1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/FuzzMutate/IRMutator.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

200 lines
6.7 KiB
C++

//===-- IRMutator.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/IRMutator.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/FuzzMutate/Random.h"
#include "llvm/FuzzMutate/RandomIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar/DCE.h"
using namespace llvm;
static void createEmptyFunction(Module &M) {
// TODO: Some arguments and a return value would probably be more interesting.
LLVMContext &Context = M.getContext();
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Context), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
BasicBlock *BB = BasicBlock::Create(Context, "BB", F);
ReturnInst::Create(Context, BB);
}
void IRMutationStrategy::mutate(Module &M, RandomIRBuilder &IB) {
if (M.empty())
createEmptyFunction(M);
auto RS = makeSampler<Function *>(IB.Rand);
for (Function &F : M)
if (!F.isDeclaration())
RS.sample(&F, /*Weight=*/1);
mutate(*RS.getSelection(), IB);
}
void IRMutationStrategy::mutate(Function &F, RandomIRBuilder &IB) {
mutate(*makeSampler(IB.Rand, make_pointer_range(F)).getSelection(), IB);
}
void IRMutationStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
mutate(*makeSampler(IB.Rand, make_pointer_range(BB)).getSelection(), IB);
}
void IRMutator::mutateModule(Module &M, int Seed, size_t CurSize,
size_t MaxSize) {
std::vector<Type *> Types;
for (const auto &Getter : AllowedTypes)
Types.push_back(Getter(M.getContext()));
RandomIRBuilder IB(Seed, Types);
auto RS = makeSampler<IRMutationStrategy *>(IB.Rand);
for (const auto &Strategy : Strategies)
RS.sample(Strategy.get(),
Strategy->getWeight(CurSize, MaxSize, RS.totalWeight()));
auto Strategy = RS.getSelection();
Strategy->mutate(M, IB);
}
static void eliminateDeadCode(Function &F) {
FunctionPassManager FPM;
FPM.addPass(DCEPass());
FunctionAnalysisManager FAM;
FAM.registerPass([&] { return TargetLibraryAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
FPM.run(F, FAM);
}
void InjectorIRStrategy::mutate(Function &F, RandomIRBuilder &IB) {
IRMutationStrategy::mutate(F, IB);
eliminateDeadCode(F);
}
std::vector<fuzzerop::OpDescriptor> InjectorIRStrategy::getDefaultOps() {
std::vector<fuzzerop::OpDescriptor> Ops;
describeFuzzerIntOps(Ops);
describeFuzzerFloatOps(Ops);
describeFuzzerControlFlowOps(Ops);
describeFuzzerPointerOps(Ops);
describeFuzzerAggregateOps(Ops);
describeFuzzerVectorOps(Ops);
return Ops;
}
Optional<fuzzerop::OpDescriptor>
InjectorIRStrategy::chooseOperation(Value *Src, RandomIRBuilder &IB) {
auto OpMatchesPred = [&Src](fuzzerop::OpDescriptor &Op) {
return Op.SourcePreds[0].matches({}, Src);
};
auto RS = makeSampler(IB.Rand, make_filter_range(Operations, OpMatchesPred));
if (RS.isEmpty())
return None;
return *RS;
}
void InjectorIRStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
SmallVector<Instruction *, 32> Insts;
for (auto I = BB.getFirstInsertionPt(), E = BB.end(); I != E; ++I)
Insts.push_back(&*I);
if (Insts.size() < 1)
return;
// Choose an insertion point for our new instruction.
size_t IP = uniform<size_t>(IB.Rand, 0, Insts.size() - 1);
auto InstsBefore = makeArrayRef(Insts).slice(0, IP);
auto InstsAfter = makeArrayRef(Insts).slice(IP);
// Choose a source, which will be used to constrain the operation selection.
SmallVector<Value *, 2> Srcs;
Srcs.push_back(IB.findOrCreateSource(BB, InstsBefore));
// Choose an operation that's constrained to be valid for the type of the
// source, collect any other sources it needs, and then build it.
auto OpDesc = chooseOperation(Srcs[0], IB);
// Bail if no operation was found
if (!OpDesc)
return;
for (const auto &Pred : makeArrayRef(OpDesc->SourcePreds).slice(1))
Srcs.push_back(IB.findOrCreateSource(BB, InstsBefore, Srcs, Pred));
if (Value *Op = OpDesc->BuilderFunc(Srcs, Insts[IP])) {
// Find a sink and wire up the results of the operation.
IB.connectToSink(BB, InstsAfter, Op);
}
}
uint64_t InstDeleterIRStrategy::getWeight(size_t CurrentSize, size_t MaxSize,
uint64_t CurrentWeight) {
// If we have less than 200 bytes, panic and try to always delete.
if (CurrentSize > MaxSize - 200)
return CurrentWeight ? CurrentWeight * 100 : 1;
// Draw a line starting from when we only have 1k left and increasing linearly
// to double the current weight.
int Line = (-2 * CurrentWeight) * (MaxSize - CurrentSize + 1000);
// Clamp negative weights to zero.
if (Line < 0)
return 0;
return Line;
}
void InstDeleterIRStrategy::mutate(Function &F, RandomIRBuilder &IB) {
auto RS = makeSampler<Instruction *>(IB.Rand);
for (Instruction &Inst : instructions(F)) {
// TODO: We can't handle these instructions.
if (Inst.isTerminator() || Inst.isEHPad() ||
Inst.isSwiftError() || isa<PHINode>(Inst))
continue;
RS.sample(&Inst, /*Weight=*/1);
}
if (RS.isEmpty())
return;
// Delete the instruction.
mutate(*RS.getSelection(), IB);
// Clean up any dead code that's left over after removing the instruction.
eliminateDeadCode(F);
}
void InstDeleterIRStrategy::mutate(Instruction &Inst, RandomIRBuilder &IB) {
assert(!Inst.isTerminator() && "Deleting terminators invalidates CFG");
if (Inst.getType()->isVoidTy()) {
// Instructions with void type (ie, store) have no uses to worry about. Just
// erase it and move on.
Inst.eraseFromParent();
return;
}
// Otherwise we need to find some other value with the right type to keep the
// users happy.
auto Pred = fuzzerop::onlyType(Inst.getType());
auto RS = makeSampler<Value *>(IB.Rand);
SmallVector<Instruction *, 32> InstsBefore;
BasicBlock *BB = Inst.getParent();
for (auto I = BB->getFirstInsertionPt(), E = Inst.getIterator(); I != E;
++I) {
if (Pred.matches({}, &*I))
RS.sample(&*I, /*Weight=*/1);
InstsBefore.push_back(&*I);
}
if (!RS)
RS.sample(IB.newSource(*BB, InstsBefore, {}, Pred), /*Weight=*/1);
Inst.replaceAllUsesWith(RS.getSelection());
Inst.eraseFromParent();
}