvm-svn: 45405
1600 lines
41 KiB
Plaintext
1600 lines
41 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Missing features:
|
|
- Support for SSE4: http://www.intel.com/software/penryn
|
|
http://softwarecommunity.intel.com/isn/Downloads/Intel%20SSE4%20Programming%20Reference.pdf
|
|
- support for 3DNow!
|
|
- weird abis?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
CodeGen/X86/lea-3.ll:test3 should be a single LEA, not a shift/move. The X86
|
|
backend knows how to three-addressify this shift, but it appears the register
|
|
allocator isn't even asking it to do so in this case. We should investigate
|
|
why this isn't happening, it could have significant impact on other important
|
|
cases for X86 as well.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should be one DIV/IDIV instruction, not a libcall:
|
|
|
|
unsigned test(unsigned long long X, unsigned Y) {
|
|
return X/Y;
|
|
}
|
|
|
|
This can be done trivially with a custom legalizer. What about overflow
|
|
though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improvements to the multiply -> shift/add algorithm:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improve code like this (occurs fairly frequently, e.g. in LLVM):
|
|
long long foo(int x) { return 1LL << x; }
|
|
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
|
|
|
|
Another useful one would be ~0ULL >> X and ~0ULL << X.
|
|
|
|
One better solution for 1LL << x is:
|
|
xorl %eax, %eax
|
|
xorl %edx, %edx
|
|
testb $32, %cl
|
|
sete %al
|
|
setne %dl
|
|
sall %cl, %eax
|
|
sall %cl, %edx
|
|
|
|
But that requires good 8-bit subreg support.
|
|
|
|
64-bit shifts (in general) expand to really bad code. Instead of using
|
|
cmovs, we should expand to a conditional branch like GCC produces.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Compile this:
|
|
_Bool f(_Bool a) { return a!=1; }
|
|
|
|
into:
|
|
movzbl %dil, %eax
|
|
xorl $1, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some isel ideas:
|
|
|
|
1. Dynamic programming based approach when compile time if not an
|
|
issue.
|
|
2. Code duplication (addressing mode) during isel.
|
|
3. Other ideas from "Register-Sensitive Selection, Duplication, and
|
|
Sequencing of Instructions".
|
|
4. Scheduling for reduced register pressure. E.g. "Minimum Register
|
|
Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
|
|
and other related papers.
|
|
http://citeseer.ist.psu.edu/govindarajan01minimum.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should we promote i16 to i32 to avoid partial register update stalls?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leave any_extend as pseudo instruction and hint to register
|
|
allocator. Delay codegen until post register allocation.
|
|
Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach
|
|
the coalescer how to deal with it though.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Count leading zeros and count trailing zeros:
|
|
|
|
int clz(int X) { return __builtin_clz(X); }
|
|
int ctz(int X) { return __builtin_ctz(X); }
|
|
|
|
$ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel
|
|
clz:
|
|
bsr %eax, DWORD PTR [%esp+4]
|
|
xor %eax, 31
|
|
ret
|
|
ctz:
|
|
bsf %eax, DWORD PTR [%esp+4]
|
|
ret
|
|
|
|
however, check that these are defined for 0 and 32. Our intrinsics are, GCC's
|
|
aren't.
|
|
|
|
Another example (use predsimplify to eliminate a select):
|
|
|
|
int foo (unsigned long j) {
|
|
if (j)
|
|
return __builtin_ffs (j) - 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It appears icc use push for parameter passing. Need to investigate.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Only use inc/neg/not instructions on processors where they are faster than
|
|
add/sub/xor. They are slower on the P4 due to only updating some processor
|
|
flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The instruction selector sometimes misses folding a load into a compare. The
|
|
pattern is written as (cmp reg, (load p)). Because the compare isn't
|
|
commutative, it is not matched with the load on both sides. The dag combiner
|
|
should be made smart enough to cannonicalize the load into the RHS of a compare
|
|
when it can invert the result of the compare for free.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
How about intrinsics? An example is:
|
|
*res = _mm_mulhi_epu16(*A, _mm_mul_epu32(*B, *C));
|
|
|
|
compiles to
|
|
pmuludq (%eax), %xmm0
|
|
movl 8(%esp), %eax
|
|
movdqa (%eax), %xmm1
|
|
pmulhuw %xmm0, %xmm1
|
|
|
|
The transformation probably requires a X86 specific pass or a DAG combiner
|
|
target specific hook.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In many cases, LLVM generates code like this:
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
on some processors (which ones?), it is more efficient to do this:
|
|
|
|
_test:
|
|
movl 8(%esp), %ebx
|
|
xor %eax, %eax
|
|
cmpl %ebx, 4(%esp)
|
|
setl %al
|
|
ret
|
|
|
|
Doing this correctly is tricky though, as the xor clobbers the flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate bts/btr/etc instructions on targets where they are cheap or
|
|
when codesize is important. e.g., for:
|
|
|
|
void setbit(int *target, int bit) {
|
|
*target |= (1 << bit);
|
|
}
