1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 05:23:45 +02:00
llvm-mirror/test/Transforms/InstCombine/atomic.ll
Philip Reames 28e49b3a15 Reapply 267210 with fix for PR27490
Original Commit Message
Extend load/store type canonicalization to handle unordered operations

Extend the type canonicalization logic to work for unordered atomic loads and stores.  Note that while this change itself is fairly simple and low risk, there's a reasonable chance this will expose problems in the backends by suddenly generating IR they wouldn't have seen before.  Anything of this nature will be an existing bug in the backend (you could write an atomic float load), but this will definitely change the frequency with which such cases are encountered.  If you see problems, feel free to revert this change, but please make sure you collect a test case. 

Note that the concern about lowering is now much less likely.  PR27490 proved that we already *were* mucking with the types of ordered atomics and volatiles.  As a result, this change doesn't introduce as much new behavior as originally thought.

llvm-svn: 268809
2016-05-06 22:17:01 +00:00

270 lines
7.7 KiB
LLVM

; RUN: opt -S < %s -instcombine | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-macosx10.7.0"
; Check transforms involving atomic operations
define i32 @test1(i32* %p) {
; CHECK-LABEL: define i32 @test1(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
define i32 @test2(i32* %p) {
; CHECK-LABEL: define i32 @test2(
; CHECK: %x = load volatile i32, i32* %p, align 4
; CHECK: %y = load volatile i32, i32* %p, align 4
%x = load volatile i32, i32* %p, align 4
%y = load volatile i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; The exact semantics of mixing volatile and non-volatile on the same
; memory location are a bit unclear, but conservatively, we know we don't
; want to remove the volatile.
define i32 @test3(i32* %p) {
; CHECK-LABEL: define i32 @test3(
; CHECK: %x = load volatile i32, i32* %p, align 4
%x = load volatile i32, i32* %p, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding from a stronger ordered atomic is fine
define i32 @test4(i32* %p) {
; CHECK-LABEL: define i32 @test4(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p unordered, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding from a non-atomic is not. (The earlier load
; could in priciple be promoted to atomic and then forwarded,
; but we can't just drop the atomic from the load.)
define i32 @test5(i32* %p) {
; CHECK-LABEL: define i32 @test5(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
%x = load atomic i32, i32* %p unordered, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding atomic to atomic is fine
define i32 @test6(i32* %p) {
; CHECK-LABEL: define i32 @test6(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p unordered, align 4
%y = load atomic i32, i32* %p unordered, align 4
%z = add i32 %x, %y
ret i32 %z
}
; FIXME: we currently don't do anything for monotonic
define i32 @test7(i32* %p) {
; CHECK-LABEL: define i32 @test7(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p monotonic, align 4
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p monotonic, align 4
%z = add i32 %x, %y
ret i32 %z
}
; FIXME: We could forward in racy code
define i32 @test8(i32* %p) {
; CHECK-LABEL: define i32 @test8(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p acquire, align 4
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p acquire, align 4
%z = add i32 %x, %y
ret i32 %z
}
; An unordered access to null is still unreachable. There's no
; ordering imposed.
define i32 @test9() {
; CHECK-LABEL: define i32 @test9(
; CHECK: store i32 undef, i32* null
%x = load atomic i32, i32* null unordered, align 4
ret i32 %x
}
; FIXME: Could also fold
define i32 @test10() {
; CHECK-LABEL: define i32 @test10(
; CHECK: load atomic i32, i32* null monotonic
%x = load atomic i32, i32* null monotonic, align 4
ret i32 %x
}
; Would this be legal to fold? Probably?
define i32 @test11() {
; CHECK-LABEL: define i32 @test11(
; CHECK: load atomic i32, i32* null seq_cst
