1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Support/Unix/Program.inc
Abhina Sreeskantharajan eda191ef72 [SystemZ][z/OS][Windows] Add new functions that set Text/Binary mode for Stdin and Stdout based on OpenFlags
On Windows, we want to open a file in Binary mode if OF_CRLF bit is not set. On z/OS, we want to open a file in Binary mode if the OF_Text bit is not set.

This patch creates two new functions called ChangeStdinMode and ChangeStdoutMode which will take OpenFlags as an arg to determine which mode to set stdin and stdout to. This will enable patches like https://reviews.llvm.org/D100056 to not affect Windows when setting the OF_Text flag for raw_fd_streams.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D100130
2021-04-16 08:09:19 -04:00

575 lines
17 KiB
C++

//===- llvm/Support/Unix/Program.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Unix specific portion of the Program class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only generic UNIX code that
//=== is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//
#include "llvm/Support/Program.h"
#include "Unix.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_POSIX_SPAWN
#include <spawn.h>
#if defined(__APPLE__)
#include <TargetConditionals.h>
#endif
#if defined(__APPLE__) && !(defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE)
#define USE_NSGETENVIRON 1
#else
#define USE_NSGETENVIRON 0
#endif
#if !USE_NSGETENVIRON
extern char **environ;
#else
#include <crt_externs.h> // _NSGetEnviron
#endif
#endif
using namespace llvm;
using namespace sys;
ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {}
ErrorOr<std::string> sys::findProgramByName(StringRef Name,
ArrayRef<StringRef> Paths) {
assert(!Name.empty() && "Must have a name!");
// Use the given path verbatim if it contains any slashes; this matches
// the behavior of sh(1) and friends.
if (Name.find('/') != StringRef::npos) return std::string(Name);
SmallVector<StringRef, 16> EnvironmentPaths;
if (Paths.empty())
if (const char *PathEnv = std::getenv("PATH")) {
SplitString(PathEnv, EnvironmentPaths, ":");
Paths = EnvironmentPaths;
}
for (auto Path : Paths) {
if (Path.empty())
continue;
// Check to see if this first directory contains the executable...
SmallString<128> FilePath(Path);
sys::path::append(FilePath, Name);
if (sys::fs::can_execute(FilePath.c_str()))
return std::string(FilePath.str()); // Found the executable!
}
return errc::no_such_file_or_directory;
}
static bool RedirectIO(Optional<StringRef> Path, int FD, std::string* ErrMsg) {
if (!Path) // Noop
return false;
std::string File;
if (Path->empty())
// Redirect empty paths to /dev/null
File = "/dev/null";
else
File = std::string(*Path);
// Open the file
int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666);
if (InFD == -1) {
MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for "
+ (FD == 0 ? "input" : "output"));
return true;
}
// Install it as the requested FD
if (dup2(InFD, FD) == -1) {
MakeErrMsg(ErrMsg, "Cannot dup2");
close(InFD);
return true;
}
close(InFD); // Close the original FD
return false;
}
#ifdef HAVE_POSIX_SPAWN
static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg,
posix_spawn_file_actions_t *FileActions) {
if (!Path) // Noop
return false;
const char *File;
if (Path->empty())
// Redirect empty paths to /dev/null
File = "/dev/null";
else
File = Path->c_str();
if (int Err = posix_spawn_file_actions_addopen(
FileActions, FD, File,
FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666))
return MakeErrMsg(ErrMsg, "Cannot posix_spawn_file_actions_addopen", Err);
return false;
}
#endif
static void TimeOutHandler(int Sig) {
}
static void SetMemoryLimits(unsigned size) {
#if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT
struct rlimit r;
__typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576;
// Heap size
getrlimit (RLIMIT_DATA, &r);
r.rlim_cur = limit;
setrlimit (RLIMIT_DATA, &r);
#ifdef RLIMIT_RSS
// Resident set size.