|
|
void clearbit(int *target, int bit) {
|
|
*target &= ~(1 << bit);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Instead of the following for memset char*, 1, 10:
|
|
|
|
movl $16843009, 4(%edx)
|
|
movl $16843009, (%edx)
|
|
movw $257, 8(%edx)
|
|
|
|
It might be better to generate
|
|
|
|
movl $16843009, %eax
|
|
movl %eax, 4(%edx)
|
|
movl %eax, (%edx)
|
|
movw al, 8(%edx)
|
|
|
|
when we can spare a register. It reduces code size.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
|
|
get this:
|
|
|
|
int %test1(int %X) {
|
|
%Y = div int %X, 8
|
|
ret int %Y
|
|
}
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
sarl $31, %ecx
|
|
shrl $29, %ecx
|
|
addl %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
GCC knows several different ways to codegen it, one of which is this:
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
cmpl $-1, %eax
|
|
leal 7(%eax), %ecx
|
|
cmovle %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
which is probably slower, but it's interesting at least :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The first BB of this code:
|
|
|
|
declare bool %foo()
|
|
int %bar() {
|
|
%V = call bool %foo()
|
|
br bool %V, label %T, label %F
|
|
T:
|
|
ret int 1
|
|
F:
|
|
call bool %foo()
|
|
ret int 12
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_bar:
|
|
subl $12, %esp
|
|
call L_foo$stub
|
|
xorb $1, %al
|
|
testb %al, %al
|
|
jne LBB_bar_2 # F
|
|
|
|
It would be better to emit "cmp %al, 1" than a xor and test.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
|
|
We should leave these as libcalls for everything over a much lower threshold,
|
|
since libc is hand tuned for medium and large mem ops (avoiding RFO for large
|
|
stores, TLB preheating, etc)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize this into something reasonable:
|
|
x * copysign(1.0, y) * copysign(1.0, z)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize copysign(x, *y) to use an integer load from y.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
%X = weak global int 0
|
|
|
|
void %foo(int %N) {
|
|
%N = cast int %N to uint
|
|
%tmp.24 = setgt int %N, 0
|
|
br bool %tmp.24, label %no_exit, label %return
|
|
|
|
no_exit:
|
|
%indvar = phi uint [ 0, %entry ], [ %indvar.next, %no_exit ]
|
|
%i.0.0 = cast uint %indvar to int
|
|
volatile store int %i.0.0, int* %X
|
|
%indvar.next = add uint %indvar, 1
|
|
%exitcond = seteq uint %indvar.next, %N
|
|
br bool %exitcond, label %return, label %no_exit
|
|
|
|
return:
|
|
ret void
|
|
}
|
|
|
|
compiles into:
|
|
|
|
.text
|
|
.align 4
|
|
.globl _foo
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
cmpl $1, %eax
|
|
jl LBB_foo_4 # return
|
|
LBB_foo_1: # no_exit.preheader
|
|
xorl %ecx, %ecx
|
|
LBB_foo_2: # no_exit
|
|
movl L_X$non_lazy_ptr, %edx
|
|
movl %ecx, (%edx)
|
|
incl %ecx
|
|
cmpl %eax, %ecx
|
|
jne LBB_foo_2 # no_exit
|
|
LBB_foo_3: # return.loopexit
|
|
LBB_foo_4: # return
|
|
ret
|
|
|
|
We should hoist "movl L_X$non_lazy_ptr, %edx" out of the loop after
|
|
remateralization is implemented. This can be accomplished with 1) a target
|
|
dependent LICM pass or 2) makeing SelectDAG represent the whole function.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following tests perform worse with LSR:
|
|
|
|
lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are generating far worse code than gcc:
|
|
|
|
volatile short X, Y;
|
|
|
|
void foo(int N) {
|
|
int i;
|
|
for (i = 0; i < N; i++) { X = i; Y = i*4; }
|
|
}
|
|
|
|
LBB1_1: # entry.bb_crit_edge
|
|
xorl %ecx, %ecx
|
|
xorw %dx, %dx
|
|
LBB1_2: # bb
|
|
movl L_X$non_lazy_ptr, %esi
|
|
movw %cx, (%esi)
|
|
movl L_Y$non_lazy_ptr, %esi
|
|
movw %dx, (%esi)
|
|
addw $4, %dx
|
|
incl %ecx
|
|
cmpl %eax, %ecx
|
|
jne LBB1_2 # bb
|
|
|
|
vs.
|
|
|
|
xorl %edx, %edx
|
|
movl L_X$non_lazy_ptr-"L00000000001$pb"(%ebx), %esi
|
|
movl L_Y$non_lazy_ptr-"L00000000001$pb"(%ebx), %ecx
|
|
L4:
|
|
movw %dx, (%esi)
|
|
leal 0(,%edx,4), %eax
|
|
movw %ax, (%ecx)
|
|
addl $1, %edx
|
|
cmpl %edx, %edi
|
|
jne L4
|
|
|
|
This is due to the lack of post regalloc LICM.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach the coalescer to coalesce vregs of different register classes. e.g. FR32 /
|
|
FR64 to VR128.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
mov $reg, 48(%esp)
|
|
...
|
|
leal 48(%esp), %eax
|
|
mov %eax, (%esp)
|
|
call _foo
|
|
|
|
Obviously it would have been better for the first mov (or any op) to store
|
|
directly %esp[0] if there are no other uses.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Adding to the list of cmp / test poor codegen issues:
|
|
|
|
int test(__m128 *A, __m128 *B) {
|
|
if (_mm_comige_ss(*A, *B))
|
|
return 3;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
movl 4(%esp), %eax
|
|
movaps (%eax), %xmm1
|
|
comiss %xmm0, %xmm1
|
|
setae %al
|
|
movzbl %al, %ecx
|
|
movl $3, %eax
|
|
movl $4, %edx
|
|
cmpl $0, %ecx
|
|
cmove %edx, %eax
|
|
ret
|
|
|
|
Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
|
|
are a number of issues. 1) We are introducing a setcc between the result of the
|
|
intrisic call and select. 2) The intrinsic is expected to produce a i32 value
|
|
so a any extend (which becomes a zero extend) is added.
