1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/VMCore/Constants.cpp
2007-06-15 06:10:53 +00:00

2194 lines
81 KiB
C++

//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes...
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "ConstantFold.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <map>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Class
//===----------------------------------------------------------------------===//
void Constant::destroyConstantImpl() {
// When a Constant is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependent on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// Constants) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V))
DOUT << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: "
<< *V << "\n\n";
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
Constant *CV = cast<Constant>(V);
CV->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || use_back() != V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
delete this;
}
/// canTrap - Return true if evaluation of this constant could trap. This is
/// true for things like constant expressions that could divide by zero.
bool Constant::canTrap() const {
assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
// The only thing that could possibly trap are constant exprs.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
if (!CE) return false;
// ConstantExpr traps if any operands can trap.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (getOperand(i)->canTrap())
return true;
// Otherwise, only specific operations can trap.
switch (CE->getOpcode()) {
default:
return false;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
// Div and rem can trap if the RHS is not known to be non-zero.
if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
return true;
return false;
}
}
/// ContaintsRelocations - Return true if the constant value contains
/// relocations which cannot be resolved at compile time.
bool Constant::ContainsRelocations() const {
if (isa<GlobalValue>(this))
return true;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (getOperand(i)->ContainsRelocations())
return true;
return false;
}
// Static constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::FloatTyID:
case Type::DoubleTyID:
return ConstantFP::get(Ty, 0.0);
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
return ConstantAggregateZero::get(Ty);
default:
// Function, Label, or Opaque type?
assert(!"Cannot create a null constant of that type!");
return 0;
}
}
Constant *Constant::getAllOnesValue(const Type *Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
}
// Static constructor to create an integral constant with all bits set
ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
return 0;
}
/// @returns the value for a vector integer constant of the given type that
/// has all its bits set to true.
/// @brief Get the all ones value
ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
std::vector<Constant*> Elts;
Elts.resize(Ty->getNumElements(),
ConstantInt::getAllOnesValue(Ty->getElementType()));
assert(Elts[0] && "Not a vector integer type!");
return cast<ConstantVector>(ConstantVector::get(Elts));
}
//===----------------------------------------------------------------------===//
// ConstantInt
//===----------------------------------------------------------------------===//
ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
: Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
ConstantInt *ConstantInt::TheTrueVal = 0;
ConstantInt *ConstantInt::TheFalseVal = 0;
namespace llvm {
void CleanupTrueFalse(void *) {
ConstantInt::ResetTrueFalse();
}
}
static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
assert(TheTrueVal == 0 && TheFalseVal == 0);
TheTrueVal = get(Type::Int1Ty, 1);
TheFalseVal = get(Type::Int1Ty, 0);
// Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
TrueFalseCleanup.Register();
return WhichOne ? TheTrueVal : TheFalseVal;
}
namespace {
struct DenseMapAPIntKeyInfo {
struct KeyTy {
APInt val;
const Type* type;
KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
bool operator==(const KeyTy& that) const {
return type == that.type && this->val == that.val;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapKeyInfo<void*>::getHashValue(Key.type) ^
Key.val.getHashValue();
}
static bool isPod() { return true; }
};
}
typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
DenseMapAPIntKeyInfo> IntMapTy;
static ManagedStatic<IntMapTy> IntConstants;
ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
const IntegerType *ITy = cast<IntegerType>(Ty);
return get(APInt(ITy->getBitWidth(), V, isSigned));
}
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
// as the key, is a DensMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
ConstantInt *ConstantInt::get(const APInt& V) {
// Get the corresponding integer type for the bit width of the value.
const IntegerType *ITy = IntegerType::get(V.getBitWidth());
// get an existing value or the insertion position
DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
ConstantInt *&Slot = (*IntConstants)[Key];
// if it exists, return it.
if (Slot)
return Slot;
// otherwise create a new one, insert it, and return it.
return Slot = new ConstantInt(ITy, V);
}
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
ConstantFP::ConstantFP(const Type *Ty, double V)
: Constant(Ty, ConstantFPVal, 0, 0) {
Val = V;
}
bool ConstantFP::isNullValue() const {
return DoubleToBits(Val) == 0;
}
bool ConstantFP::isExactlyValue(double V) const {
return DoubleToBits(V) == DoubleToBits(Val);
}
namespace {
struct DenseMapInt64KeyInfo {
typedef std::pair<uint64_t, const Type*> KeyTy;
static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
}
static bool isPod() { return true; }
};
struct DenseMapInt32KeyInfo {
typedef std::pair<uint32_t, const Type*> KeyTy;
static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
}
static bool isPod() { return true; }
};
}
//---- ConstantFP::get() implementation...