getrlimit (RLIMIT_RSS, &r);
r.rlim_cur = limit;
setrlimit (RLIMIT_RSS, &r);
#endif
#endif
}
static std::vector<const char *>
toNullTerminatedCStringArray(ArrayRef<StringRef> Strings, StringSaver &Saver) {
std::vector<const char *> Result;
for (StringRef S : Strings)
Result.push_back(Saver.save(S).data());
Result.push_back(nullptr);
return Result;
}
static bool Execute(ProcessInfo &PI, StringRef Program,
ArrayRef<StringRef> Args, Optional<ArrayRef<StringRef>> Env,
ArrayRef<Optional<StringRef>> Redirects,
unsigned MemoryLimit, std::string *ErrMsg,
BitVector *AffinityMask) {
if (!llvm::sys::fs::exists(Program)) {
if (ErrMsg)
*ErrMsg = std::string("Executable \"") + Program.str() +
std::string("\" doesn't exist!");
return false;
}
assert(!AffinityMask && "Starting a process with an affinity mask is "
"currently not supported on Unix!");
BumpPtrAllocator Allocator;
StringSaver Saver(Allocator);
std::vector<const char *> ArgVector, EnvVector;
const char **Argv = nullptr;
const char **Envp = nullptr;
ArgVector = toNullTerminatedCStringArray(Args, Saver);
Argv = ArgVector.data();
if (Env) {
EnvVector = toNullTerminatedCStringArray(*Env, Saver);
Envp = EnvVector.data();
}
// If this OS has posix_spawn and there is no memory limit being implied, use
// posix_spawn. It is more efficient than fork/exec.
#ifdef HAVE_POSIX_SPAWN
if (MemoryLimit == 0) {
posix_spawn_file_actions_t FileActionsStore;
posix_spawn_file_actions_t *FileActions = nullptr;
// If we call posix_spawn_file_actions_addopen we have to make sure the
// c strings we pass to it stay alive until the call to posix_spawn,
// so we copy any StringRefs into this variable.
std::string RedirectsStorage[3];
if (!Redirects.empty()) {
assert(Redirects.size() == 3);
std::string *RedirectsStr[3] = {nullptr, nullptr, nullptr};
for (int I = 0; I < 3; ++I) {
if (Redirects[I]) {
RedirectsStorage[I] = std::string(*Redirects[I]);
RedirectsStr[I] = &RedirectsStorage[I];
}
}
FileActions = &FileActionsStore;
posix_spawn_file_actions_init(FileActions);
// Redirect stdin/stdout.
if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) ||
RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions))
return false;
if (!Redirects[1] || !Redirects[2] || *Redirects[1] != *Redirects[2]) {
// Just redirect stderr
if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions))
return false;
} else {
// If stdout and stderr should go to the same place, redirect stderr
// to the FD already open for stdout.
if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2))
return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err);
}
}
if (!Envp)
#if !USE_NSGETENVIRON
Envp = const_cast<const char **>(environ);
#else
// environ is missing in dylibs.
Envp = const_cast<const char **>(*_NSGetEnviron());
#endif
constexpr int maxRetries = 8;
int retries = 0;
pid_t PID;
int Err;
do {
PID = 0; // Make Valgrind happy.
Err = posix_spawn(&PID, Program.str().c_str(), FileActions,
/*attrp*/ nullptr, const_cast<char **>(Argv),
const_cast<char **>(Envp));
} while (Err == EINTR && ++retries < maxRetries);
if (FileActions)
posix_spawn_file_actions_destroy(FileActions);
if (Err)
return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err);
PI.Pid = PID;
PI.Process = PID;
return true;
}
#endif
// Create a child process.
int child = fork();
switch (child) {
// An error occurred: Return to the caller.
case -1:
MakeErrMsg(ErrMsg, "Couldn't fork");
return false;
// Child process: Execute the program.
case 0: {
// Redirect file descriptors...
if (!Redirects.empty()) {
// Redirect stdin
if (RedirectIO(Redirects[0], 0, ErrMsg)) { return false; }
// Redirect stdout
if (RedirectIO(Redirects[1], 1, ErrMsg)) { return false; }
if (Redirects[1] && Redirects[2] && *Redirects[1] == *Redirects[2]) {
// If stdout and stderr should go to the same place, redirect stderr
// to the FD already open for stdout.
if (-1 == dup2(1,2)) {
MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout");
return false;
}
} else {
// Just redirect stderr
if (RedirectIO(Redirects[2], 2, ErrMsg)) { return false; }
}
}
// Set memory limits
if (MemoryLimit!=0) {
SetMemoryLimits(MemoryLimit);
}
// Execute!
std::string PathStr = std::string(Program);
if (Envp != nullptr)
execve(PathStr.c_str(), const_cast<char **>(Argv),
const_cast<char **>(Envp));
else
execv(PathStr.c_str(), const_cast<char **>(Argv));
// If the execve() failed, we should exit. Follow Unix protocol and
// return 127 if the executable was not found, and 126 otherwise.