|
|
|
|
We probably need some kind of target DAG combine hook to fix this.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We generate significantly worse code for this than GCC:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
|
|
http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
|
|
|
|
There is also one case we do worse on PPC.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
If shorter, we should use things like:
|
|
movzwl %ax, %eax
|
|
instead of:
|
|
andl $65535, %EAX
|
|
|
|
The former can also be used when the two-addressy nature of the 'and' would
|
|
require a copy to be inserted (in X86InstrInfo::convertToThreeAddress).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider this:
|
|
|
|
typedef struct pair { float A, B; } pair;
|
|
void pairtest(pair P, float *FP) {
|
|
*FP = P.A+P.B;
|
|
}
|
|
|
|
We currently generate this code with llvmgcc4:
|
|
|
|
_pairtest:
|
|
movl 8(%esp), %eax
|
|
movl 4(%esp), %ecx
|
|
movd %eax, %xmm0
|
|
movd %ecx, %xmm1
|
|
addss %xmm0, %xmm1
|
|
movl 12(%esp), %eax
|
|
movss %xmm1, (%eax)
|
|
ret
|
|
|
|
we should be able to generate:
|
|
_pairtest:
|
|
movss 4(%esp), %xmm0
|
|
movl 12(%esp), %eax
|
|
addss 8(%esp), %xmm0
|
|
movss %xmm0, (%eax)
|
|
ret
|
|
|
|
The issue is that llvmgcc4 is forcing the struct to memory, then passing it as
|
|
integer chunks. It does this so that structs like {short,short} are passed in
|
|
a single 32-bit integer stack slot. We should handle the safe cases above much
|
|
nicer, while still handling the hard cases.
|
|
|
|
While true in general, in this specific case we could do better by promoting
|
|
load int + bitcast to float -> load fload. This basically needs alignment info,
|
|
the code is already implemented (but disabled) in dag combine).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Another instruction selector deficiency:
|
|
|
|
void %bar() {
|
|
%tmp = load int (int)** %foo
|
|
%tmp = tail call int %tmp( int 3 )
|
|
ret void
|
|
}
|
|
|
|
_bar:
|
|
subl $12, %esp
|
|
movl L_foo$non_lazy_ptr, %eax
|
|
movl (%eax), %eax
|
|
call *%eax
|
|
addl $12, %esp
|
|
ret
|
|
|
|
The current isel scheme will not allow the load to be folded in the call since
|
|
the load's chain result is read by the callseq_start.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this:
|
|
|
|
int test(int a)
|
|
{
|
|
return a * 3;
|
|
}
|
|
|
|
We currently emits
|
|
imull $3, 4(%esp), %eax
|
|
|
|
Perhaps this is what we really should generate is? Is imull three or four
|
|
cycles? Note: ICC generates this:
|
|
movl 4(%esp), %eax
|
|
leal (%eax,%eax,2), %eax
|
|
|
|
The current instruction priority is based on pattern complexity. The former is
|
|
more "complex" because it folds a load so the latter will not be emitted.
|
|
|
|
Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
|
|
should always try to match LEA first since the LEA matching code does some
|
|
estimate to determine whether the match is profitable.
|
|
|
|
However, if we care more about code size, then imull is better. It's two bytes
|
|
shorter than movl + leal.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Implement CTTZ, CTLZ with bsf and bsr. GCC produces:
|
|
|
|
int ctz_(unsigned X) { return __builtin_ctz(X); }
|
|
int clz_(unsigned X) { return __builtin_clz(X); }
|
|
int ffs_(unsigned X) { return __builtin_ffs(X); }
|
|
|
|
_ctz_:
|
|
bsfl 4(%esp), %eax
|
|
ret
|
|
_clz_:
|
|
bsrl 4(%esp), %eax
|
|
xorl $31, %eax
|
|
ret
|
|
_ffs_:
|
|
movl $-1, %edx
|
|
bsfl 4(%esp), %eax
|
|
cmove %edx, %eax
|
|
addl $1, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It appears gcc place string data with linkonce linkage in
|
|
.section __TEXT,__const_coal,coalesced instead of
|
|
.section __DATA,__const_coal,coalesced.
|
|
Take a look at darwin.h, there are other Darwin assembler directives that we
|
|
do not make use of.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
int %foo(int* %a, int %t) {
|
|
entry:
|
|
br label %cond_true
|
|
|
|
cond_true: ; preds = %cond_true, %entry
|
|
%x.0.0 = phi int [ 0, %entry ], [ %tmp9, %cond_true ]
|
|
%t_addr.0.0 = phi int [ %t, %entry ], [ %tmp7, %cond_true ]
|
|
%tmp2 = getelementptr int* %a, int %x.0.0
|
|
%tmp3 = load int* %tmp2 ; <int> [#uses=1]
|
|
%tmp5 = add int %t_addr.0.0, %x.0.0 ; <int> [#uses=1]
|
|
%tmp7 = add int %tmp5, %tmp3 ; <int> [#uses=2]
|
|
%tmp9 = add int %x.0.0, 1 ; <int> [#uses=2]
|
|
%tmp = setgt int %tmp9, 39 ; <bool> [#uses=1]
|
|
br bool %tmp, label %bb12, label %cond_true
|
|
|
|
bb12: ; preds = %cond_true
|
|
ret int %tmp7
|
|
}
|
|
|
|
is pessimized by -loop-reduce and -indvars
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
u32 to float conversion improvement:
|
|
|
|
float uint32_2_float( unsigned u ) {
|
|
float fl = (int) (u & 0xffff);
|
|
float fh = (int) (u >> 16);
|
|
fh *= 0x1.0p16f;
|
|
return fh + fl;
|
|
}
|
|
|
|
00000000 subl $0x04,%esp
|
|
00000003 movl 0x08(%esp,1),%eax
|
|
00000007 movl %eax,%ecx
|
|
00000009 shrl $0x10,%ecx
|
|
0000000c cvtsi2ss %ecx,%xmm0
|
|
00000010 andl $0x0000ffff,%eax
|
|
00000015 cvtsi2ss %eax,%xmm1
|
|
00000019 mulss 0x00000078,%xmm0
|
|
00000021 addss %xmm1,%xmm0
|
|
00000025 movss %xmm0,(%esp,1)
|
|
0000002a flds (%esp,1)
|
|
0000002d addl $0x04,%esp
|
|
00000030 ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
When using fastcc abi, align stack slot of argument of type double on 8 byte
|
|
boundary to improve performance.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Codegen:
|
|
|
|
int f(int a, int b) {
|
|
if (a == 4 || a == 6)
|
|
b++;
|
|
return b;
|
|
}
|
|
|
|
|
|
as:
|
|
|
|
or eax, 2
|
|
cmp eax, 6
|
|
jz label
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting
|
|
simplifications for integer "x cmp y ? a : b". For example, instead of:
|
|
|
|
int G;
|
|
void f(int X, int Y) {
|
|
G = X < 0 ? 14 : 13;
|
|
}
|
|
|
|
compiling to:
|
|
|
|
_f:
|
|
movl $14, %eax
|
|
movl $13, %ecx
|
|
movl 4(%esp), %edx
|
|
testl %edx, %edx
|
|
cmovl %eax, %ecx
|
|
movl %ecx, _G
|
|
ret
|
|
|
|
it could be:
|
|
_f:
|
|
movl 4(%esp), %eax
|
|
sarl $31, %eax
|
|
notl %eax
|
|
addl $14, %eax
|
|
movl %eax, _G
|
|
ret
|
|
|
|
etc.
