1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-25 05:52:53 +02:00
llvm-mirror/lib/Target/PowerPC/PPCLoopPreIncPrep.cpp
Justin Bogner 621a2ef540 LPM: Stop threading Pass * through all of the loop utility APIs. NFC
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:

- The APIs have access to pretty well any Pass state they want, so
  it's hard to tell what they may or may not do.

- Other APIs have copied these and pass around a `Pass *` even though
  they don't even use it. Some of these just hand a nullptr to the API
  since the callers don't even have a pass available.

- Passes in the new pass manager don't work like the current ones, so
  the APIs can't be used as is there.

Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.

llvm-svn: 255669
2015-12-15 19:40:57 +00:00

438 lines
15 KiB
C++

//===------ PPCLoopPreIncPrep.cpp - Loop Pre-Inc. AM Prep. Pass -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to prepare loops for pre-increment addressing
// modes. Additional PHIs are created for loop induction variables used by
// load/store instructions so that the pre-increment forms can be used.
// Generically, this means transforming loops like this:
// for (int i = 0; i < n; ++i)
// array[i] = c;
// to look like this:
// T *p = array[-1];
// for (int i = 0; i < n; ++i)
// *++p = c;
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ppc-loop-preinc-prep"
#include "PPC.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
// By default, we limit this to creating 16 PHIs (which is a little over half
// of the allocatable register set).
static cl::opt<unsigned> MaxVars("ppc-preinc-prep-max-vars",
cl::Hidden, cl::init(16),
cl::desc("Potential PHI threshold for PPC preinc loop prep"));
namespace llvm {
void initializePPCLoopPreIncPrepPass(PassRegistry&);
}
namespace {
class PPCLoopPreIncPrep : public FunctionPass {
public:
static char ID; // Pass ID, replacement for typeid
PPCLoopPreIncPrep() : FunctionPass(ID), TM(nullptr) {
initializePPCLoopPreIncPrepPass(*PassRegistry::getPassRegistry());
}
PPCLoopPreIncPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
initializePPCLoopPreIncPrepPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
}
bool runOnFunction(Function &F) override;
bool runOnLoop(Loop *L);
void simplifyLoopLatch(Loop *L);
bool rotateLoop(Loop *L);
private:
PPCTargetMachine *TM;
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
bool PreserveLCSSA;
};
}
char PPCLoopPreIncPrep::ID = 0;
static const char *name = "Prepare loop for pre-inc. addressing modes";
INITIALIZE_PASS_BEGIN(PPCLoopPreIncPrep, DEBUG_TYPE, name, false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(PPCLoopPreIncPrep, DEBUG_TYPE, name, false, false)
FunctionPass *llvm::createPPCLoopPreIncPrepPass(PPCTargetMachine &TM) {
return new PPCLoopPreIncPrep(TM);
}
namespace {
struct BucketElement {
BucketElement(const SCEVConstant *O, Instruction *I) : Offset(O), Instr(I) {}
BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {}
const SCEVConstant *Offset;
Instruction *Instr;
};
struct Bucket {
Bucket(const SCEV *B, Instruction *I) : BaseSCEV(B),
Elements(1, BucketElement(I)) {}
const SCEV *BaseSCEV;
SmallVector<BucketElement, 16> Elements;
};
}
static bool IsPtrInBounds(Value *BasePtr) {
Value *StrippedBasePtr = BasePtr;
while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr))
StrippedBasePtr = BC->getOperand(0);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr))
return GEP->isInBounds();
return false;
}
static Value *GetPointerOperand(Value *MemI) {
if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) {
return LMemI->getPointerOperand();
} else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) {
return SMemI->getPointerOperand();
} else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) {
if (IMemI->getIntrinsicID() == Intrinsic::prefetch)
return IMemI->getArgOperand(0);
}
return 0;
}
bool PPCLoopPreIncPrep::runOnFunction(Function &F) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
bool MadeChange = false;
for (auto I = LI->begin(), IE = LI->end(); I != IE; ++I)
for (auto L = df_begin(*I), LE = df_end(*I); L != LE; ++L)
MadeChange |= runOnLoop(*L);
return MadeChange;
}
