1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/include/llvm/Analysis/ScalarEvolution.h
Chandler Carruth 4d1e1851a4 [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00

1147 lines
49 KiB
C++

//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
// categorize scalar expressions in loops. It specializes in recognizing
// general induction variables, representing them with the abstract and opaque
// SCEV class. Given this analysis, trip counts of loops and other important
// properties can be obtained.
//
// This analysis is primarily useful for induction variable substitution and
// strength reduction.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include <map>
namespace llvm {
class APInt;
class AssumptionCache;
class Constant;
class ConstantInt;
class DominatorTree;
class Type;
class ScalarEvolution;
class DataLayout;
class TargetLibraryInfo;
class LLVMContext;
class Loop;
class LoopInfo;
class Operator;
class SCEVUnknown;
class SCEVAddRecExpr;
class SCEV;
template<> struct FoldingSetTrait<SCEV>;
/// SCEV - This class represents an analyzed expression in the program. These
/// are opaque objects that the client is not allowed to do much with
/// directly.
///
class SCEV : public FoldingSetNode {
friend struct FoldingSetTrait<SCEV>;
/// FastID - A reference to an Interned FoldingSetNodeID for this node.
/// The ScalarEvolution's BumpPtrAllocator holds the data.
FoldingSetNodeIDRef FastID;
// The SCEV baseclass this node corresponds to
const unsigned short SCEVType;
protected:
/// SubclassData - This field is initialized to zero and may be used in
/// subclasses to store miscellaneous information.
unsigned short SubclassData;
private:
SCEV(const SCEV &) = delete;
void operator=(const SCEV &) = delete;
public:
/// NoWrapFlags are bitfield indices into SubclassData.
///
/// Add and Mul expressions may have no-unsigned-wrap <NUW> or
/// no-signed-wrap <NSW> properties, which are derived from the IR
/// operator. NSW is a misnomer that we use to mean no signed overflow or
/// underflow.
///
/// AddRec expressions may have a no-self-wraparound <NW> property if, in
/// the integer domain, abs(step) * max-iteration(loop) <=
/// unsigned-max(bitwidth). This means that the recurrence will never reach
/// its start value if the step is non-zero. Computing the same value on
/// each iteration is not considered wrapping, and recurrences with step = 0
/// are trivially <NW>. <NW> is independent of the sign of step and the
/// value the add recurrence starts with.
///
/// Note that NUW and NSW are also valid properties of a recurrence, and
/// either implies NW. For convenience, NW will be set for a recurrence
/// whenever either NUW or NSW are set.
enum NoWrapFlags { FlagAnyWrap = 0, // No guarantee.
FlagNW = (1 << 0), // No self-wrap.
FlagNUW = (1 << 1), // No unsigned wrap.
FlagNSW = (1 << 2), // No signed wrap.
NoWrapMask = (1 << 3) -1 };
explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
unsigned getSCEVType() const { return SCEVType; }
/// getType - Return the LLVM type of this SCEV expression.
///
Type *getType() const;
/// isZero - Return true if the expression is a constant zero.
///
bool isZero() const;
/// isOne - Return true if the expression is a constant one.
///
bool isOne() const;
/// isAllOnesValue - Return true if the expression is a constant
/// all-ones value.
///
bool isAllOnesValue() const;
/// isNonConstantNegative - Return true if the specified scev is negated,
/// but not a constant.
bool isNonConstantNegative() const;
/// print - Print out the internal representation of this scalar to the
/// specified stream. This should really only be used for debugging
/// purposes.
void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// dump - This method is used for debugging.
///
void dump() const;
#endif
};
// Specialize FoldingSetTrait for SCEV to avoid needing to compute
// temporary FoldingSetNodeID values.
template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
ID = X.FastID;
}
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
return ID == X.FastID;
}
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
return X.FastID.ComputeHash();
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
S.print(OS);
return OS;
}
/// SCEVCouldNotCompute - An object of this class is returned by queries that
/// could not be answered. For example, if you ask for the number of
/// iterations of a linked-list traversal loop, you will get one of these.