|
|
|
|
Another is:
|
|
int usesbb(unsigned int a, unsigned int b) {
|
|
return (a < b ? -1 : 0);
|
|
}
|
|
to:
|
|
_usesbb:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
sbbl %eax, %eax
|
|
ret
|
|
|
|
instead of:
|
|
_usesbb:
|
|
xorl %eax, %eax
|
|
movl 8(%esp), %ecx
|
|
cmpl %ecx, 4(%esp)
|
|
movl $4294967295, %ecx
|
|
cmovb %ecx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Currently we don't have elimination of redundant stack manipulations. Consider
|
|
the code:
|
|
|
|
int %main() {
|
|
entry:
|
|
call fastcc void %test1( )
|
|
call fastcc void %test2( sbyte* cast (void ()* %test1 to sbyte*) )
|
|
ret int 0
|
|
}
|
|
|
|
declare fastcc void %test1()
|
|
|
|
declare fastcc void %test2(sbyte*)
|
|
|
|
|
|
This currently compiles to:
|
|
|
|
subl $16, %esp
|
|
call _test5
|
|
addl $12, %esp
|
|
subl $16, %esp
|
|
movl $_test5, (%esp)
|
|
call _test6
|
|
addl $12, %esp
|
|
|
|
The add\sub pair is really unneeded here.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider the expansion of:
|
|
|
|
uint %test3(uint %X) {
|
|
%tmp1 = rem uint %X, 255
|
|
ret uint %tmp1
|
|
}
|
|
|
|
Currently it compiles to:
|
|
|
|
...
|
|
movl $2155905153, %ecx
|
|
movl 8(%esp), %esi
|
|
movl %esi, %eax
|
|
mull %ecx
|
|
...
|
|
|
|
This could be "reassociated" into:
|
|
|
|
movl $2155905153, %eax
|
|
movl 8(%esp), %ecx
|
|
mull %ecx
|
|
|
|
to avoid the copy. In fact, the existing two-address stuff would do this
|
|
except that mul isn't a commutative 2-addr instruction. I guess this has
|
|
to be done at isel time based on the #uses to mul?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Make sure the instruction which starts a loop does not cross a cacheline
|
|
boundary. This requires knowning the exact length of each machine instruction.
|
|
That is somewhat complicated, but doable. Example 256.bzip2:
|
|
|
|
In the new trace, the hot loop has an instruction which crosses a cacheline
|
|
boundary. In addition to potential cache misses, this can't help decoding as I
|
|
imagine there has to be some kind of complicated decoder reset and realignment
|
|
to grab the bytes from the next cacheline.
|
|
|
|
532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines
|
|
942 942 0x3d03 movl %dh, (1809(%esp, %esi)
|
|
937 937 0x3d0a incl %esi
|
|
3 3 0x3d0b cmpb %bl, %dl
|
|
27 27 0x3d0d jnz 0x000062db <main+11707>
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This could be a single 16-bit load.
|
|
|
|
int f(char *p) {
|
|
if ((p[0] == 1) & (p[1] == 2)) return 1;
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should inline lrintf and probably other libc functions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Start using the flags more. For example, compile:
|
|
|
|
int add_zf(int *x, int y, int a, int b) {
|
|
if ((*x += y) == 0)
|
|
return a;
|
|
else
|
|
return b;
|
|
}
|
|
|
|
to:
|
|
addl %esi, (%rdi)
|
|
movl %edx, %eax
|
|
cmovne %ecx, %eax
|
|
ret
|
|
instead of:
|
|
|
|
_add_zf:
|
|
addl (%rdi), %esi
|
|
movl %esi, (%rdi)
|
|
testl %esi, %esi
|
|
cmove %edx, %ecx
|
|
movl %ecx, %eax
|
|
ret
|
|
|
|
and:
|
|
|
|
int add_zf(int *x, int y, int a, int b) {
|
|
if ((*x + y) < 0)
|
|
return a;
|
|
else
|
|
return b;
|
|
}
|
|
|
|
to:
|
|
|
|
add_zf:
|
|
addl (%rdi), %esi
|
|
movl %edx, %eax
|
|
cmovns %ecx, %eax
|
|
ret
|
|
|
|
instead of:
|
|
|
|
_add_zf:
|
|
addl (%rdi), %esi
|
|
testl %esi, %esi
|
|
cmovs %edx, %ecx
|
|
movl %ecx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These two functions have identical effects:
|
|
|
|
unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;}
|
|
unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
|
|
|
|
We currently compile them to:
|
|
|
|
_f:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
incl %ecx
|
|
movl 8(%esp), %edx
|
|
cmpl %edx, %ecx
|
|
jne LBB1_2 #UnifiedReturnBlock
|
|
LBB1_1: #cond_true
|
|
addl $2, %eax
|
|
ret
|
|
LBB1_2: #UnifiedReturnBlock
|
|
movl %ecx, %eax
|
|
ret
|
|
_f2:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
incl %ecx
|
|
cmpl 8(%esp), %ecx
|
|
sete %cl
|
|
movzbl %cl, %ecx
|
|
leal 1(%ecx,%eax), %eax
|
|
ret
|
|
|
|
both of which are inferior to GCC's:
|
|
|
|
_f:
|
|
movl 4(%esp), %edx
|
|
leal 1(%edx), %eax
|
|
addl $2, %edx
|
|
cmpl 8(%esp), %eax
|
|
cmove %edx, %eax
|
|
ret
|
|
_f2:
|
|
movl 4(%esp), %eax
|
|
addl $1, %eax
|
|
xorl %edx, %edx
|
|
cmpl 8(%esp), %eax
|
|
sete %dl
|
|
addl %edx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
void test(int X) {
|
|
if (X) abort();
|
|
}
|
|
|
|
is currently compiled to:
|
|
|
|
_test:
|
|
subl $12, %esp
|
|
cmpl $0, 16(%esp)
|
|
jne LBB1_1
|
|
addl $12, %esp
|
|
ret
|
|
LBB1_1:
|
|
call L_abort$stub
|
|
|
|
It would be better to produce:
|
|
|
|
_test:
|
|
subl $12, %esp
|
|
cmpl $0, 16(%esp)
|
|
jne L_abort$stub
|
|
addl $12, %esp
|
|
ret
|
|
|
|
This can be applied to any no-return function call that takes no arguments etc.
