mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
3daeb462cb
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Enable these fp vmlx codegen changes for Cortex-A9. llvm-svn: 129775
332 lines
9.8 KiB
C++
332 lines
9.8 KiB
C++
//===-- MLxExpansionPass.cpp - Expand MLx instrs to avoid hazards ----------=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Expand VFP / NEON floating point MLA / MLS instructions (each to a pair of
|
|
// multiple and add / sub instructions) when special VMLx hazards are detected.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mlx-expansion"
|
|
#include "ARM.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
ForceExapnd("expand-all-fp-mlx", cl::init(false), cl::Hidden);
|
|
static cl::opt<unsigned>
|
|
ExpandLimit("expand-limit", cl::init(~0U), cl::Hidden);
|
|
|
|
STATISTIC(NumExpand, "Number of fp MLA / MLS instructions expanded");
|
|
|
|
namespace {
|
|
struct MLxExpansion : public MachineFunctionPass {
|
|
static char ID;
|
|
MLxExpansion() : MachineFunctionPass(ID) {}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &Fn);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "ARM MLA / MLS expansion pass";
|
|
}
|
|
|
|
private:
|
|
const ARMBaseInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MachineRegisterInfo *MRI;
|
|
|
|
bool isA9;
|
|
unsigned MIIdx;
|
|
MachineInstr* LastMIs[4];
|
|
SmallPtrSet<MachineInstr*, 4> IgnoreStall;
|
|
|
|
void clearStack();
|
|
void pushStack(MachineInstr *MI);
|
|
MachineInstr *getAccDefMI(MachineInstr *MI) const;
|
|
unsigned getDefReg(MachineInstr *MI) const;
|
|
bool hasRAWHazard(unsigned Reg, MachineInstr *MI) const;
|
|
bool FindMLxHazard(MachineInstr *MI);
|
|
void ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
|
|
unsigned MulOpc, unsigned AddSubOpc,
|
|
bool NegAcc, bool HasLane);
|
|
bool ExpandFPMLxInstructions(MachineBasicBlock &MBB);
|
|
};
|
|
char MLxExpansion::ID = 0;
|
|
}
|
|
|
|
void MLxExpansion::clearStack() {
|
|
std::fill(LastMIs, LastMIs + 4, (MachineInstr*)0);
|
|
MIIdx = 0;
|
|
}
|
|
|
|
void MLxExpansion::pushStack(MachineInstr *MI) {
|
|
LastMIs[MIIdx] = MI;
|
|
if (++MIIdx == 4)
|
|
MIIdx = 0;
|
|
}
|
|
|
|
MachineInstr *MLxExpansion::getAccDefMI(MachineInstr *MI) const {
|
|
// Look past COPY and INSERT_SUBREG instructions to find the
|
|
// real definition MI. This is important for _sfp instructions.
|
|
unsigned Reg = MI->getOperand(1).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return 0;
|
|
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstr *DefMI = MRI->getVRegDef(Reg);
|
|
while (true) {
|
|
if (DefMI->getParent() != MBB)
|
|
break;
|
|
if (DefMI->isCopyLike()) {
|
|
Reg = DefMI->getOperand(1).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
DefMI = MRI->getVRegDef(Reg);
|
|
continue;
|
|
}
|
|
} else if (DefMI->isInsertSubreg()) {
|
|
Reg = DefMI->getOperand(2).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
DefMI = MRI->getVRegDef(Reg);
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return DefMI;
|
|
}
|
|
|
|
unsigned MLxExpansion::getDefReg(MachineInstr *MI) const {
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
|
|
!MRI->hasOneNonDBGUse(Reg))
|
|
return Reg;
|
|
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstr *UseMI = &*MRI->use_nodbg_begin(Reg);
|
|
if (UseMI->getParent() != MBB)
|
|
return Reg;
|
|
|
|
while (UseMI->isCopy() || UseMI->isInsertSubreg()) {
|
|
Reg = UseMI->getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
|
|
!MRI->hasOneNonDBGUse(Reg))
|
|
return Reg;
|
|
UseMI = &*MRI->use_nodbg_begin(Reg);
|
|
if (UseMI->getParent() != MBB)
|
|
return Reg;
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
|
|
bool MLxExpansion::hasRAWHazard(unsigned Reg, MachineInstr *MI) const {
|
|
// FIXME: Detect integer instructions properly.