//
typedef DenseMap<DenseMapInt32KeyInfo::KeyTy, ConstantFP*,
DenseMapInt32KeyInfo> FloatMapTy;
typedef DenseMap<DenseMapInt64KeyInfo::KeyTy, ConstantFP*,
DenseMapInt64KeyInfo> DoubleMapTy;
static ManagedStatic<FloatMapTy> FloatConstants;
static ManagedStatic<DoubleMapTy> DoubleConstants;
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
if (Ty == Type::FloatTy) {
uint32_t IntVal = FloatToBits((float)V);
ConstantFP *&Slot = (*FloatConstants)[std::make_pair(IntVal, Ty)];
if (Slot) return Slot;
return Slot = new ConstantFP(Ty, (float)V);
} else {
assert(Ty == Type::DoubleTy);
uint64_t IntVal = DoubleToBits(V);
ConstantFP *&Slot = (*DoubleConstants)[std::make_pair(IntVal, Ty)];
if (Slot) return Slot;
return Slot = new ConstantFP(Ty, V);
}
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
ConstantArray::ConstantArray(const ArrayType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant array");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert((C->getType() == T->getElementType() ||
(T->isAbstract() &&
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
"Initializer for array element doesn't match array element type!");
OL->init(C, this);
}
}
ConstantArray::~ConstantArray() {
delete [] OperandList;
}
ConstantStruct::ConstantStruct(const StructType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantStructVal, new Use[V.size()], V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant structure");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert((C->getType() == T->getElementType(I-V.begin()) ||
((T->getElementType(I-V.begin())->isAbstract() ||
C->getType()->isAbstract()) &&
T->getElementType(I-V.begin())->getTypeID() ==
C->getType()->getTypeID())) &&
"Initializer for struct element doesn't match struct element type!");
OL->init(C, this);
}
}
ConstantStruct::~ConstantStruct() {
delete [] OperandList;
}
ConstantVector::ConstantVector(const VectorType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantVectorVal, new Use[V.size()], V.size()) {
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert((C->getType() == T->getElementType() ||
(T->isAbstract() &&
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
"Initializer for vector element doesn't match vector element type!");
OL->init(C, this);
}
}
ConstantVector::~ConstantVector() {
delete [] OperandList;
}
// We declare several classes private to this file, so use an anonymous
// namespace
namespace {
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
Use Op;
public:
UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
: ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {}
};
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
Use Ops[2];
public:
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
: ConstantExpr(C1->getType(), Opcode, Ops, 2) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
}
};
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
Use Ops[3];
public:
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
Ops[2].init(C3, this);
}
};
/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
Use Ops[2];
public:
ExtractElementConstantExpr(Constant *C1, Constant *C2)
: ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
Instruction::ExtractElement, Ops, 2) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
}
};
/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
Use Ops[3];
public:
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::InsertElement,
Ops, 3) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
Ops[2].init(C3, this);
}
};
/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
Use Ops[3];
public:
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::ShuffleVector,
Ops, 3) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
Ops[2].init(C3, this);
}
};
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
const Type *DestTy)
: ConstantExpr(DestTy, Instruction::GetElementPtr,
new Use[IdxList.size()+1], IdxList.size()+1) {
OperandList[0].init(C, this);
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
OperandList[i+1].init(IdxList[i], this);
}
~GetElementPtrConstantExpr() {
delete [] OperandList;
}
};
// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
unsigned short predicate;
Use Ops[2];
CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred,
Constant* LHS, Constant* RHS)
: ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) {
OperandList[0].init(LHS, this);
OperandList[1].init(RHS, this);
}
};
} // end anonymous namespace
// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
return Instruction::isCast(getOpcode());
}
bool ConstantExpr::isCompare() const {
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}
/// ConstantExpr::get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
Constant *ConstantExpr::getNeg(Constant *C) {
return get(Instruction::Sub,
ConstantExpr::getZeroValueForNegationExpr(C->getType()),
C);
}
Constant *ConstantExpr::getNot(Constant *C) {
assert(isa<ConstantInt>(C) && "Cannot NOT a nonintegral type!");
return get(Instruction::Xor, C,
ConstantInt::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
return get(Instruction::Add, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
return get(Instruction::Sub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
return get(Instruction::Mul, C1, C2);
}
Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
return get(Instruction::UDiv, C1, C2);
}
Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
return get(Instruction::SDiv, C1, C2);
}
Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
return get(Instruction::FDiv, C1, C2);
}
Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
return get(Instruction::URem, C1, C2);
}
Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
return get(Instruction::SRem, C1, C2);
}
Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
return get(Instruction::FRem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
return get(Instruction::Xor, C1, C2);
}
unsigned ConstantExpr::getPredicate() const {
assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp);
return dynamic_cast<const CompareConstantExpr*>(this)->predicate;
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
return get(Instruction::Shl, C1, C2);
}
Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
return get(Instruction::LShr, C1, C2);
}
Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
return get(Instruction::AShr, C1, C2);
}
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(OpNo < getNumOperands() && "Operand num is out of range!");
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
if (getOperand(OpNo) == Op)
return const_cast<ConstantExpr*>(this);
Constant *Op0, *Op1, *Op2;
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(getOpcode(), Op, getType());
case Instruction::Select:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getSelect(Op0, Op1, Op2);
case Instruction::InsertElement:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getInsertElement(Op0, Op1, Op2);
case Instruction::ExtractElement:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
return ConstantExpr::getExtractElement(Op0, Op1);
case Instruction::ShuffleVector:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
case Instruction::GetElementPtr: {
SmallVector<Constant*, 8> Ops;
Ops.resize(getNumOperands());
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
Ops[i] = getOperand(i);
if (OpNo == 0)
return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
Ops[OpNo-1] = Op;
return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
}
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
return ConstantExpr::get(getOpcode(), Op0, Op1);
}
}
/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values. The specified operands must
/// match count and type with the existing ones.