%x = load atomic i32, i32* null seq_cst, align 4
ret i32 %x
}
; An unordered access to null is still unreachable. There's no
; ordering imposed.
define i32 @test12() {
; CHECK-LABEL: define i32 @test12(
; CHECK: store atomic i32 undef, i32* null
store atomic i32 0, i32* null unordered, align 4
ret i32 0
}
; FIXME: Could also fold
define i32 @test13() {
; CHECK-LABEL: define i32 @test13(
; CHECK: store atomic i32 0, i32* null monotonic
store atomic i32 0, i32* null monotonic, align 4
ret i32 0
}
; Would this be legal to fold? Probably?
define i32 @test14() {
; CHECK-LABEL: define i32 @test14(
; CHECK: store atomic i32 0, i32* null seq_cst
store atomic i32 0, i32* null seq_cst, align 4
ret i32 0
}
@a = external global i32
@b = external global i32
define i32 @test15(i1 %cnd) {
; CHECK-LABEL: define i32 @test15(
; CHECK: load atomic i32, i32* @a unordered, align 4
; CHECK: load atomic i32, i32* @b unordered, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr unordered, align 4
ret i32 %x
}
; FIXME: This would be legal to transform
define i32 @test16(i1 %cnd) {
; CHECK-LABEL: define i32 @test16(
; CHECK: load atomic i32, i32* %addr monotonic, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr monotonic, align 4
ret i32 %x
}
; FIXME: This would be legal to transform
define i32 @test17(i1 %cnd) {
; CHECK-LABEL: define i32 @test17(
; CHECK: load atomic i32, i32* %addr seq_cst, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr seq_cst, align 4
ret i32 %x
}
define i32 @test22(i1 %cnd) {
; CHECK-LABEL: define i32 @test22(
; CHECK: [[PHI:%.*]] = phi i32
; CHECK: store atomic i32 [[PHI]], i32* @a unordered, align 4
br i1 %cnd, label %block1, label %block2
block1:
store atomic i32 1, i32* @a unordered, align 4
br label %merge
block2:
store atomic i32 2, i32* @a unordered, align 4
br label %merge
merge:
ret i32 0
}
; TODO: probably also legal here
define i32 @test23(i1 %cnd) {
; CHECK-LABEL: define i32 @test23(
; CHECK: br i1 %cnd, label %block1, label %block2
br i1 %cnd, label %block1, label %block2
block1:
store atomic i32 1, i32* @a monotonic, align 4
br label %merge
block2:
store atomic i32 2, i32* @a monotonic, align 4
br label %merge
merge:
ret i32 0
}
declare void @clobber()
define i32 @test18(float* %p) {
; CHECK-LABEL: define i32 @test18(
; CHECK: load atomic i32, i32* [[A:%.*]] unordered, align 4
; CHECK: store atomic i32 [[B:%.*]], i32* [[C:%.*]] unordered, align 4
%x = load atomic float, float* %p unordered, align 4
call void @clobber() ;; keep the load around
store atomic float %x, float* %p unordered, align 4
ret i32 0
}
; TODO: probably also legal in this case
define i32 @test19(float* %p) {
; CHECK-LABEL: define i32 @test19(
; CHECK: load atomic float, float* %p seq_cst, align 4
; CHECK: store atomic float %x, float* %p seq_cst, align 4
%x = load atomic float, float* %p seq_cst, align 4
call void @clobber() ;; keep the load around
store atomic float %x, float* %p seq_cst, align 4
ret i32 0
}
define i32 @test20(i32** %p, i8* %v) {
; CHECK-LABEL: define i32 @test20(
; CHECK: store atomic i8* %v, i8** [[D:%.*]] unordered, align 4
%cast = bitcast i8* %v to i32*
store atomic i32* %cast, i32** %p unordered, align 4
ret i32 0
}
define i32 @test21(i32** %p, i8* %v) {
; CHECK-LABEL: define i32 @test21(
; CHECK: store atomic i32* %cast, i32** %p monotonic, align 4
%cast = bitcast i8* %v to i32*
store atomic i32* %cast, i32** %p monotonic, align 4
ret i32 0
}
define void @pr27490a(i8** %p1, i8** %p2) {
; CHECK-LABEL: define void @pr27490
; CHECK: %1 = bitcast i8** %p1 to i64*
; CHECK: %l1 = load i64, i64* %1, align 8
; CHECK: %2 = bitcast i8** %p2 to i64*
; CHECK: store volatile i64 %l1, i64* %2, align 8
%l = load i8*, i8** %p1
store volatile i8* %l, i8** %p2
ret void
}
define void @pr27490b(i8** %p1, i8** %p2) {
; CHECK-LABEL: define void @pr27490
; CHECK: %1 = bitcast i8** %p1 to i64*
; CHECK: %l1 = load i64, i64* %1, align 8
; CHECK: %2 = bitcast i8** %p2 to i64*
; CHECK: store atomic i64 %l1, i64* %2 seq_cst, align 8
%l = load i8*, i8** %p1
store atomic i8* %l, i8** %p2 seq_cst, align 8
ret void
}