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
unsigned Domain = TID.TSFlags & ARMII::DomainMask;
|
|
if (TID.mayStore())
|
|
return false;
|
|
unsigned Opcode = TID.getOpcode();
|
|
if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
|
|
return false;
|
|
if ((Domain & ARMII::DomainVFP) || (Domain & ARMII::DomainNEON))
|
|
return MI->readsRegister(Reg, TRI);
|
|
return false;
|
|
}
|
|
|
|
|
|
bool MLxExpansion::FindMLxHazard(MachineInstr *MI) {
|
|
if (NumExpand >= ExpandLimit)
|
|
return false;
|
|
|
|
if (ForceExapnd)
|
|
return true;
|
|
|
|
MachineInstr *DefMI = getAccDefMI(MI);
|
|
if (TII->isFpMLxInstruction(DefMI->getOpcode())) {
|
|
// r0 = vmla
|
|
// r3 = vmla r0, r1, r2
|
|
// takes 16 - 17 cycles
|
|
//
|
|
// r0 = vmla
|
|
// r4 = vmul r1, r2
|
|
// r3 = vadd r0, r4
|
|
// takes about 14 - 15 cycles even with vmul stalling for 4 cycles.
|
|
IgnoreStall.insert(DefMI);
|
|
return true;
|
|
}
|
|
|
|
if (IgnoreStall.count(MI))
|
|
return false;
|
|
|
|
// If a VMLA.F is followed by an VADD.F or VMUL.F with no RAW hazard, the
|
|
// VADD.F or VMUL.F will stall 4 cycles before issue. The 4 cycle stall
|
|
// preserves the in-order retirement of the instructions.
|
|
// Look at the next few instructions, if *most* of them can cause hazards,
|
|
// then the scheduler can't *fix* this, we'd better break up the VMLA.
|
|
unsigned Limit1 = isA9 ? 1 : 4;
|
|
unsigned Limit2 = isA9 ? 1 : 4;
|
|
for (unsigned i = 1; i <= 4; ++i) {
|
|
int Idx = ((int)MIIdx - i + 4) % 4;
|
|
MachineInstr *NextMI = LastMIs[Idx];
|
|
if (!NextMI)
|
|
continue;
|
|
|
|
if (TII->canCauseFpMLxStall(NextMI->getOpcode())) {
|
|
if (i <= Limit1)
|
|
return true;
|
|
}
|
|
|
|
// Look for VMLx RAW hazard.
|
|
if (i <= Limit2 && hasRAWHazard(getDefReg(MI), NextMI))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ExpandFPMLxInstructions - Expand a MLA / MLS instruction into a pair
|
|
/// of MUL + ADD / SUB instructions.