/// None of the standard SCEV operations are valid on this class, it is just a
/// marker.
struct SCEVCouldNotCompute : public SCEV {
SCEVCouldNotCompute();
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const SCEV *S);
};
/// The main scalar evolution driver. Because client code (intentionally)
/// can't do much with the SCEV objects directly, they must ask this class
/// for services.
class ScalarEvolution {
public:
/// LoopDisposition - An enum describing the relationship between a
/// SCEV and a loop.
enum LoopDisposition {
LoopVariant, ///< The SCEV is loop-variant (unknown).
LoopInvariant, ///< The SCEV is loop-invariant.
LoopComputable ///< The SCEV varies predictably with the loop.
};
/// BlockDisposition - An enum describing the relationship between a
/// SCEV and a basic block.
enum BlockDisposition {
DoesNotDominateBlock, ///< The SCEV does not dominate the block.
DominatesBlock, ///< The SCEV dominates the block.
ProperlyDominatesBlock ///< The SCEV properly dominates the block.
};
/// Convenient NoWrapFlags manipulation that hides enum casts and is
/// visible in the ScalarEvolution name space.
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
return (SCEV::NoWrapFlags)(Flags & Mask);
}
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
return (SCEV::NoWrapFlags)(Flags | OnFlags);
}
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
}
private:
/// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
/// notified whenever a Value is deleted.
class SCEVCallbackVH final : public CallbackVH {
ScalarEvolution *SE;
void deleted() override;
void allUsesReplacedWith(Value *New) override;
public:
SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
};
friend class SCEVCallbackVH;
friend class SCEVExpander;
friend class SCEVUnknown;
/// F - The function we are analyzing.
///
Function &F;
/// TLI - The target library information for the target we are targeting.
///
TargetLibraryInfo &TLI;
/// The tracker for @llvm.assume intrinsics in this function.
AssumptionCache &AC;
/// DT - The dominator tree.
///
DominatorTree &DT;
/// LI - The loop information for the function we are currently analyzing.
///
LoopInfo &LI;
/// CouldNotCompute - This SCEV is used to represent unknown trip
/// counts and things.
std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
/// ValueExprMapType - The typedef for ValueExprMap.
///
typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
ValueExprMapType;
/// ValueExprMap - This is a cache of the values we have analyzed so far.
///
ValueExprMapType ValueExprMap;
/// Mark predicate values currently being processed by isImpliedCond.
DenseSet<Value*> PendingLoopPredicates;
/// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
/// conditions dominating the backedge of a loop.
bool WalkingBEDominatingConds;
/// ExitLimit - Information about the number of loop iterations for which a
/// loop exit's branch condition evaluates to the not-taken path. This is a
/// temporary pair of exact and max expressions that are eventually
/// summarized in ExitNotTakenInfo and BackedgeTakenInfo.
struct ExitLimit {
const SCEV *Exact;
const SCEV *Max;
/*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
/// hasAnyInfo - Test whether this ExitLimit contains any computed
/// information, or whether it's all SCEVCouldNotCompute values.
bool hasAnyInfo() const {
return !isa<SCEVCouldNotCompute>(Exact) ||
!isa<SCEVCouldNotCompute>(Max);
}
};
/// ExitNotTakenInfo - Information about the number of times a particular
/// loop exit may be reached before exiting the loop.
struct ExitNotTakenInfo {
AssertingVH<BasicBlock> ExitingBlock;
const SCEV *ExactNotTaken;
PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}
/// isCompleteList - Return true if all loop exits are computable.
bool isCompleteList() const {
return NextExit.getInt() == 0;
}
void setIncomplete() { NextExit.setInt(1); }
/// getNextExit - Return a pointer to the next exit's not-taken info.
ExitNotTakenInfo *getNextExit() const {
return NextExit.getPointer();
}
void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
};
/// BackedgeTakenInfo - Information about the backedge-taken count
/// of a loop. This currently includes an exact count and a maximum count.
///
class BackedgeTakenInfo {
/// ExitNotTaken - A list of computable exits and their not-taken counts.