|
|
Alternatively, the stack save/restore logic could be shrink-wrapped, producing
|
|
something like this:
|
|
|
|
_test:
|
|
cmpl $0, 4(%esp)
|
|
jne LBB1_1
|
|
ret
|
|
LBB1_1:
|
|
subl $12, %esp
|
|
call L_abort$stub
|
|
|
|
Both are useful in different situations. Finally, it could be shrink-wrapped
|
|
and tail called, like this:
|
|
|
|
_test:
|
|
cmpl $0, 4(%esp)
|
|
jne LBB1_1
|
|
ret
|
|
LBB1_1:
|
|
pop %eax # realign stack.
|
|
call L_abort$stub
|
|
|
|
Though this probably isn't worth it.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We need to teach the codegen to convert two-address INC instructions to LEA
|
|
when the flags are dead (likewise dec). For example, on X86-64, compile:
|
|
|
|
int foo(int A, int B) {
|
|
return A+1;
|
|
}
|
|
|
|
to:
|
|
|
|
_foo:
|
|
leal 1(%edi), %eax
|
|
ret
|
|
|
|
instead of:
|
|
|
|
_foo:
|
|
incl %edi
|
|
movl %edi, %eax
|
|
ret
|
|
|
|
Another example is:
|
|
|
|
;; X's live range extends beyond the shift, so the register allocator
|
|
;; cannot coalesce it with Y. Because of this, a copy needs to be
|
|
;; emitted before the shift to save the register value before it is
|
|
;; clobbered. However, this copy is not needed if the register
|
|
;; allocator turns the shift into an LEA. This also occurs for ADD.
|
|
|
|
; Check that the shift gets turned into an LEA.
|
|
; RUN: llvm-upgrade < %s | llvm-as | llc -march=x86 -x86-asm-syntax=intel | \
|
|
; RUN: not grep {mov E.X, E.X}
|
|
|
|
%G = external global int
|
|
|
|
int %test1(int %X, int %Y) {
|
|
%Z = add int %X, %Y
|
|
volatile store int %Y, int* %G
|
|
volatile store int %Z, int* %G
|
|
ret int %X
|
|
}
|
|
|
|
int %test2(int %X) {
|
|
%Z = add int %X, 1 ;; inc
|
|
volatile store int %Z, int* %G
|
|
ret int %X
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
|
|
a neg instead of a sub instruction. Consider:
|
|
|
|
int test(char X) { return 7-X; }
|
|
|
|
we currently produce:
|
|
_test:
|
|
movl $7, %eax
|
|
movsbl 4(%esp), %ecx
|
|
subl %ecx, %eax
|
|
ret
|
|
|
|
We would use one fewer register if codegen'd as:
|
|
|
|
movsbl 4(%esp), %eax
|
|
neg %eax
|
|
add $7, %eax
|
|
ret
|
|
|
|
Note that this isn't beneficial if the load can be folded into the sub. In
|
|
this case, we want a sub:
|
|
|
|
int test(int X) { return 7-X; }
|
|
_test:
|
|
movl $7, %eax
|
|
subl 4(%esp), %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For code like:
|
|
phi (undef, x)
|
|
|
|
We get an implicit def on the undef side. If the phi is spilled, we then get:
|
|
implicitdef xmm1
|
|
store xmm1 -> stack
|
|
|
|
It should be possible to teach the x86 backend to "fold" the store into the
|
|
implicitdef, which just deletes the implicit def.
|
|
|
|
These instructions should go away:
|
|
#IMPLICIT_DEF %xmm1
|
|
movaps %xmm1, 192(%esp)
|
|
movaps %xmm1, 224(%esp)
|
|
movaps %xmm1, 176(%esp)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This is a "commutable two-address" register coallescing deficiency:
|
|
|
|
define <4 x float> @test1(<4 x float> %V) {
|
|
entry:
|
|
%tmp8 = shufflevector <4 x float> %V, <4 x float> undef,
|
|
<4 x i32> < i32 3, i32 2, i32 1, i32 0 >
|
|
%add = add <4 x float> %tmp8, %V
|
|
ret <4 x float> %add
|
|
}
|
|
|
|
this codegens to:
|
|
|
|
_test1:
|
|
pshufd $27, %xmm0, %xmm1
|
|
addps %xmm0, %xmm1
|
|
movaps %xmm1, %xmm0
|
|
ret
|
|
|
|
instead of:
|
|
|
|
_test1:
|
|
pshufd $27, %xmm0, %xmm1
|
|
addps %xmm1, %xmm0
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leaf functions that require one 4-byte spill slot have a prolog like this:
|
|
|
|
_foo:
|
|
pushl %esi
|
|
subl $4, %esp
|
|
...