// Use _exit rather than exit so that atexit functions and static
// object destructors cloned from the parent process aren't
// redundantly run, and so that any data buffered in stdio buffers
// cloned from the parent aren't redundantly written out.
_exit(errno == ENOENT ? 127 : 126);
}
// Parent process: Break out of the switch to do our processing.
default:
break;
}
PI.Pid = child;
PI.Process = child;
return true;
}
namespace llvm {
namespace sys {
#ifndef _AIX
using ::wait4;
#else
static pid_t (wait4)(pid_t pid, int *status, int options, struct rusage *usage);
#endif
} // namespace sys
} // namespace llvm
#ifdef _AIX
#ifndef _ALL_SOURCE
extern "C" pid_t (wait4)(pid_t pid, int *status, int options,
struct rusage *usage);
#endif
pid_t (llvm::sys::wait4)(pid_t pid, int *status, int options,
struct rusage *usage) {
assert(pid > 0 && "Only expecting to handle actual PID values!");
assert((options & ~WNOHANG) == 0 && "Expecting WNOHANG at most!");
assert(usage && "Expecting usage collection!");
// AIX wait4 does not work well with WNOHANG.
if (!(options & WNOHANG))
return ::wait4(pid, status, options, usage);
// For WNOHANG, we use waitid (which supports WNOWAIT) until the child process
// has terminated.
siginfo_t WaitIdInfo;
WaitIdInfo.si_pid = 0;
int WaitIdRetVal =
waitid(P_PID, pid, &WaitIdInfo, WNOWAIT | WEXITED | options);
if (WaitIdRetVal == -1 || WaitIdInfo.si_pid == 0)
return WaitIdRetVal;
assert(WaitIdInfo.si_pid == pid);
// The child has already terminated, so a blocking wait on it is okay in the
// absence of indiscriminate `wait` calls from the current process (which
// would cause the call here to fail with ECHILD).
return ::wait4(pid, status, options & ~WNOHANG, usage);
}
#endif
ProcessInfo llvm::sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait,
bool WaitUntilTerminates, std::string *ErrMsg,
Optional<ProcessStatistics> *ProcStat) {
struct sigaction Act, Old;
assert(PI.Pid && "invalid pid to wait on, process not started?");
int WaitPidOptions = 0;
pid_t ChildPid = PI.Pid;
if (WaitUntilTerminates) {
SecondsToWait = 0;
} else if (SecondsToWait) {
// Install a timeout handler. The handler itself does nothing, but the
// simple fact of having a handler at all causes the wait below to return
// with EINTR, unlike if we used SIG_IGN.
memset(&Act, 0, sizeof(Act));
Act.sa_handler = TimeOutHandler;
sigemptyset(&Act.sa_mask);
sigaction(SIGALRM, &Act, &Old);
// FIXME The alarm signal may be delivered to another thread.
alarm(SecondsToWait);
} else if (SecondsToWait == 0)
WaitPidOptions = WNOHANG;
// Parent process: Wait for the child process to terminate.
int status;
ProcessInfo WaitResult;
rusage Info;
if (ProcStat)
ProcStat->reset();
do {
WaitResult.Pid = sys::wait4(ChildPid, &status, WaitPidOptions, &Info);
} while (WaitUntilTerminates && WaitResult.Pid == -1 && errno == EINTR);
if (WaitResult.Pid != PI.Pid) {
if (WaitResult.Pid == 0) {
// Non-blocking wait.
return WaitResult;
} else {
if (SecondsToWait && errno == EINTR) {
// Kill the child.