/// Loops almost never have more than one computable exit.
ExitNotTakenInfo ExitNotTaken;
/// Max - An expression indicating the least maximum backedge-taken
/// count of the loop that is known, or a SCEVCouldNotCompute.
const SCEV *Max;
public:
BackedgeTakenInfo() : Max(nullptr) {}
/// Initialize BackedgeTakenInfo from a list of exact exit counts.
BackedgeTakenInfo(
SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
bool Complete, const SCEV *MaxCount);
/// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
/// computed information, or whether it's all SCEVCouldNotCompute
/// values.
bool hasAnyInfo() const {
return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
}
/// getExact - Return an expression indicating the exact backedge-taken
/// count of the loop if it is known, or SCEVCouldNotCompute
/// otherwise. This is the number of times the loop header can be
/// guaranteed to execute, minus one.
const SCEV *getExact(ScalarEvolution *SE) const;
/// getExact - Return the number of times this loop exit may fall through
/// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
/// to exit via this block before this number of iterations, but may exit
/// via another block.
const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
/// getMax - Get the max backedge taken count for the loop.
const SCEV *getMax(ScalarEvolution *SE) const;
/// Return true if any backedge taken count expressions refer to the given
/// subexpression.
bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
/// clear - Invalidate this result and free associated memory.
void clear();
};
/// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
/// this function as they are computed.
DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
/// ConstantEvolutionLoopExitValue - This map contains entries for all of
/// the PHI instructions that we attempt to compute constant evolutions for.
/// This allows us to avoid potentially expensive recomputation of these
/// properties. An instruction maps to null if we are unable to compute its
/// exit value.
DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
/// ValuesAtScopes - This map contains entries for all the expressions
/// that we attempt to compute getSCEVAtScope information for, which can
/// be expensive in extreme cases.
DenseMap<const SCEV *,
SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
/// LoopDispositions - Memoized computeLoopDisposition results.
DenseMap<const SCEV *,
SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
LoopDispositions;
/// computeLoopDisposition - Compute a LoopDisposition value.
LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
/// BlockDispositions - Memoized computeBlockDisposition results.
DenseMap<
const SCEV *,
SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
BlockDispositions;
/// computeBlockDisposition - Compute a BlockDisposition value.
BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
/// UnsignedRanges - Memoized results from getRange
DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
/// SignedRanges - Memoized results from getRange
DenseMap<const SCEV *, ConstantRange> SignedRanges;
/// RangeSignHint - Used to parameterize getRange
enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
/// setRange - Set the memoized range for the given SCEV.
const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
const ConstantRange &CR) {
DenseMap<const SCEV *, ConstantRange> &Cache =
Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
Cache.insert(std::make_pair(S, CR));
if (!Pair.second)
Pair.first->second = CR;
return Pair.first->second;
}
/// getRange - Determine the range for a particular SCEV.
ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
/// createSCEV - We know that there is no SCEV for the specified value.
/// Analyze the expression.
const SCEV *createSCEV(Value *V);
/// createNodeForPHI - Provide the special handling we need to analyze PHI
/// SCEVs.
const SCEV *createNodeForPHI(PHINode *PN);
/// createNodeForGEP - Provide the special handling we need to analyze GEP
/// SCEVs.
const SCEV *createNodeForGEP(GEPOperator *GEP);
/// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
/// at most once for each SCEV+Loop pair.
///
const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
/// ForgetSymbolicValue - This looks up computed SCEV values for all
/// instructions that depend on the given instruction and removes them from
/// the ValueExprMap map if they reference SymName. This is used during PHI
/// resolution.
void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
/// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
/// loop, lazily computing new values if the loop hasn't been analyzed
/// yet.
const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
/// ComputeBackedgeTakenCount - Compute the number of times the specified
/// loop will iterate.
BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
/// ComputeExitLimit - Compute the number of times the backedge of the
/// specified loop will execute if it exits via the specified block.
ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
/// ComputeExitLimitFromCond - Compute the number of times the backedge of
/// the specified loop will execute if its exit condition were a conditional
/// branch of ExitCond, TBB, and FBB.