|
|
and an epilog like this:
|
|
addl $4, %esp
|
|
popl %esi
|
|
ret
|
|
|
|
It would be smaller, and potentially faster, to push eax on entry and to
|
|
pop into a dummy register instead of using addl/subl of esp. Just don't pop
|
|
into any return registers :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The X86 backend should fold (branch (or (setcc, setcc))) into multiple
|
|
branches. We generate really poor code for:
|
|
|
|
double testf(double a) {
|
|
return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
|
|
}
|
|
|
|
For example, the entry BB is:
|
|
|
|
_testf:
|
|
subl $20, %esp
|
|
pxor %xmm0, %xmm0
|
|
movsd 24(%esp), %xmm1
|
|
ucomisd %xmm0, %xmm1
|
|
setnp %al
|
|
sete %cl
|
|
testb %cl, %al
|
|
jne LBB1_5 # UnifiedReturnBlock
|
|
LBB1_1: # cond_true
|
|
|
|
|
|
it would be better to replace the last four instructions with:
|
|
|
|
jp LBB1_1
|
|
je LBB1_5
|
|
LBB1_1:
|
|
|
|
We also codegen the inner ?: into a diamond:
|
|
|
|
cvtss2sd LCPI1_0(%rip), %xmm2
|
|
cvtss2sd LCPI1_1(%rip), %xmm3
|
|
ucomisd %xmm1, %xmm0
|
|
ja LBB1_3 # cond_true
|
|
LBB1_2: # cond_true
|
|
movapd %xmm3, %xmm2
|
|
LBB1_3: # cond_true
|
|
movapd %xmm2, %xmm0
|
|
ret
|
|
|
|
We should sink the load into xmm3 into the LBB1_2 block. This should
|
|
be pretty easy, and will nuke all the copies.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This:
|
|
#include <algorithm>
|
|
inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
|
|
{ return std::make_pair(a + b, a + b < a); }
|
|
bool no_overflow(unsigned a, unsigned b)
|
|
{ return !full_add(a, b).second; }
|
|
|
|
Should compile to:
|
|
|
|
|
|
_Z11no_overflowjj:
|
|
addl %edi, %esi
|
|
setae %al
|
|
ret
|
|
|
|
on x86-64, not:
|
|
|
|
__Z11no_overflowjj:
|
|
addl %edi, %esi
|
|
cmpl %edi, %esi
|
|
setae %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Re-materialize MOV32r0 etc. with xor instead of changing them to moves if the
|
|
condition register is dead. xor reg reg is shorter than mov reg, #0.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We aren't matching RMW instructions aggressively
|
|
enough. Here's a reduced testcase (more in PR1160):
|
|
|
|
define void @test(i32* %huge_ptr, i32* %target_ptr) {
|
|
%A = load i32* %huge_ptr ; <i32> [#uses=1]
|
|
%B = load i32* %target_ptr ; <i32> [#uses=1]
|
|
%C = or i32 %A, %B ; <i32> [#uses=1]
|
|
store i32 %C, i32* %target_ptr
|
|
ret void
|
|
}
|
|
|
|
$ llvm-as < t.ll | llc -march=x86-64
|
|
|
|
_test:
|
|
movl (%rdi), %eax
|
|
orl (%rsi), %eax
|
|
movl %eax, (%rsi)
|
|
ret
|
|
|
|
That should be something like:
|
|
|
|
_test:
|
|
movl (%rdi), %eax
|
|
orl %eax, (%rsi)
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following code:
|
|
|
|
bb114.preheader: ; preds = %cond_next94
|
|
%tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1]
|
|
%tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1]
|
|
%tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1]
|
|
%tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1]
|
|
%tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1]
|
|
%tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2]
|
|
%tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1]
|
|
%tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1]
|
|
%tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1]
|
|
%tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1]
|
|
%tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1]
|
|
br label %bb114
|
|
|
|
produces:
|
|
|
|
LBB3_5: # bb114.preheader
|
|
movswl -68(%ebp), %eax
|
|
movl $32, %ecx
|
|
movl %ecx, -80(%ebp)
|
|
subl %eax, -80(%ebp)
|
|
movswl -52(%ebp), %eax
|
|
movl %ecx, -84(%ebp)
|
|
subl %eax, -84(%ebp)
|
|
movswl -70(%ebp), %eax
|
|
movl %ecx, -88(%ebp)
|
|
subl %eax, -88(%ebp)
|
|
movswl -50(%ebp), %eax
|
|
subl %eax, %ecx
|
|
movl %ecx, -76(%ebp)
|
|
movswl -42(%ebp), %eax
|
|
movl %eax, -92(%ebp)
|
|
movswl -66(%ebp), %eax
|
|
movl %eax, -96(%ebp)
|
|
movw $0, -98(%ebp)
|
|
|
|
This appears to be bad because the RA is not folding the store to the stack
|
|
slot into the movl. The above instructions could be:
|
|
movl $32, -80(%ebp)
|
|
...
|
|
movl $32, -84(%ebp)
|
|
...
|
|
This seems like a cross between remat and spill folding.