Constant *ConstantExpr::
getWithOperands(const std::vector<Constant*> &Ops) const {
assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
bool AnyChange = false;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
assert(Ops[i]->getType() == getOperand(i)->getType() &&
"Operand type mismatch!");
AnyChange |= Ops[i] != getOperand(i);
}
if (!AnyChange) // No operands changed, return self.
return const_cast<ConstantExpr*>(this);
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1);
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
}
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
if (Ty == Type::Int1Ty)
return Val == 0 || Val == 1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
uint64_t Max = (1ll << NumBits) - 1;
return Val <= Max;
}
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
if (Ty == Type::Int1Ty)
return Val == 0 || Val == 1 || Val == -1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
int64_t Min = -(1ll << (NumBits-1));
int64_t Max = (1ll << (NumBits-1)) - 1;
return (Val >= Min && Val <= Max);
}
bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as floating point!
// TODO: Figure out how to test if a double can be cast to a float!
case Type::FloatTyID:
case Type::DoubleTyID:
return true; // This is the largest type...
}
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
// ConstantCreator - A class that is used to create constants by
// ValueMap*. This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
namespace llvm {
template<class ConstantClass, class TypeClass, class ValType>
struct VISIBILITY_HIDDEN ConstantCreator {
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
return new ConstantClass(Ty, V);
}
};
template<class ConstantClass, class TypeClass>
struct VISIBILITY_HIDDEN ConvertConstantType {
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
assert(0 && "This type cannot be converted!\n");
abort();
}
};
template<class ValType, class TypeClass, class ConstantClass,
bool HasLargeKey = false /*true for arrays and structs*/ >
class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
public:
typedef std::pair<const Type*, ValType> MapKey;
typedef std::map<MapKey, Constant *> MapTy;
typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
/// from the constants to their element in Map. This is important for
/// removal of constants from the array, which would otherwise have to scan
/// through the map with very large keys.
InverseMapTy InverseMap;
/// AbstractTypeMap - Map for abstract type constants.
///
AbstractTypeMapTy AbstractTypeMap;
public:
typename MapTy::iterator map_end() { return Map.end(); }
/// InsertOrGetItem - Return an iterator for the specified element.
/// If the element exists in the map, the returned iterator points to the
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
&InsertVal,
bool &Exists) {
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
Exists = !IP.second;
return IP.first;
}
private:
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
if (HasLargeKey) {
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
IMI->second->second == CP &&
"InverseMap corrupt!");
return IMI->second;
}
typename MapTy::iterator I =
Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP)));
if (I == Map.end() || I->second != CP) {
// FIXME: This should not use a linear scan. If this gets to be a
// performance problem, someone should look at this.
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
/* empty */;
}
return I;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
MapKey Lookup(Ty, V);
typename MapTy::iterator I = Map.lower_bound(Lookup);
// Is it in the map?
if (I != Map.end() && I->first == Lookup)
return static_cast<ConstantClass *>(I->second);
// If no preexisting value, create one now...
ConstantClass *Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
/// FIXME: why does this assert fail when loading 176.gcc?
//assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
// If the type of the constant is abstract, make sure that an entry exists
// for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI =
AbstractTypeMap.lower_bound(Ty);
if (TI == AbstractTypeMap.end() || TI->first != Ty) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
}
}
return Result;
}
void remove(ConstantClass *CP) {
typename MapTy::iterator I = FindExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.erase(CP);
// Now that we found the entry, make sure this isn't the entry that
// the AbstractTypeMap points to.
const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
if (Ty->isAbstract()) {
assert(AbstractTypeMap.count(Ty) &&
"Abstract type not in AbstractTypeMap?");
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
if (ATMEntryIt == I) {
// Yes, we are removing the representative entry for this type.
// See if there are any other entries of the same type.
typename MapTy::iterator TmpIt = ATMEntryIt;
// First check the entry before this one...
if (TmpIt != Map.begin()) {
--TmpIt;
if (TmpIt->first.first != Ty) // Not the same type, move back...