ExitLimit ComputeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
bool IsSubExpr);
/// ComputeExitLimitFromICmp - Compute the number of times the backedge of
/// the specified loop will execute if its exit condition were a conditional
/// branch of the ICmpInst ExitCond, TBB, and FBB.
ExitLimit ComputeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
bool IsSubExpr);
/// ComputeExitLimitFromSingleExitSwitch - Compute the number of times the
/// backedge of the specified loop will execute if its exit condition were a
/// switch with a single exiting case to ExitingBB.
ExitLimit
ComputeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
BasicBlock *ExitingBB, bool IsSubExpr);
/// ComputeLoadConstantCompareExitLimit - Given an exit condition
/// of 'icmp op load X, cst', try to see if we can compute the
/// backedge-taken count.
ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
Constant *RHS,
const Loop *L,
ICmpInst::Predicate p);
/// ComputeExitCountExhaustively - If the loop is known to execute a
/// constant number of times (the condition evolves only from constants),
/// try to evaluate a few iterations of the loop until we get the exit
/// condition gets a value of ExitWhen (true or false). If we cannot
/// evaluate the exit count of the loop, return CouldNotCompute.
const SCEV *ComputeExitCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen);
/// HowFarToZero - Return the number of times an exit condition comparing
/// the specified value to zero will execute. If not computable, return
/// CouldNotCompute.
ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
/// HowFarToNonZero - Return the number of times an exit condition checking
/// the specified value for nonzero will execute. If not computable, return
/// CouldNotCompute.
ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
/// HowManyLessThans - Return the number of times an exit condition
/// containing the specified less-than comparison will execute. If not
/// computable, return CouldNotCompute. isSigned specifies whether the
/// less-than is signed.
ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool isSigned, bool IsSubExpr);
ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool isSigned, bool IsSubExpr);
/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
/// (which may not be an immediate predecessor) which has exactly one
/// successor from which BB is reachable, or null if no such block is
/// found.
std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
/// isImpliedCond - Test whether the condition described by Pred, LHS, and
/// RHS is true whenever the given FoundCondValue value evaluates to true.
bool isImpliedCond(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
Value *FoundCondValue,
bool Inverse);
/// isImpliedCondOperands - Test whether the condition described by Pred,
/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
/// and FoundRHS is true.
bool isImpliedCondOperands(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS, const SCEV *FoundRHS);
/// isImpliedCondOperandsHelper - Test whether the condition described by
/// Pred, LHS, and RHS is true whenever the condition described by Pred,
/// FoundLHS, and FoundRHS is true.
bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// isImpliedCondOperandsViaRanges - Test whether the condition described by
/// Pred, LHS, and RHS is true whenever the condition described by Pred,
/// FoundLHS, and FoundRHS is true. Utility function used by
/// isImpliedCondOperands.
bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
/// in the header of its containing loop, we know the loop executes a
/// constant number of times, and the PHI node is just a recurrence
/// involving constants, fold it.
Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
const Loop *L);
/// isKnownPredicateWithRanges - Test if the given expression is known to
/// satisfy the condition described by Pred and the known constant ranges
/// of LHS and RHS.
///
bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// forgetMemoizedResults - Drop memoized information computed for S.
void forgetMemoizedResults(const SCEV *S);
/// Return an existing SCEV for V if there is one, otherwise return nullptr.
const SCEV *getExistingSCEV(Value *V);
/// Return false iff given SCEV contains a SCEVUnknown with NULL value-
/// pointer.
bool checkValidity(const SCEV *S) const;
/// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
/// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
/// equivalent to proving no signed (resp. unsigned) wrap in
/// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
/// (resp. `SCEVZeroExtendExpr`).
///
template<typename ExtendOpTy>
bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
const Loop *L);
bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred, bool &Increasing);
/// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
/// is monotonically increasing or decreasing. In the former case set
/// `Increasing` to true and in the latter case set `Increasing` to false.
