1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Analysis/AssumeBundleQueries.cpp
Tyker c86946593e Reland [AssumeBundles] Use operand bundles to encode alignment assumptions
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html

Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".

As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
2020-09-12 15:36:06 +02:00

217 lines
8.3 KiB
C++

//===- AssumeBundleQueries.cpp - tool to query assume bundles ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "assume-queries"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/DebugCounter.h"
using namespace llvm;
using namespace llvm::PatternMatch;
STATISTIC(NumAssumeQueries, "Number of Queries into an assume assume bundles");
STATISTIC(
NumUsefullAssumeQueries,
"Number of Queries into an assume assume bundles that were satisfied");
DEBUG_COUNTER(AssumeQueryCounter, "assume-queries-counter",
"Controls which assumes gets created");
static bool bundleHasArgument(const CallBase::BundleOpInfo &BOI, unsigned Idx) {
return BOI.End - BOI.Begin > Idx;
}
static Value *getValueFromBundleOpInfo(CallInst &Assume,
const CallBase::BundleOpInfo &BOI,
unsigned Idx) {
assert(bundleHasArgument(BOI, Idx) && "index out of range");
return (Assume.op_begin() + BOI.Begin + Idx)->get();
}
bool llvm::hasAttributeInAssume(CallInst &AssumeCI, Value *IsOn,
StringRef AttrName, uint64_t *ArgVal) {
assert(isa<IntrinsicInst>(AssumeCI) &&
"this function is intended to be used on llvm.assume");
IntrinsicInst &Assume = cast<IntrinsicInst>(AssumeCI);
assert(Assume.getIntrinsicID() == Intrinsic::assume &&
"this function is intended to be used on llvm.assume");
assert(Attribute::isExistingAttribute(AttrName) &&
"this attribute doesn't exist");
assert((ArgVal == nullptr || Attribute::doesAttrKindHaveArgument(
Attribute::getAttrKindFromName(AttrName))) &&
"requested value for an attribute that has no argument");
if (Assume.bundle_op_infos().empty())
return false;
for (auto &BOI : Assume.bundle_op_infos()) {
if (BOI.Tag->getKey() != AttrName)
continue;
if (IsOn && (BOI.End - BOI.Begin <= ABA_WasOn ||
IsOn != getValueFromBundleOpInfo(Assume, BOI, ABA_WasOn)))
continue;
if (ArgVal) {
assert(BOI.End - BOI.Begin > ABA_Argument);
*ArgVal =
cast<ConstantInt>(getValueFromBundleOpInfo(Assume, BOI, ABA_Argument))
->getZExtValue();
}
return true;
}
return false;
}
void llvm::fillMapFromAssume(CallInst &AssumeCI, RetainedKnowledgeMap &Result) {
IntrinsicInst &Assume = cast<IntrinsicInst>(AssumeCI);
assert(Assume.getIntrinsicID() == Intrinsic::assume &&
"this function is intended to be used on llvm.assume");
for (auto &Bundles : Assume.bundle_op_infos()) {
std::pair<Value *, Attribute::AttrKind> Key{
nullptr, Attribute::getAttrKindFromName(Bundles.Tag->getKey())};
if (bundleHasArgument(Bundles, ABA_WasOn))
Key.first = getValueFromBundleOpInfo(Assume, Bundles, ABA_WasOn);
if (Key.first == nullptr && Key.second == Attribute::None)
continue;
if (!bundleHasArgument(Bundles, ABA_Argument)) {
Result[Key][&Assume] = {0, 0};
continue;
}
unsigned Val = cast<ConstantInt>(
getValueFromBundleOpInfo(Assume, Bundles, ABA_Argument))
->getZExtValue();
auto Lookup = Result.find(Key);
if (Lookup == Result.end() || !Lookup->second.count(&Assume)) {
Result[Key][&Assume] = {Val, Val};
continue;
}
Lookup->second[&Assume].Min = std::min(Val, Lookup->second[&Assume].Min);
Lookup->second[&Assume].Max = std::max(Val, Lookup->second[&Assume].Max);
}
}
RetainedKnowledge
llvm::getKnowledgeFromBundle(CallInst &Assume,
const CallBase::BundleOpInfo &BOI) {