++TmpIt;
}
// If we didn't find the same type, try to move forward...
if (TmpIt == ATMEntryIt) {
++TmpIt;
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
--TmpIt; // No entry afterwards with the same type
}
// If there is another entry in the map of the same abstract type,
// update the AbstractTypeMap entry now.
if (TmpIt != ATMEntryIt) {
ATMEntryIt = TmpIt;
} else {
// Otherwise, we are removing the last instance of this type
// from the table. Remove from the ATM, and from user list.
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
AbstractTypeMap.erase(Ty);
}
}
}
Map.erase(I);
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
// First, remove the old location of the specified constant in the map.
typename MapTy::iterator OldI = FindExistingElement(C);
assert(OldI != Map.end() && "Constant not found in constant table!");
assert(OldI->second == C && "Didn't find correct element?");
// If this constant is the representative element for its abstract type,
// update the AbstractTypeMap so that the representative element is I.
if (C->getType()->isAbstract()) {
typename AbstractTypeMapTy::iterator ATI =
AbstractTypeMap.find(C->getType());
assert(ATI != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
if (ATI->second == OldI)
ATI->second = I;
}
// Remove the old entry from the map.
Map.erase(OldI);
// Update the inverse map so that we know that this constant is now
// located at descriptor I.
if (HasLargeKey) {
assert(I->second == C && "Bad inversemap entry!");
InverseMap[C] = I;
}
}
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
typename AbstractTypeMapTy::iterator I =
AbstractTypeMap.find(cast<Type>(OldTy));
assert(I != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
// Convert a constant at a time until the last one is gone. The last one
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
// eliminated eventually.
do {
ConvertConstantType<ConstantClass,
TypeClass>::convert(
static_cast<ConstantClass *>(I->second->second),
cast<TypeClass>(NewTy));
I = AbstractTypeMap.find(cast<Type>(OldTy));
} while (I != AbstractTypeMap.end());
}
// If the type became concrete without being refined to any other existing
// type, we just remove ourselves from the ATU list.
void typeBecameConcrete(const DerivedType *AbsTy) {
AbsTy->removeAbstractTypeUser(this);
}
void dump() const {
DOUT << "Constant.cpp: ValueMap\n";
}
};
}
//---- ConstantAggregateZero::get() implementation...
//
namespace llvm {
// ConstantAggregateZero does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
return new ConstantAggregateZero(Ty);
}
};
template<>
struct ConvertConstantType<ConstantAggregateZero, Type> {
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = ConstantAggregateZero::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static ManagedStatic<ValueMap<char, Type,
ConstantAggregateZero> > AggZeroConstants;
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
Constant *ConstantAggregateZero::get(const Type *Ty) {
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
"Cannot create an aggregate zero of non-aggregate type!");
return AggZeroConstants->getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantAggregateZero::destroyConstant() {
AggZeroConstants->remove(this);
destroyConstantImpl();
}
//---- ConstantArray::get() implementation...
//
namespace llvm {
template<>
struct ConvertConstantType<ConstantArray, ArrayType> {
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantArray::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static std::vector<Constant*> getValType(ConstantArray *CA) {
std::vector<Constant*> Elements;
Elements.reserve(CA->getNumOperands());
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
Elements.push_back(cast<Constant>(CA->getOperand(i)));
return Elements;
}
typedef ValueMap<std::vector<Constant*>, ArrayType,
ConstantArray, true /*largekey*/> ArrayConstantsTy;
static ManagedStatic<ArrayConstantsTy> ArrayConstants;
Constant *ConstantArray::get(const ArrayType *Ty,
const std::vector<Constant*> &V) {
// If this is an all-zero array, return a ConstantAggregateZero object
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue())
return ArrayConstants->getOrCreate(Ty, V);
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C)
return ArrayConstants->getOrCreate(Ty, V);
}
return ConstantAggregateZero::get(Ty);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
ArrayConstants->remove(this);
destroyConstantImpl();
}
/// ConstantArray::get(const string&) - Return an array that is initialized to
/// contain the specified string. If length is zero then a null terminator is
/// added to the specified string so that it may be used in a natural way.
/// Otherwise, the length parameter specifies how much of the string to use
/// and it won't be null terminated.
///
Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
std::vector<Constant*> ElementVals;
for (unsigned i = 0; i < Str.length(); ++i)
ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
// Add a null terminator to the string...
if (AddNull) {
ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
}
ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
return ConstantArray::get(ATy, ElementVals);
}
/// isString - This method returns true if the array is an array of i8, and
/// if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
// Check the element type for i8...
if (getType()->getElementType() != Type::Int8Ty)
return false;
// Check the elements to make sure they are all integers, not constant
// expressions.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(getOperand(i)))
return false;
return true;
}
/// isCString - This method returns true if the array is a string (see
/// isString) and it ends in a null byte \0 and does not contains any other
/// null bytes except its terminator.
bool ConstantArray::isCString() const {
// Check the element type for i8...
if (getType()->getElementType() != Type::Int8Ty)
return false;
Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
// Last element must be a null.
if (getOperand(getNumOperands()-1) != Zero)
return false;
// Other elements must be non-null integers.
for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
if (!isa<ConstantInt>(getOperand(i)))
return false;
if (getOperand(i) == Zero)
return false;
}
return true;
}
// getAsString - If the sub-element type of this array is i8
// then this method converts the array to an std::string and returns it.