///
/// A predicate is said to be monotonically increasing if may go from being
/// false to being true as the loop iterates, but never the other way
/// around. A predicate is said to be monotonically decreasing if may go
/// from being true to being false as the loop iterates, but never the other
/// way around.
bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred, bool &Increasing);
// Return SCEV no-wrap flags that can be proven based on reasoning
// about how poison produced from no-wrap flags on this value
// (e.g. a nuw add) would trigger undefined behavior on overflow.
SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
public:
ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
DominatorTree &DT, LoopInfo &LI);
~ScalarEvolution();
ScalarEvolution(ScalarEvolution &&Arg);
LLVMContext &getContext() const { return F.getContext(); }
/// isSCEVable - Test if values of the given type are analyzable within
/// the SCEV framework. This primarily includes integer types, and it
/// can optionally include pointer types if the ScalarEvolution class
/// has access to target-specific information.
bool isSCEVable(Type *Ty) const;
/// getTypeSizeInBits - Return the size in bits of the specified type,
/// for which isSCEVable must return true.
uint64_t getTypeSizeInBits(Type *Ty) const;
/// getEffectiveSCEVType - Return a type with the same bitwidth as
/// the given type and which represents how SCEV will treat the given
/// type, for which isSCEVable must return true. For pointer types,
/// this is the pointer-sized integer type.
Type *getEffectiveSCEVType(Type *Ty) const;
/// getSCEV - Return a SCEV expression for the full generality of the
/// specified expression.
const SCEV *getSCEV(Value *V);
const SCEV *getConstant(ConstantInt *V);
const SCEV *getConstant(const APInt& Val);
const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
SmallVector<const SCEV *, 2> Ops;
Ops.push_back(LHS);
Ops.push_back(RHS);
return getAddExpr(Ops, Flags);
}
const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
SmallVector<const SCEV *, 3> Ops;
Ops.push_back(Op0);
Ops.push_back(Op1);
Ops.push_back(Op2);
return getAddExpr(Ops, Flags);
}
const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
{
SmallVector<const SCEV *, 2> Ops;
Ops.push_back(LHS);
Ops.push_back(RHS);
return getMulExpr(Ops, Flags);
}
const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
SmallVector<const SCEV *, 3> Ops;
Ops.push_back(Op0);
Ops.push_back(Op1);
Ops.push_back(Op2);
return getMulExpr(Ops, Flags);
}
const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
const Loop *L, SCEV::NoWrapFlags Flags);
const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
const Loop *L, SCEV::NoWrapFlags Flags);
const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
const Loop *L, SCEV::NoWrapFlags Flags) {
SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
return getAddRecExpr(NewOp, L, Flags);
}
/// \brief Returns an expression for a GEP
///
/// \p PointeeType The type used as the basis for the pointer arithmetics
/// \p BaseExpr The expression for the pointer operand.
/// \p IndexExprs The expressions for the indices.
/// \p InBounds Whether the GEP is in bounds.
const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
const SmallVectorImpl<const SCEV *> &IndexExprs,
bool InBounds = false);
const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUnknown(Value *V);
const SCEV *getCouldNotCompute();
/// getSizeOfExpr - Return an expression for sizeof AllocTy that is type
/// IntTy
///
const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
/// getOffsetOfExpr - Return an expression for offsetof on the given field
/// with type IntTy
///
const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
/// getNegativeSCEV - Return the SCEV object corresponding to -V.
///
const SCEV *getNegativeSCEV(const SCEV *V,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
/// getNotSCEV - Return the SCEV object corresponding to ~V.
///
const SCEV *getNotSCEV(const SCEV *V);
/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
/// of the input value to the specified type. If the type must be
/// extended, it is zero extended.
const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
/// of the input value to the specified type. If the type must be
/// extended, it is sign extended.
const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
/// the input value to the specified type. If the type must be extended,
/// it is zero extended. The conversion must not be narrowing.
const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
/// the input value to the specified type. If the type must be extended,
/// it is sign extended. The conversion must not be narrowing.
const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
/// the input value to the specified type. If the type must be extended,
/// it is extended with unspecified bits. The conversion must not be
/// narrowing.
const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. The conversion must not be
/// widening.