bool PPCLoopPreIncPrep::runOnLoop(Loop *L) {
bool MadeChange = false;
// Only prep. the inner-most loop
if (!L->empty())
return MadeChange;
DEBUG(dbgs() << "PIP: Examining: " << *L << "\n");
BasicBlock *Header = L->getHeader();
const PPCSubtarget *ST =
TM ? TM->getSubtargetImpl(*Header->getParent()) : nullptr;
unsigned HeaderLoopPredCount =
std::distance(pred_begin(Header), pred_end(Header));
// Collect buckets of comparable addresses used by loads and stores.
SmallVector<Bucket, 16> Buckets;
for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
I != IE; ++I) {
for (BasicBlock::iterator J = (*I)->begin(), JE = (*I)->end();
J != JE; ++J) {
Value *PtrValue;
Instruction *MemI;
if (LoadInst *LMemI = dyn_cast<LoadInst>(J)) {
MemI = LMemI;
PtrValue = LMemI->getPointerOperand();
} else if (StoreInst *SMemI = dyn_cast<StoreInst>(J)) {
MemI = SMemI;
PtrValue = SMemI->getPointerOperand();
} else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(J)) {
if (IMemI->getIntrinsicID() == Intrinsic::prefetch) {
MemI = IMemI;
PtrValue = IMemI->getArgOperand(0);
} else continue;
} else continue;
unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace();
if (PtrAddrSpace)
continue;
// There are no update forms for Altivec vector load/stores.
if (ST && ST->hasAltivec() &&
PtrValue->getType()->getPointerElementType()->isVectorTy())
continue;
if (L->isLoopInvariant(PtrValue))
continue;
const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L);
if (const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV)) {
if (LARSCEV->getLoop() != L)
continue;
} else {
continue;
}
bool FoundBucket = false;
for (auto &B : Buckets) {
const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV);
if (const auto *CDiff = dyn_cast<SCEVConstant>(Diff)) {
B.Elements.push_back(BucketElement(CDiff, MemI));
FoundBucket = true;
break;
}
}
if (!FoundBucket) {
if (Buckets.size() == MaxVars)
return MadeChange;
Buckets.push_back(Bucket(LSCEV, MemI));
}
}
}
if (Buckets.empty())
return MadeChange;
BasicBlock *LoopPredecessor = L->getLoopPredecessor();
// If there is no loop predecessor, or the loop predecessor's terminator
// returns a value (which might contribute to determining the loop's
// iteration space), insert a new preheader for the loop.
if (!LoopPredecessor ||
!LoopPredecessor->getTerminator()->getType()->isVoidTy()) {
LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
if (LoopPredecessor)
MadeChange = true;
}
if (!LoopPredecessor)
return MadeChange;
DEBUG(dbgs() << "PIP: Found " << Buckets.size() << " buckets\n");
SmallSet<BasicBlock *, 16> BBChanged;
for (unsigned i = 0, e = Buckets.size(); i != e; ++i) {
// The base address of each bucket is transformed into a phi and the others
// are rewritten as offsets of that variable.
// We have a choice now of which instruction's memory operand we use as the
// base for the generated PHI. Always picking the first instruction in each
// bucket does not work well, specifically because that instruction might
// be a prefetch (and there are no pre-increment dcbt variants). Otherwise,
// the choice is somewhat arbitrary, because the backend will happily
// generate direct offsets from both the pre-incremented and
// post-incremented pointer values. Thus, we'll pick the first non-prefetch
// instruction in each bucket, and adjust the recurrence and other offsets
// accordingly.
for (int j = 0, je = Buckets[i].Elements.size(); j != je; ++j) {
if (auto *II = dyn_cast<IntrinsicInst>(Buckets[i].Elements[j].Instr))
if (II->getIntrinsicID() == Intrinsic::prefetch)
continue;
// If we'd otherwise pick the first element anyway, there's nothing to do.
if (j == 0)
break;
// If our chosen element has no offset from the base pointer, there's
// nothing to do.
if (!Buckets[i].Elements[j].Offset ||
Buckets[i].Elements[j].Offset->isZero())
break;
const SCEV *Offset = Buckets[i].Elements[j].Offset;
Buckets[i].BaseSCEV = SE->getAddExpr(Buckets[i].BaseSCEV, Offset);
for (auto &E : Buckets[i].Elements) {
if (E.Offset)
E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
else
E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
}
std::swap(Buckets[i].Elements[j], Buckets[i].Elements[0]);
break;
}
const SCEVAddRecExpr *BasePtrSCEV =