|
|
|
|
This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't
|
|
change, so we could simply subtract %eax from %ecx first and then use %ecx (or
|
|
vice-versa).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this code:
|
|
|
|
cond_next603: ; preds = %bb493, %cond_true336, %cond_next599
|
|
%v.21050.1 = phi i32 [ %v.21050.0, %cond_next599 ], [ %tmp344, %cond_true336 ], [ %v.2, %bb493 ] ; <i32> [#uses=1]
|
|
%maxz.21051.1 = phi i32 [ %maxz.21051.0, %cond_next599 ], [ 0, %cond_true336 ], [ %maxz.2, %bb493 ] ; <i32> [#uses=2]
|
|
%cnt.01055.1 = phi i32 [ %cnt.01055.0, %cond_next599 ], [ 0, %cond_true336 ], [ %cnt.0, %bb493 ] ; <i32> [#uses=2]
|
|
%byteptr.9 = phi i8* [ %byteptr.12, %cond_next599 ], [ %byteptr.0, %cond_true336 ], [ %byteptr.10, %bb493 ] ; <i8*> [#uses=9]
|
|
%bitptr.6 = phi i32 [ %tmp5571104.1, %cond_next599 ], [ %tmp4921049, %cond_true336 ], [ %bitptr.7, %bb493 ] ; <i32> [#uses=4]
|
|
%source.5 = phi i32 [ %tmp602, %cond_next599 ], [ %source.0, %cond_true336 ], [ %source.6, %bb493 ] ; <i32> [#uses=7]
|
|
%tmp606 = getelementptr %struct.const_tables* @tables, i32 0, i32 0, i32 %cnt.01055.1 ; <i8*> [#uses=1]
|
|
%tmp607 = load i8* %tmp606, align 1 ; <i8> [#uses=1]
|
|
|
|
We produce this:
|
|
|
|
LBB4_70: # cond_next603
|
|
movl -20(%ebp), %esi
|
|
movl L_tables$non_lazy_ptr-"L4$pb"(%esi), %esi
|
|
|
|
However, ICC caches this information before the loop and produces this:
|
|
|
|
movl 88(%esp), %eax #481.12
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
%tmp659 = icmp slt i16 %tmp654, 0 ; <i1> [#uses=1]
|
|
br i1 %tmp659, label %cond_true662, label %cond_next715
|
|
|
|
produces this:
|
|
|
|
testw %cx, %cx
|
|
movswl %cx, %esi
|
|
jns LBB4_109 # cond_next715
|
|
|
|
Shark tells us that using %cx in the testw instruction is sub-optimal. It
|
|
suggests using the 32-bit register (which is what ICC uses).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
rdar://5506677 - We compile this:
|
|
|
|
define i32 @foo(double %x) {
|
|
%x14 = bitcast double %x to i64 ; <i64> [#uses=1]
|
|
%tmp713 = trunc i64 %x14 to i32 ; <i32> [#uses=1]
|
|
%tmp8 = and i32 %tmp713, 2147483647 ; <i32> [#uses=1]
|
|
ret i32 %tmp8
|
|
}
|
|
|
|
to:
|
|
|
|
_foo:
|
|
subl $12, %esp
|
|
fldl 16(%esp)
|
|
fstpl (%esp)
|
|
movl $2147483647, %eax
|
|
andl (%esp), %eax
|
|
addl $12, %esp
|
|
#FP_REG_KILL
|
|
ret
|
|
|
|
It would be much better to eliminate the fldl/fstpl by folding the bitcast
|
|
into the load SDNode. That would give us:
|
|
|
|
_foo:
|
|
movl $2147483647, %eax
|
|
andl 4(%esp), %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile this:
|
|
|
|
void compare (long long foo) {
|
|
if (foo < 4294967297LL)
|
|
abort();
|
|
}
|
|
|
|
to:
|
|
|
|
_compare:
|
|
subl $12, %esp
|
|
cmpl $0, 16(%esp)
|
|
setne %al
|
|
movzbw %al, %ax
|
|
cmpl $1, 20(%esp)
|
|
setg %cl
|
|
movzbw %cl, %cx
|
|
cmove %ax, %cx
|
|
movw %cx, %ax
|
|
testb $1, %al
|
|
je LBB1_2 # cond_true
|
|
|
|
(also really horrible code on ppc). This is due to the expand code for 64-bit
|
|
compares. GCC produces multiple branches, which is much nicer:
|
|
|
|
_compare:
|
|
pushl %ebp
|
|
movl %esp, %ebp
|
|
subl $8, %esp
|
|
movl 8(%ebp), %eax
|
|
movl 12(%ebp), %edx
|
|
subl $1, %edx
|
|
jg L5
|
|
L7:
|
|
jl L4
|
|
cmpl $0, %eax
|
|
jbe L4
|
|
L5:
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Tail call optimization improvements: Tail call optimization currently
|
|
pushes all arguments on the top of the stack (their normal place for
|
|
non-tail call optimized calls) before moving them to actual stack
|
|
slot. This is done to prevent overwriting of parameters (see example
|
|
below) that might be used, since the arguments of the callee
|
|
overwrites caller's arguments.
|
|
|
|
example:
|
|
|
|
int callee(int32, int64);
|
|
int caller(int32 arg1, int32 arg2) {
|
|
int64 local = arg2 * 2;
|
|
return callee(arg2, (int64)local);
|
|
}
|
|
|
|
[arg1] [!arg2 no longer valid since we moved local onto it]
|
|
[arg2] -> [(int64)
|
|
[RETADDR] local ]
|
|
|
|
Moving arg1 onto the stack slot of callee function would overwrite
|
|
arg2 of the caller.
|
|
|
|
Possible optimizations:
|
|
|
|
- Only push those arguments to the top of the stack that are actual
|
|
parameters of the caller function and have no local value in the
|
|
caller.
|
|
|
|
In the above example local does not need to be pushed onto the top
|
|
of the stack as it is definitely not a caller's function
|
|
parameter.
|
|
|
|
- Analyse the actual parameters of the callee to see which would
|
|
overwrite a caller parameter which is used by the callee and only
|
|
push them onto the top of the stack.
|
|
|
|
int callee (int32 arg1, int32 arg2);
|
|
int caller (int32 arg1, int32 arg2) {
|
|
return callee(arg1,arg2);
|
|
}
|
|
|
|
Here we don't need to write any variables to the top of the stack
|
|
since they don't overwrite each other.
|
|
|
|
int callee (int32 arg1, int32 arg2);
|
|
int caller (int32 arg1, int32 arg2) {
|
|
return callee(arg2,arg1);
|
|
}
|
|
|
|
Here we need to push the arguments because they overwrite each
|
|
other.
|
|
|
|
|
|
Code for lowering directly onto callers arguments:
|
|
+ SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
|
|
+ SmallVector<SDOperand, 8> MemOpChains;
|
|
+
|
|
+ SDOperand FramePtr;
|
|
+ SDOperand PtrOff;
|
|
+ SDOperand FIN;
|
|
+ int FI = 0;
|
|
+ // Walk the register/memloc assignments, inserting copies/loads.