const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
/// the types using zero-extension, and then perform a umax operation
/// with them.
const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS);
/// getUMinFromMismatchedTypes - Promote the operands to the wider of
/// the types using zero-extension, and then perform a umin operation
/// with them.
const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS);
/// getPointerBase - Transitively follow the chain of pointer-type operands
/// until reaching a SCEV that does not have a single pointer operand. This
/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
/// but corner cases do exist.
const SCEV *getPointerBase(const SCEV *V);
/// getSCEVAtScope - Return a SCEV expression for the specified value
/// at the specified scope in the program. The L value specifies a loop
/// nest to evaluate the expression at, where null is the top-level or a
/// specified loop is immediately inside of the loop.
///
/// This method can be used to compute the exit value for a variable defined
/// in a loop by querying what the value will hold in the parent loop.
///
/// In the case that a relevant loop exit value cannot be computed, the
/// original value V is returned.
const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
/// getSCEVAtScope - This is a convenience function which does
/// getSCEVAtScope(getSCEV(V), L).
const SCEV *getSCEVAtScope(Value *V, const Loop *L);
/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
/// by a conditional between LHS and RHS. This is used to help avoid max
/// expressions in loop trip counts, and to eliminate casts.
bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
/// protected by a conditional between LHS and RHS. This is used to
/// to eliminate casts.
bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// \brief Returns the maximum trip count of the loop if it is a single-exit
/// loop and we can compute a small maximum for that loop.
///
/// Implemented in terms of the \c getSmallConstantTripCount overload with
/// the single exiting block passed to it. See that routine for details.
unsigned getSmallConstantTripCount(Loop *L);
/// getSmallConstantTripCount - Returns the maximum trip count of this loop
/// as a normal unsigned value. Returns 0 if the trip count is unknown or
/// not constant. This "trip count" assumes that control exits via
/// ExitingBlock. More precisely, it is the number of times that control may
/// reach ExitingBlock before taking the branch. For loops with multiple
/// exits, it may not be the number times that the loop header executes if
/// the loop exits prematurely via another branch.
unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
/// \brief Returns the largest constant divisor of the trip count of the
/// loop if it is a single-exit loop and we can compute a small maximum for
/// that loop.
///
/// Implemented in terms of the \c getSmallConstantTripMultiple overload with
/// the single exiting block passed to it. See that routine for details.
unsigned getSmallConstantTripMultiple(Loop *L);
/// getSmallConstantTripMultiple - Returns the largest constant divisor of
/// the trip count of this loop as a normal unsigned value, if
/// possible. This means that the actual trip count is always a multiple of
/// the returned value (don't forget the trip count could very well be zero
/// as well!). As explained in the comments for getSmallConstantTripCount,
/// this assumes that control exits the loop via ExitingBlock.
unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
// getExitCount - Get the expression for the number of loop iterations for
// which this loop is guaranteed not to exit via ExitingBlock. Otherwise
// return SCEVCouldNotCompute.
const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
/// getBackedgeTakenCount - If the specified loop has a predictable
/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
/// object. The backedge-taken count is the number of times the loop header
/// will be branched to from within the loop. This is one less than the
/// trip count of the loop, since it doesn't count the first iteration,
/// when the header is branched to from outside the loop.
///
/// Note that it is not valid to call this method on a loop without a
/// loop-invariant backedge-taken count (see
/// hasLoopInvariantBackedgeTakenCount).
///
const SCEV *getBackedgeTakenCount(const Loop *L);
/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
/// return the least SCEV value that is known never to be less than the
/// actual backedge taken count.
const SCEV *getMaxBackedgeTakenCount(const Loop *L);
/// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
/// has an analyzable loop-invariant backedge-taken count.
bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
/// forgetLoop - This method should be called by the client when it has
/// changed a loop in a way that may effect ScalarEvolution's ability to
/// compute a trip count, or if the loop is deleted. This call is
/// potentially expensive for large loop bodies.
void forgetLoop(const Loop *L);
/// forgetValue - This method should be called by the client when it has
/// changed a value in a way that may effect its value, or which may
/// disconnect it from a def-use chain linking it to a loop.
void forgetValue(Value *V);
/// \brief Called when the client has changed the disposition of values in
/// this loop.