// Otherwise, it asserts out.
//
std::string ConstantArray::getAsString() const {
assert(isString() && "Not a string!");
std::string Result;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result += (char)cast<ConstantInt>(getOperand(i))->getZExtValue();
return Result;
}
//---- ConstantStruct::get() implementation...
//
namespace llvm {
template<>
struct ConvertConstantType<ConstantStruct, StructType> {
static void convert(ConstantStruct *OldC, const StructType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantStruct::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
typedef ValueMap<std::vector<Constant*>, StructType,
ConstantStruct, true /*largekey*/> StructConstantsTy;
static ManagedStatic<StructConstantsTy> StructConstants;
static std::vector<Constant*> getValType(ConstantStruct *CS) {
std::vector<Constant*> Elements;
Elements.reserve(CS->getNumOperands());
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
Elements.push_back(cast<Constant>(CS->getOperand(i)));
return Elements;
}
Constant *ConstantStruct::get(const StructType *Ty,
const std::vector<Constant*> &V) {
// Create a ConstantAggregateZero value if all elements are zeros...
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue())
return StructConstants->getOrCreate(Ty, V);
return ConstantAggregateZero::get(Ty);
}
Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
std::vector<const Type*> StructEls;
StructEls.reserve(V.size());
for (unsigned i = 0, e = V.size(); i != e; ++i)
StructEls.push_back(V[i]->getType());
return get(StructType::get(StructEls, packed), V);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
StructConstants->remove(this);
destroyConstantImpl();
}
//---- ConstantVector::get() implementation...
//
namespace llvm {
template<>
struct ConvertConstantType<ConstantVector, VectorType> {
static void convert(ConstantVector *OldC, const VectorType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantVector::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static std::vector<Constant*> getValType(ConstantVector *CP) {
std::vector<Constant*> Elements;
Elements.reserve(CP->getNumOperands());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
Elements.push_back(CP->getOperand(i));
return Elements;
}
static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
ConstantVector> > VectorConstants;
Constant *ConstantVector::get(const VectorType *Ty,
const std::vector<Constant*> &V) {
// If this is an all-zero vector, return a ConstantAggregateZero object
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue())
return VectorConstants->getOrCreate(Ty, V);
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C)
return VectorConstants->getOrCreate(Ty, V);
}
return ConstantAggregateZero::get(Ty);
}
Constant *ConstantVector::get(const std::vector<Constant*> &V) {
assert(!V.empty() && "Cannot infer type if V is empty");
return get(VectorType::get(V.front()->getType(),V.size()), V);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantVector::destroyConstant() {
VectorConstants->remove(this);
destroyConstantImpl();
}
/// This function will return true iff every element in this vector constant
/// is set to all ones.
/// @returns true iff this constant's emements are all set to all ones.
/// @brief Determine if the value is all ones.
bool ConstantVector::isAllOnesValue() const {
// Check out first element.
const Constant *Elt = getOperand(0);
const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI || !CI->isAllOnesValue()) return false;
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
if (getOperand(I) != Elt) return false;
}
return true;
}
//---- ConstantPointerNull::get() implementation...
//
namespace llvm {
// ConstantPointerNull does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
return new ConstantPointerNull(Ty);
}
};
template<>
struct ConvertConstantType<ConstantPointerNull, PointerType> {
static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = ConstantPointerNull::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static ManagedStatic<ValueMap<char, PointerType,
ConstantPointerNull> > NullPtrConstants;
static char getValType(ConstantPointerNull *) {
return 0;
}
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
return NullPtrConstants->getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
NullPtrConstants->remove(this);
destroyConstantImpl();
}
//---- UndefValue::get() implementation...
//
namespace llvm {
// UndefValue does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<UndefValue, Type, ValType> {
static UndefValue *create(const Type *Ty, const ValType &V) {
return new UndefValue(Ty);
}
};
template<>
struct ConvertConstantType<UndefValue, Type> {
static void convert(UndefValue *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type.
Constant *New = UndefValue::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
static char getValType(UndefValue *) {
return 0;
}
UndefValue *UndefValue::get(const Type *Ty) {
return UndefValueConstants->getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
UndefValueConstants->remove(this);
destroyConstantImpl();
}
//---- ConstantExpr::get() implementations...