cast<SCEVAddRecExpr>(Buckets[i].BaseSCEV);
if (!BasePtrSCEV->isAffine())
continue;
DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n");
assert(BasePtrSCEV->getLoop() == L &&
"AddRec for the wrong loop?");
// The instruction corresponding to the Bucket's BaseSCEV must be the first
// in the vector of elements.
Instruction *MemI = Buckets[i].Elements.begin()->Instr;
Value *BasePtr = GetPointerOperand(MemI);
assert(BasePtr && "No pointer operand");
Type *I8Ty = Type::getInt8Ty(MemI->getParent()->getContext());
Type *I8PtrTy = Type::getInt8PtrTy(MemI->getParent()->getContext(),
BasePtr->getType()->getPointerAddressSpace());
const SCEV *BasePtrStartSCEV = BasePtrSCEV->getStart();
if (!SE->isLoopInvariant(BasePtrStartSCEV, L))
continue;
const SCEVConstant *BasePtrIncSCEV =
dyn_cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE));
if (!BasePtrIncSCEV)
continue;
BasePtrStartSCEV = SE->getMinusSCEV(BasePtrStartSCEV, BasePtrIncSCEV);
if (!isSafeToExpand(BasePtrStartSCEV, *SE))
continue;
DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n");
PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount,
MemI->hasName() ? MemI->getName() + ".phi" : "",
Header->getFirstNonPHI());
SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), "pistart");
Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy,
LoopPredecessor->getTerminator());
// Note that LoopPredecessor might occur in the predecessor list multiple
// times, and we need to add it the right number of times.
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
PI != PE; ++PI) {
if (*PI != LoopPredecessor)
continue;
NewPHI->addIncoming(BasePtrStart, LoopPredecessor);
}
Instruction *InsPoint = &*Header->getFirstInsertionPt();
GetElementPtrInst *PtrInc = GetElementPtrInst::Create(
I8Ty, NewPHI, BasePtrIncSCEV->getValue(),
MemI->hasName() ? MemI->getName() + ".inc" : "", InsPoint);
PtrInc->setIsInBounds(IsPtrInBounds(BasePtr));
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
PI != PE; ++PI) {
if (*PI == LoopPredecessor)
continue;
NewPHI->addIncoming(PtrInc, *PI);
}
Instruction *NewBasePtr;
if (PtrInc->getType() != BasePtr->getType())
NewBasePtr = new BitCastInst(PtrInc, BasePtr->getType(),
PtrInc->hasName() ? PtrInc->getName() + ".cast" : "", InsPoint);
else
NewBasePtr = PtrInc;
if (Instruction *IDel = dyn_cast<Instruction>(BasePtr))
BBChanged.insert(IDel->getParent());
BasePtr->replaceAllUsesWith(NewBasePtr);
RecursivelyDeleteTriviallyDeadInstructions(BasePtr);
// Keep track of the replacement pointer values we've inserted so that we
// don't generate more pointer values than necessary.
SmallPtrSet<Value *, 16> NewPtrs;
NewPtrs.insert( NewBasePtr);
for (auto I = std::next(Buckets[i].Elements.begin()),
IE = Buckets[i].Elements.end(); I != IE; ++I) {
Value *Ptr = GetPointerOperand(I->Instr);
assert(Ptr && "No pointer operand");
if (NewPtrs.count(Ptr))
continue;
Instruction *RealNewPtr;
if (!I->Offset || I->Offset->getValue()->isZero()) {
RealNewPtr = NewBasePtr;
} else {
Instruction *PtrIP = dyn_cast<Instruction>(Ptr);
if (PtrIP && isa<Instruction>(NewBasePtr) &&
cast<Instruction>(NewBasePtr)->getParent() == PtrIP->getParent())
PtrIP = 0;
else if (isa<PHINode>(PtrIP))
PtrIP = &*PtrIP->getParent()->getFirstInsertionPt();
else if (!PtrIP)
PtrIP = I->Instr;
GetElementPtrInst *NewPtr = GetElementPtrInst::Create(
I8Ty, PtrInc, I->Offset->getValue(),
I->Instr->hasName() ? I->Instr->getName() + ".off" : "", PtrIP);
if (!PtrIP)
NewPtr->insertAfter(cast<Instruction>(PtrInc));
NewPtr->setIsInBounds(IsPtrInBounds(Ptr));
RealNewPtr = NewPtr;
}
if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
BBChanged.insert(IDel->getParent());
Instruction *ReplNewPtr;
if (Ptr->getType() != RealNewPtr->getType()) {
ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(),
Ptr->hasName() ? Ptr->getName() + ".cast" : "");
ReplNewPtr->insertAfter(RealNewPtr);
} else
ReplNewPtr = RealNewPtr;
Ptr->replaceAllUsesWith(ReplNewPtr);
RecursivelyDeleteTriviallyDeadInstructions(Ptr);
NewPtrs.insert(RealNewPtr);
}
MadeChange = true;
}
for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
I != IE; ++I) {
if (BBChanged.count(*I))
DeleteDeadPHIs(*I);
}
return MadeChange;
}