///
/// We don't have a way to invalidate per-loop dispositions. Clear and
/// recompute is simpler.
void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
/// GetMinTrailingZeros - Determine the minimum number of zero bits that S
/// is guaranteed to end in (at every loop iteration). It is, at the same
/// time, the minimum number of times S is divisible by 2. For example,
/// given {4,+,8} it returns 2. If S is guaranteed to be 0, it returns the
/// bitwidth of S.
uint32_t GetMinTrailingZeros(const SCEV *S);
/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
///
ConstantRange getUnsignedRange(const SCEV *S) {
return getRange(S, HINT_RANGE_UNSIGNED);
}
/// getSignedRange - Determine the signed range for a particular SCEV.
///
ConstantRange getSignedRange(const SCEV *S) {
return getRange(S, HINT_RANGE_SIGNED);
}
/// isKnownNegative - Test if the given expression is known to be negative.
///
bool isKnownNegative(const SCEV *S);
/// isKnownPositive - Test if the given expression is known to be positive.
///
bool isKnownPositive(const SCEV *S);
/// isKnownNonNegative - Test if the given expression is known to be
/// non-negative.
///
bool isKnownNonNegative(const SCEV *S);
/// isKnownNonPositive - Test if the given expression is known to be
/// non-positive.
///
bool isKnownNonPositive(const SCEV *S);
/// isKnownNonZero - Test if the given expression is known to be
/// non-zero.
///
bool isKnownNonZero(const SCEV *S);
/// isKnownPredicate - Test if the given expression is known to satisfy
/// the condition described by Pred, LHS, and RHS.
///
bool isKnownPredicate(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Return true if the result of the predicate LHS `Pred` RHS is loop
/// invariant with respect to L. Set InvariantPred, InvariantLHS and
/// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
/// loop invariant form of LHS `Pred` RHS.
bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS, const Loop *L,
ICmpInst::Predicate &InvariantPred,
const SCEV *&InvariantLHS,
const SCEV *&InvariantRHS);
/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
/// predicate Pred. Return true iff any changes were made. If the
/// operands are provably equal or unequal, LHS and RHS are set to
/// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
///
bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
const SCEV *&LHS,
const SCEV *&RHS,
unsigned Depth = 0);
/// getLoopDisposition - Return the "disposition" of the given SCEV with
/// respect to the given loop.
LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
/// isLoopInvariant - Return true if the value of the given SCEV is
/// unchanging in the specified loop.
bool isLoopInvariant(const SCEV *S, const Loop *L);
/// hasComputableLoopEvolution - Return true if the given SCEV changes value
/// in a known way in the specified loop. This property being true implies
/// that the value is variant in the loop AND that we can emit an expression
/// to compute the value of the expression at any particular loop iteration.
bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
/// getLoopDisposition - Return the "disposition" of the given SCEV with
/// respect to the given block.
BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
/// dominates - Return true if elements that makes up the given SCEV
/// dominate the specified basic block.
bool dominates(const SCEV *S, const BasicBlock *BB);
/// properlyDominates - Return true if elements that makes up the given SCEV
/// properly dominate the specified basic block.
bool properlyDominates(const SCEV *S, const BasicBlock *BB);
/// hasOperand - Test whether the given SCEV has Op as a direct or
/// indirect operand.
bool hasOperand(const SCEV *S, const SCEV *Op) const;
/// Return the size of an element read or written by Inst.
const SCEV *getElementSize(Instruction *Inst);
/// Compute the array dimensions Sizes from the set of Terms extracted from
/// the memory access function of this SCEVAddRecExpr.
void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) const;
void print(raw_ostream &OS) const;
void verify() const;
/// Collect parametric terms occurring in step expressions.
void collectParametricTerms(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Terms);
/// Return in Subscripts the access functions for each dimension in Sizes.
void computeAccessFunctions(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes);
/// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
/// subscripts and sizes of an array access.