//
struct ExprMapKeyType {
explicit ExprMapKeyType(unsigned opc, std::vector<Constant*> ops,
unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { }
uint16_t opcode;
uint16_t predicate;
std::vector<Constant*> operands;
bool operator==(const ExprMapKeyType& that) const {
return this->opcode == that.opcode &&
this->predicate == that.predicate &&
this->operands == that.operands;
}
bool operator<(const ExprMapKeyType & that) const {
return this->opcode < that.opcode ||
(this->opcode == that.opcode && this->predicate < that.predicate) ||
(this->opcode == that.opcode && this->predicate == that.predicate &&
this->operands < that.operands);
}
bool operator!=(const ExprMapKeyType& that) const {
return !(*this == that);
}
};
namespace llvm {
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
unsigned short pred = 0) {
if (Instruction::isCast(V.opcode))
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
if ((V.opcode >= Instruction::BinaryOpsBegin &&
V.opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
if (V.opcode == Instruction::Select)
return new SelectConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ExtractElement)
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
if (V.opcode == Instruction::InsertElement)
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ShuffleVector)
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::GetElementPtr) {
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty);
}
// The compare instructions are weird. We have to encode the predicate
// value and it is combined with the instruction opcode by multiplying
// the opcode by one hundred. We must decode this to get the predicate.
if (V.opcode == Instruction::ICmp)
return new CompareConstantExpr(Instruction::ICmp, V.predicate,
V.operands[0], V.operands[1]);
if (V.opcode == Instruction::FCmp)
return new CompareConstantExpr(Instruction::FCmp, V.predicate,
V.operands[0], V.operands[1]);
assert(0 && "Invalid ConstantExpr!");
return 0;
}
};
template<>
struct ConvertConstantType<ConstantExpr, Type> {
static void convert(ConstantExpr *OldC, const Type *NewTy) {
Constant *New;
switch (OldC->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
NewTy);
break;
case Instruction::Select:
New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
OldC->getOperand(1),
OldC->getOperand(2));
break;
default:
assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
OldC->getOpcode() < Instruction::BinaryOpsEnd);
New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
OldC->getOperand(1));
break;
case Instruction::GetElementPtr:
// Make everyone now use a constant of the new type...
std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
&Idx[0], Idx.size());
break;
}
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
} // end namespace llvm
static ExprMapKeyType getValType(ConstantExpr *CE) {
std::vector<Constant*> Operands;
Operands.reserve(CE->getNumOperands());
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
Operands.push_back(cast<Constant>(CE->getOperand(i)));
return ExprMapKeyType(CE->getOpcode(), Operands,
CE->isCompare() ? CE->getPredicate() : 0);
}
static ManagedStatic<ValueMap<ExprMapKeyType, Type,
ConstantExpr> > ExprConstants;
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is usedby the various get* methods below.
static inline Constant *getFoldedCast(
Instruction::CastOps opc, Constant *C, const Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
return FC;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
ExprMapKeyType Key(opc, argVec);
return ExprConstants->getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
Instruction::CastOps opc = Instruction::CastOps(oc);
assert(Instruction::isCast(opc) && "opcode out of range");
assert(C && Ty && "Null arguments to getCast");
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
switch (opc) {
default:
assert(0 && "Invalid cast opcode");
break;
case Instruction::Trunc: return getTrunc(C, Ty);
case Instruction::ZExt: return getZExt(C, Ty);
case Instruction::SExt: return getSExt(C, Ty);
case Instruction::FPTrunc: return getFPTrunc(C, Ty);
case Instruction::FPExt: return getFPExtend(C, Ty);
case Instruction::UIToFP: return getUIToFP(C, Ty);
case Instruction::SIToFP: return getSIToFP(C, Ty);
case Instruction::FPToUI: return getFPToUI(C, Ty);
case Instruction::FPToSI: return getFPToSI(C, Ty);
case Instruction::PtrToInt: return getPtrToInt(C, Ty);
case Instruction::IntToPtr: return getIntToPtr(C, Ty);
case Instruction::BitCast: return getBitCast(C, Ty);
}
return 0;
}
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
return getCast(Instruction::BitCast, C, Ty);
return getCast(Instruction::ZExt, C, Ty);
}
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
return getCast(Instruction::BitCast, C, Ty);
return getCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
return getCast(Instruction::BitCast, C, Ty);
return getCast(Instruction::Trunc, C, Ty);
}
Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
assert(isa<PointerType>(S->getType()) && "Invalid cast");
assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
if (Ty->isInteger())
return getCast(Instruction::PtrToInt, S, Ty);
return getCast(Instruction::BitCast, S, Ty);
}
Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
bool isSigned) {
assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
unsigned DstBits = Ty->getPrimitiveSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
unsigned DstBits = Ty->getPrimitiveSizeInBits();
if (SrcBits == DstBits)
return C; // Avoid a useless cast
Instruction::CastOps opcode =
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
assert(C->getType()->isInteger() && "Trunc operand must be integer");
assert(Ty->isInteger() && "Trunc produces only integral");
assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
"SrcTy must be larger than DestTy for Trunc!");
return getFoldedCast(Instruction::Trunc, C, Ty);
}
Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
assert(C->getType()->isInteger() && "SEXt operand must be integral");
assert(Ty->isInteger() && "SExt produces only integer");
assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
"SrcTy must be smaller than DestTy for SExt!");
return getFoldedCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
assert(C->getType()->isInteger() && "ZEXt operand must be integral");
assert(Ty->isInteger() && "ZExt produces only integer");
assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
"SrcTy must be smaller than DestTy for ZExt!");
return getFoldedCast(Instruction::ZExt, C, Ty);
}
Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
"This is an illegal floating point truncation!");
return getFoldedCast(Instruction::FPTrunc, C, Ty);
}
Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
"This is an illegal floating point extension!");
return getFoldedCast(Instruction::FPExt, C, Ty);
}
Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
assert(C->getType()->isInteger() && Ty->isFloatingPoint() &&
"This is an illegal i32 to floating point cast!");
return getFoldedCast(Instruction::UIToFP, C, Ty);
}
Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
assert(C->getType()->isInteger() && Ty->isFloatingPoint() &&
"This is an illegal sint to floating point cast!");
return getFoldedCast(Instruction::SIToFP, C, Ty);
}
Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
assert(C->getType()->isFloatingPoint() && Ty->isInteger() &&
"This is an illegal floating point to i32 cast!");
return getFoldedCast(Instruction::FPToUI, C, Ty);
}
Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
assert(C->getType()->isFloatingPoint() && Ty->isInteger() &&
"This is an illegal floating point to i32 cast!");
return getFoldedCast(Instruction::FPToSI, C, Ty);
}
Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
assert(DstTy->isInteger() && "PtrToInt destination must be integral");
return getFoldedCast(Instruction::PtrToInt, C, DstTy);
}
Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
assert(C->getType()->isInteger() && "IntToPtr source must be integral");
assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
return getFoldedCast(Instruction::IntToPtr, C, DstTy);
}
Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
// BitCast implies a no-op cast of type only. No bits change. However, you
// can't cast pointers to anything but pointers.
const Type *SrcTy = C->getType();
assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
"BitCast cannot cast pointer to non-pointer and vice versa");
// Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
// or nonptr->ptr). For all the other types, the cast is okay if source and
// destination bit widths are identical.
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
assert(SrcBitSize == DstBitSize && "BitCast requies types of same width");
return getFoldedCast(Instruction::BitCast, C, DstTy);
}
Constant *ConstantExpr::getSizeOf(const Type *Ty) {
// sizeof is implemented as: (ulong) gep (Ty*)null, 1
Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
Constant *GEP =
getGetElementPtr(getNullValue(PointerType::get(Ty)), &GEPIdx, 1);
return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
}
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
Constant *C1, Constant *C2) {
// Check the operands for consistency first
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
"Invalid opcode in binary constant expression");
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases...
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
ExprMapKeyType Key(Opcode, argVec);
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
Constant *C1, Constant *C2) {
switch (predicate) {
default: assert(0 && "Invalid CmpInst predicate");
case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT:
case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE:
case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO:
case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE:
case FCmpInst::FCMP_TRUE:
return getFCmp(predicate, C1, C2);
case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
return getICmp(predicate, C1, C2);
}
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
#ifndef NDEBUG
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
isa<VectorType>(C1->getType())) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::UDiv:
case Instruction::SDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
&& cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
&& "Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::URem:
case Instruction::SRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
&& cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
&& "Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) &&
"Tried to create a logical operation on a non-integral type!");
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isInteger() &&
"Tried to create a shift operation on a non-integer type!");
break;
default:
break;
}
#endif
return getTy(C1->getType(), Opcode, C1, C2);
}
Constant *ConstantExpr::getCompare(unsigned short pred,
Constant *C1, Constant *C2) {
assert(C1->getType() == C2->getType() && "Op types should be identical!");
return getCompareTy(pred, C1, C2);
}
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
Constant *V1, Constant *V2) {
assert(C->getType() == Type::Int1Ty && "Select condition must be i1!");
assert(V1->getType() == V2->getType() && "Select value types must match!");
assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");
if (ReqTy == V1->getType())
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
return SC; // Fold common cases
std::vector<Constant*> argVec(3, C);
argVec[1] = V1;
argVec[2] = V2;
ExprMapKeyType Key(Instruction::Select, argVec);
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, NumIdx, true) &&
"GEP indices invalid!");
if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
return FC; // Fold a few common cases...
assert(isa<PointerType>(C->getType()) &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(NumIdx+1);
ArgVec.push_back(C);
for (unsigned i = 0; i != NumIdx; ++i)
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
unsigned NumIdx) {
// Get the result type of the getelementptr!