|
|
void
|
|
MLxExpansion::ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
|
|
unsigned MulOpc, unsigned AddSubOpc,
|
|
bool NegAcc, bool HasLane) {
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
bool DstDead = MI->getOperand(0).isDead();
|
|
unsigned AccReg = MI->getOperand(1).getReg();
|
|
unsigned Src1Reg = MI->getOperand(2).getReg();
|
|
unsigned Src2Reg = MI->getOperand(3).getReg();
|
|
bool Src1Kill = MI->getOperand(2).isKill();
|
|
bool Src2Kill = MI->getOperand(3).isKill();
|
|
unsigned LaneImm = HasLane ? MI->getOperand(4).getImm() : 0;
|
|
unsigned NextOp = HasLane ? 5 : 4;
|
|
ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NextOp).getImm();
|
|
unsigned PredReg = MI->getOperand(++NextOp).getReg();
|
|
|
|
const TargetInstrDesc &TID1 = TII->get(MulOpc);
|
|
const TargetInstrDesc &TID2 = TII->get(AddSubOpc);
|
|
unsigned TmpReg = MRI->createVirtualRegister(TID1.getRegClass(0, TRI));
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MBB, *MI, MI->getDebugLoc(), TID1, TmpReg)
|
|
.addReg(Src1Reg, getKillRegState(Src1Kill))
|
|
.addReg(Src2Reg, getKillRegState(Src2Kill));
|
|
if (HasLane)
|
|
MIB.addImm(LaneImm);
|
|
MIB.addImm(Pred).addReg(PredReg);
|
|
|
|
MIB = BuildMI(MBB, *MI, MI->getDebugLoc(), TID2)
|
|
.addReg(DstReg, getDefRegState(true) | getDeadRegState(DstDead));
|
|
|
|
if (NegAcc) {
|
|
bool AccKill = MRI->hasOneNonDBGUse(AccReg);
|
|
MIB.addReg(TmpReg, getKillRegState(true))
|
|
.addReg(AccReg, getKillRegState(AccKill));
|
|
} else {
|
|
MIB.addReg(AccReg).addReg(TmpReg, getKillRegState(true));
|
|
}
|
|
MIB.addImm(Pred).addReg(PredReg);
|
|
|
|
DEBUG({
|
|
dbgs() << "Expanding: " << *MI;
|
|
dbgs() << " to:\n";
|
|
MachineBasicBlock::iterator MII = MI;
|
|
MII = llvm::prior(MII);
|
|
MachineInstr &MI2 = *MII;
|
|
MII = llvm::prior(MII);
|
|
MachineInstr &MI1 = *MII;
|
|
dbgs() << " " << MI1;
|
|
dbgs() << " " << MI2;
|
|
});
|
|
|
|
MI->eraseFromParent();
|
|
++NumExpand;
|
|
}
|
|
|
|
bool MLxExpansion::ExpandFPMLxInstructions(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
|
|
clearStack();
|
|
IgnoreStall.clear();
|
|
|
|
unsigned Skip = 0;
|
|
MachineBasicBlock::reverse_iterator MII = MBB.rbegin(), E = MBB.rend();
|
|
while (MII != E) {
|
|
MachineInstr *MI = &*MII;
|
|
|
|
if (MI->isLabel() || MI->isImplicitDef() || MI->isCopy()) {
|
|
++MII;
|
|
continue;
|
|
}
|
|
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (TID.isBarrier()) {
|
|
clearStack();
|
|
Skip = 0;
|
|
++MII;
|
|
continue;
|
|
}
|
|
|
|
unsigned Domain = TID.TSFlags & ARMII::DomainMask;
|
|
if (Domain == ARMII::DomainGeneral) {
|
|
if (++Skip == 2)
|
|
// Assume dual issues of non-VFP / NEON instructions.
|
|
pushStack(0);
|
|
} else {
|
|
Skip = 0;
|
|
|
|
unsigned MulOpc, AddSubOpc;
|
|
bool NegAcc, HasLane;
|
|
if (!TII->isFpMLxInstruction(TID.getOpcode(),
|
|
MulOpc, AddSubOpc, NegAcc, HasLane) ||
|
|
!FindMLxHazard(MI))
|
|
pushStack(MI);
|
|
else {
|
|
ExpandFPMLxInstruction(MBB, MI, MulOpc, AddSubOpc, NegAcc, HasLane);
|
|
E = MBB.rend(); // May have changed if MI was the 1st instruction.
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
++MII;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool MLxExpansion::runOnMachineFunction(MachineFunction &Fn) {
|
|
TII = static_cast<const ARMBaseInstrInfo*>(Fn.getTarget().getInstrInfo());
|
|
TRI = Fn.getTarget().getRegisterInfo();
|
|
MRI = &Fn.getRegInfo();
|
|
const ARMSubtarget *STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
|
|
isA9 = STI->isCortexA9();
|
|
|
|
bool Modified = false;
|
|
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
|
|
++MFI) {
|
|
MachineBasicBlock &MBB = *MFI;
|
|
Modified |= ExpandFPMLxInstructions(MBB);
|
|
}
|
|
|
|
return Modified;
|
|
}
|
|
|
|
FunctionPass *llvm::createMLxExpansionPass() {
|
|
return new MLxExpansion();
|
|
}
|