///
/// The delinearization is a 3 step process: the first two steps compute the
/// sizes of each subscript and the third step computes the access functions
/// for the delinearized array:
///
/// 1. Find the terms in the step functions
/// 2. Compute the array size
/// 3. Compute the access function: divide the SCEV by the array size
/// starting with the innermost dimensions found in step 2. The Quotient
/// is the SCEV to be divided in the next step of the recursion. The
/// Remainder is the subscript of the innermost dimension. Loop over all
/// array dimensions computed in step 2.
///
/// To compute a uniform array size for several memory accesses to the same
/// object, one can collect in step 1 all the step terms for all the memory
/// accesses, and compute in step 2 a unique array shape. This guarantees
/// that the array shape will be the same across all memory accesses.
///
/// FIXME: We could derive the result of steps 1 and 2 from a description of
/// the array shape given in metadata.
///
/// Example:
///
/// A[][n][m]
///
/// for i
/// for j
/// for k
/// A[j+k][2i][5i] =
///
/// The initial SCEV:
///
/// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
///
/// 1. Find the different terms in the step functions:
/// -> [2*m, 5, n*m, n*m]
///
/// 2. Compute the array size: sort and unique them
/// -> [n*m, 2*m, 5]
/// find the GCD of all the terms = 1
/// divide by the GCD and erase constant terms
/// -> [n*m, 2*m]
/// GCD = m
/// divide by GCD -> [n, 2]
/// remove constant terms
/// -> [n]
/// size of the array is A[unknown][n][m]
///
/// 3. Compute the access function
/// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
/// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
/// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
/// The remainder is the subscript of the innermost array dimension: [5i].
///
/// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
/// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
/// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
/// The Remainder is the subscript of the next array dimension: [2i].
///
/// The subscript of the outermost dimension is the Quotient: [j+k].
///
/// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
void delinearize(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize);
private:
/// Compute the backedge taken count knowing the interval difference, the
/// stride and presence of the equality in the comparison.
const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
bool Equality);
/// Verify if an linear IV with positive stride can overflow when in a
/// less-than comparison, knowing the invariant term of the comparison,
/// the stride and the knowledge of NSW/NUW flags on the recurrence.
bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
bool IsSigned, bool NoWrap);
/// Verify if an linear IV with negative stride can overflow when in a
/// greater-than comparison, knowing the invariant term of the comparison,
/// the stride and the knowledge of NSW/NUW flags on the recurrence.
bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
bool IsSigned, bool NoWrap);
private:
FoldingSet<SCEV> UniqueSCEVs;
BumpPtrAllocator SCEVAllocator;
/// FirstUnknown - The head of a linked list of all SCEVUnknown
/// values that have been allocated. This is used by releaseMemory
/// to locate them all and call their destructors.
SCEVUnknown *FirstUnknown;
};
/// \brief Analysis pass that exposes the \c ScalarEvolution for a function.
class ScalarEvolutionAnalysis {
static char PassID;
public:
typedef ScalarEvolution Result;
/// \brief Opaque, unique identifier for this analysis pass.
static void *ID() { return (void *)&PassID; }
/// \brief Provide a name for the analysis for debugging and logging.
static StringRef name() { return "ScalarEvolutionAnalysis"; }
ScalarEvolution run(Function &F, AnalysisManager<Function> *AM);
};
/// \brief Printer pass for the \c ScalarEvolutionAnalysis results.
class ScalarEvolutionPrinterPass {
raw_ostream &OS;
public:
explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM);
static StringRef name() { return "ScalarEvolutionPrinterPass"; }
};
class ScalarEvolutionWrapperPass : public FunctionPass {
std::unique_ptr<ScalarEvolution> SE;
public:
static char ID;
ScalarEvolutionWrapperPass();
ScalarEvolution &getSE() { return *SE; }
const ScalarEvolution &getSE() const { return *SE; }
bool runOnFunction(Function &F) override;
void releaseMemory() override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
void print(raw_ostream &OS, const Module * = nullptr) const override;
void verifyAnalysis() const override;
};
}
#endif