const Type *Ty =
GetElementPtrInst::getIndexedType(C->getType(), Idxs, NumIdx, true);
assert(Ty && "GEP indices invalid!");
return getGetElementPtrTy(PointerType::get(Ty), C, Idxs, NumIdx);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
unsigned NumIdx) {
return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
}
Constant *
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
return ExprConstants->getOrCreate(Type::Int1Ty, Key);
}
Constant *
ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
return ExprConstants->getOrCreate(Type::Int1Ty, Key);
}
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
Constant *Idx) {
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
assert(isa<VectorType>(Val->getType()) &&
"Tried to create extractelement operation on non-vector type!");
assert(Idx->getType() == Type::Int32Ty &&
"Extractelement index must be i32 type!");
return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
Val, Idx);
}
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
Constant *Elt, Constant *Idx) {
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Elt);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
Constant *Idx) {
assert(isa<VectorType>(Val->getType()) &&
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
&& "Insertelement types must match!");
assert(Idx->getType() == Type::Int32Ty &&
"Insertelement index must be i32 type!");
return getInsertElementTy(cast<VectorType>(Val->getType())->getElementType(),
Val, Elt, Idx);
}
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
Constant *V2, Constant *Mask) {
if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, V1);
ArgVec.push_back(V2);
ArgVec.push_back(Mask);
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
Constant *Mask) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
return getShuffleVectorTy(V1->getType(), V1, V2, Mask);
}
Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
if (PTy->getElementType()->isFloatingPoint()) {
std::vector<Constant*> zeros(PTy->getNumElements(),
ConstantFP::get(PTy->getElementType(),-0.0));
return ConstantVector::get(PTy, zeros);
}
if (Ty->isFloatingPoint())
return ConstantFP::get(Ty, -0.0);
return Constant::getNullValue(Ty);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
ExprConstants->remove(this);
destroyConstantImpl();
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}
//===----------------------------------------------------------------------===//
// replaceUsesOfWithOnConstant implementations
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Values[OperandToUpdate] = ToC;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
bool Exists;
ArrayConstantsTy::MapTy::iterator I =
ArrayConstants->InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
ArrayConstants->MoveConstantToNewSlot(this, I);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
return;
}
}
// Otherwise, I do need to replace this with an existing value.
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Values[OperandToUpdate] = ToC;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
bool Exists;
StructConstantsTy::MapTy::iterator I =
StructConstants->InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
StructConstants->MoveConstantToNewSlot(this, I);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
return;
}
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
std::vector<Constant*> Values;
Values.reserve(getNumOperands()); // Build replacement array...
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = cast<Constant>(To);
Values.push_back(Val);
}
Constant *Replacement = ConstantVector::get(getType(), Values);
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Use *U) {
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
Constant *To = cast<Constant>(ToV);
Constant *Replacement = 0;
if (getOpcode() == Instruction::GetElementPtr) {
SmallVector<Constant*, 8> Indices;
Constant *Pointer = getOperand(0);
Indices.reserve(getNumOperands()-1);
if (Pointer == From) Pointer = To;
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = To;
Indices.push_back(Val);
}
Replacement = ConstantExpr::getGetElementPtr(Pointer,
&Indices[0], Indices.size());
} else if (isCast()) {
assert(getOperand(0) == From && "Cast only has one use!");
Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
} else if (getOpcode() == Instruction::Select) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getSelect(C1, C2, C3);
} else if (getOpcode() == Instruction::ExtractElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::getExtractElement(C1, C2);
} else if (getOpcode() == Instruction::InsertElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
} else if (getOpcode() == Instruction::ShuffleVector) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
} else if (isCompare()) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (getOpcode() == Instruction::ICmp)
Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
else
Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
} else if (getNumOperands() == 2) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::get(getOpcode(), C1, C2);
} else {
assert(0 && "Unknown ConstantExpr type!");
return;
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
/// getStringValue - Turn an LLVM constant pointer that eventually points to a
/// global into a string value. Return an empty string if we can't do it.
/// Parameter Chop determines if the result is chopped at the first null
/// terminator.
///
std::string Constant::getStringValue(bool Chop, unsigned Offset) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) {
if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
if (Init->isString()) {
std::string Result = Init->getAsString();
if (Offset < Result.size()) {
// If we are pointing INTO The string, erase the beginning...
Result.erase(Result.begin(), Result.begin()+Offset);
// Take off the null terminator, and any string fragments after it.
if (Chop) {
std::string::size_type NullPos = Result.find_first_of((char)0);
if (NullPos != std::string::npos)
Result.erase(Result.begin()+NullPos, Result.end());
}
return Result;
}
}
}
} else if (Constant *C = dyn_cast<Constant>(this)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
return GV->getStringValue(Chop, Offset);
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Turn a gep into the specified offset.
if (CE->getNumOperands() == 3 &&
cast<Constant>(CE->getOperand(1))->isNullValue() &&
isa<ConstantInt>(CE->getOperand(2))) {
Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue();
return CE->getOperand(0)->getStringValue(Chop, Offset);
}
}
}
}
return "";
}