RetainedKnowledge Result;
Result.AttrKind = Attribute::getAttrKindFromName(BOI.Tag->getKey());
if (bundleHasArgument(BOI, ABA_WasOn))
Result.WasOn = getValueFromBundleOpInfo(Assume, BOI, ABA_WasOn);
auto GetArgOr1 = [&](unsigned Idx) -> unsigned {
if (auto *ConstInt = dyn_cast<ConstantInt>(
getValueFromBundleOpInfo(Assume, BOI, ABA_Argument + Idx)))
return ConstInt->getZExtValue();
return 1;
};
if (BOI.End - BOI.Begin > ABA_Argument)
Result.ArgValue = GetArgOr1(0);
if (Result.AttrKind == Attribute::Alignment)
if (BOI.End - BOI.Begin > ABA_Argument + 1)
Result.ArgValue = MinAlign(Result.ArgValue, GetArgOr1(1));
return Result;
}
RetainedKnowledge llvm::getKnowledgeFromOperandInAssume(CallInst &AssumeCI,
unsigned Idx) {
IntrinsicInst &Assume = cast<IntrinsicInst>(AssumeCI);
assert(Assume.getIntrinsicID() == Intrinsic::assume &&
"this function is intended to be used on llvm.assume");
CallBase::BundleOpInfo BOI = Assume.getBundleOpInfoForOperand(Idx);
return getKnowledgeFromBundle(AssumeCI, BOI);
}
bool llvm::isAssumeWithEmptyBundle(CallInst &CI) {
IntrinsicInst &Assume = cast<IntrinsicInst>(CI);
assert(Assume.getIntrinsicID() == Intrinsic::assume &&
"this function is intended to be used on llvm.assume");
return none_of(Assume.bundle_op_infos(),
[](const CallBase::BundleOpInfo &BOI) {
return BOI.Tag->getKey() != IgnoreBundleTag;
});
}
static CallInst::BundleOpInfo *getBundleFromUse(const Use *U) {
auto *Intr = dyn_cast<IntrinsicInst>(U->getUser());
if (!match(U->getUser(),
m_Intrinsic<Intrinsic::assume>(m_Unless(m_Specific(U->get())))))
return nullptr;
return &Intr->getBundleOpInfoForOperand(U->getOperandNo());
}
RetainedKnowledge
llvm::getKnowledgeFromUse(const Use *U,
ArrayRef<Attribute::AttrKind> AttrKinds) {
CallInst::BundleOpInfo* Bundle = getBundleFromUse(U);
if (!Bundle)
return RetainedKnowledge::none();
RetainedKnowledge RK =
getKnowledgeFromBundle(*cast<CallInst>(U->getUser()), *Bundle);
for (auto Attr : AttrKinds)
if (Attr == RK.AttrKind)
return RK;
return RetainedKnowledge::none();
}
RetainedKnowledge
llvm::getKnowledgeForValue(const Value *V,
ArrayRef<Attribute::AttrKind> AttrKinds,
AssumptionCache *AC,
function_ref<bool(RetainedKnowledge, Instruction *,
const CallBase::BundleOpInfo *)>
Filter) {
NumAssumeQueries++;
if (!DebugCounter::shouldExecute(AssumeQueryCounter))
return RetainedKnowledge::none();
if (AC) {
for (AssumptionCache::ResultElem &Elem : AC->assumptionsFor(V)) {
IntrinsicInst *II = cast_or_null<IntrinsicInst>(Elem.Assume);
if (!II || Elem.Index == AssumptionCache::ExprResultIdx)
continue;
if (RetainedKnowledge RK = getKnowledgeFromBundle(
*II, II->bundle_op_info_begin()[Elem.Index])) {
if (V != RK.WasOn)
continue;
if (is_contained(AttrKinds, RK.AttrKind) &&
Filter(RK, II, &II->bundle_op_info_begin()[Elem.Index])) {
NumUsefullAssumeQueries++;
return RK;
}
}
}
return RetainedKnowledge::none();
}
for (const auto &U : V->uses()) {
CallInst::BundleOpInfo* Bundle = getBundleFromUse(&U);
if (!Bundle)
continue;
if (RetainedKnowledge RK =
getKnowledgeFromBundle(*cast<CallInst>(U.getUser()), *Bundle))
if (is_contained(AttrKinds, RK.AttrKind) &&
Filter(RK, cast<Instruction>(U.getUser()), Bundle)) {
NumUsefullAssumeQueries++;
return RK;
}
}
return RetainedKnowledge::none();
}
RetainedKnowledge llvm::getKnowledgeValidInContext(
const Value *V, ArrayRef<Attribute::AttrKind> AttrKinds,
const Instruction *CtxI, const DominatorTree *DT, AssumptionCache *AC) {
return getKnowledgeForValue(V, AttrKinds, AC,
[&](auto, Instruction *I, auto) {
return isValidAssumeForContext(I, CtxI, DT);
});
}