|
|
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
+ CCValAssign &VA = ArgLocs[i];
|
|
+ SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
|
|
+
|
|
+ ....
|
|
+
|
|
+ if (VA.isRegLoc()) {
|
|
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
+ } else {
|
|
+ assert(VA.isMemLoc());
|
|
+ // create frame index
|
|
+ int32_t Offset = VA.getLocMemOffset()+FPDiff;
|
|
+ uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
|
|
+ FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
|
|
+ FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
+ // store relative to framepointer
|
|
+ MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN, NULL, 0));
|
|
+ }
|
|
+ }
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
main ()
|
|
{
|
|
int i = 0;
|
|
unsigned long int z = 0;
|
|
|
|
do {
|
|
z -= 0x00004000;
|
|
i++;
|
|
if (i > 0x00040000)
|
|
abort ();
|
|
} while (z > 0);
|
|
exit (0);
|
|
}
|
|
|
|
gcc compiles this to:
|
|
|
|
_main:
|
|
subl $28, %esp
|
|
xorl %eax, %eax
|
|
jmp L2
|
|
L3:
|
|
cmpl $262144, %eax
|
|
je L10
|
|
L2:
|
|
addl $1, %eax
|
|
cmpl $262145, %eax
|
|
jne L3
|
|
call L_abort$stub
|
|
L10:
|
|
movl $0, (%esp)
|
|
call L_exit$stub
|
|
|
|
llvm:
|
|
|
|
_main:
|
|
subl $12, %esp
|
|
movl $1, %eax
|
|
movl $16384, %ecx
|
|
LBB1_1: # bb
|
|
cmpl $262145, %eax
|
|
jge LBB1_4 # cond_true
|
|
LBB1_2: # cond_next
|
|
incl %eax
|
|
addl $4294950912, %ecx
|
|
cmpl $16384, %ecx
|
|
jne LBB1_1 # bb
|
|
LBB1_3: # bb11
|
|
xorl %eax, %eax
|
|
addl $12, %esp
|
|
ret
|
|
LBB1_4: # cond_true
|
|
call L_abort$stub
|
|
|
|
1. LSR should rewrite the first cmp with induction variable %ecx.
|
|
2. DAG combiner should fold
|
|
leal 1(%eax), %edx
|
|
cmpl $262145, %edx
|
|
=>
|
|
cmpl $262144, %eax
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
define i64 @test(double %X) {
|
|
%Y = fptosi double %X to i64
|
|
ret i64 %Y
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_test:
|
|
subl $20, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, 8(%esp)
|
|
fldl 8(%esp)
|
|
fisttpll (%esp)
|
|
movl 4(%esp), %edx
|
|
movl (%esp), %eax
|
|
addl $20, %esp
|
|
#FP_REG_KILL
|
|
ret
|
|
|
|
This should just fldl directly from the input stack slot.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
int foo (int x) { return (x & 65535) | 255; }
|
|
|
|
Should compile into:
|
|
|
|
_foo:
|
|
movzwl 4(%esp), %eax
|
|
orb $-1, %al ;; 'orl 255' is also fine :)
|
|
ret
|
|
|
|
instead of:
|
|
_foo:
|
|
movl $255, %eax
|
|
orl 4(%esp), %eax
|
|
andl $65535, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We're missing an obvious fold of a load into imul:
|
|
|
|
int test(long a, long b) { return a * b; }
|
|
|
|
LLVM produces:
|
|
_test:
|
|
movl 4(%esp), %ecx
|
|
movl 8(%esp), %eax
|
|
imull %ecx, %eax
|
|
ret
|
|
|
|
vs:
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
imull 4(%esp), %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We can fold a store into "zeroing a reg". Instead of:
|
|
|
|
xorl %eax, %eax
|
|
movl %eax, 124(%esp)
|
|
|
|
we should get:
|
|
|
|
movl $0, 124(%esp)
|
|
|
|
if the flags of the xor are dead.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This testcase misses a read/modify/write opportunity (from PR1425):
|
|
|
|
void vertical_decompose97iH1(int *b0, int *b1, int *b2, int width){
|
|
int i;
|
|
for(i=0; i<width; i++)
|
|
b1[i] += (1*(b0[i] + b2[i])+0)>>0;
|
|
}
|
|
|
|
We compile it down to:
|
|
|
|
LBB1_2: # bb
|
|
movl (%esi,%edi,4), %ebx
|
|
addl (%ecx,%edi,4), %ebx
|
|
addl (%edx,%edi,4), %ebx
|
|
movl %ebx, (%ecx,%edi,4)
|
|
incl %edi
|
|
cmpl %eax, %edi
|
|
jne LBB1_2 # bb
|
|
|
|
the inner loop should add to the memory location (%ecx,%edi,4), saving
|
|
a mov. Something like:
|
|
|
|
movl (%esi,%edi,4), %ebx
|
|
addl (%edx,%edi,4), %ebx
|
|
addl %ebx, (%ecx,%edi,4)
|
|
|
|
Here is another interesting example:
|
|
|
|
void vertical_compose97iH1(int *b0, int *b1, int *b2, int width){
|
|
int i;
|
|
for(i=0; i<width; i++)
|
|
b1[i] -= (1*(b0[i] + b2[i])+0)>>0;
|
|
}
|
|
|
|
We miss the r/m/w opportunity here by using 2 subs instead of an add+sub[mem]:
|
|
|
|
LBB9_2: # bb
|
|
movl (%ecx,%edi,4), %ebx
|
|
subl (%esi,%edi,4), %ebx
|
|
subl (%edx,%edi,4), %ebx
|
|
movl %ebx, (%ecx,%edi,4)
|
|
incl %edi
|
|
cmpl %eax, %edi
|
|
jne LBB9_2 # bb
|
|
|
|
Additionally, LSR should rewrite the exit condition of these loops to use
|
|
a stride-4 IV, would would allow all the scales in the loop to go away.
|
|
This would result in smaller code and more efficient microops.
|
|
|
|
//===---------------------------------------------------------------------===//
|