kill(PI.Pid, SIGKILL);
// Turn off the alarm and restore the signal handler
alarm(0);
sigaction(SIGALRM, &Old, nullptr);
// Wait for child to die
// FIXME This could grab some other child process out from another
// waiting thread and then leave a zombie anyway.
if (wait(&status) != ChildPid)
MakeErrMsg(ErrMsg, "Child timed out but wouldn't die");
else
MakeErrMsg(ErrMsg, "Child timed out", 0);
WaitResult.ReturnCode = -2; // Timeout detected
return WaitResult;
} else if (errno != EINTR) {
MakeErrMsg(ErrMsg, "Error waiting for child process");
WaitResult.ReturnCode = -1;
return WaitResult;
}
}
}
// We exited normally without timeout, so turn off the timer.
if (SecondsToWait && !WaitUntilTerminates) {
alarm(0);
sigaction(SIGALRM, &Old, nullptr);
}
if (ProcStat) {
std::chrono::microseconds UserT = toDuration(Info.ru_utime);
std::chrono::microseconds KernelT = toDuration(Info.ru_stime);
uint64_t PeakMemory = 0;
#ifndef __HAIKU__
PeakMemory = static_cast<uint64_t>(Info.ru_maxrss);
#endif
*ProcStat = ProcessStatistics{UserT + KernelT, UserT, PeakMemory};
}
// Return the proper exit status. Detect error conditions
// so we can return -1 for them and set ErrMsg informatively.
int result = 0;
if (WIFEXITED(status)) {
result = WEXITSTATUS(status);
WaitResult.ReturnCode = result;
if (result == 127) {
if (ErrMsg)
*ErrMsg = llvm::sys::StrError(ENOENT);
WaitResult.ReturnCode = -1;
return WaitResult;
}
if (result == 126) {
if (ErrMsg)
*ErrMsg = "Program could not be executed";
WaitResult.ReturnCode = -1;
return WaitResult;
}
} else if (WIFSIGNALED(status)) {
if (ErrMsg) {
*ErrMsg = strsignal(WTERMSIG(status));
#ifdef WCOREDUMP
if (WCOREDUMP(status))
*ErrMsg += " (core dumped)";
#endif
}
// Return a special value to indicate that the process received an unhandled
// signal during execution as opposed to failing to execute.
WaitResult.ReturnCode = -2;
}
return WaitResult;
}
std::error_code llvm::sys::ChangeStdinMode(fs::OpenFlags Flags){
if (!(Flags & fs::OF_Text))
return ChangeStdinToBinary();
return std::error_code();
}
std::error_code llvm::sys::ChangeStdoutMode(fs::OpenFlags Flags){
if (!(Flags & fs::OF_Text))
return ChangeStdoutToBinary();
return std::error_code();
}
std::error_code llvm::sys::ChangeStdinToBinary() {
// Do nothing, as Unix doesn't differentiate between text and binary.
return std::error_code();
}
std::error_code llvm::sys::ChangeStdoutToBinary() {
// Do nothing, as Unix doesn't differentiate between text and binary.
return std::error_code();
}
std::error_code
llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents,
WindowsEncodingMethod Encoding /*unused*/) {
std::error_code EC;
llvm::raw_fd_ostream OS(FileName, EC, llvm::sys::fs::OpenFlags::OF_TextWithCRLF);
if (EC)
return EC;
OS << Contents;
if (OS.has_error())
return make_error_code(errc::io_error);
return EC;
}
bool llvm::sys::commandLineFitsWithinSystemLimits(StringRef Program,
ArrayRef<StringRef> Args) {
static long ArgMax = sysconf(_SC_ARG_MAX);
// POSIX requires that _POSIX_ARG_MAX is 4096, which is the lowest possible
// value for ARG_MAX on a POSIX compliant system.
static long ArgMin = _POSIX_ARG_MAX;
// This the same baseline used by xargs.
long EffectiveArgMax = 128 * 1024;
if (EffectiveArgMax > ArgMax)
EffectiveArgMax = ArgMax;
else if (EffectiveArgMax < ArgMin)
EffectiveArgMax = ArgMin;
// System says no practical limit.
if (ArgMax == -1)
return true;
// Conservatively account for space required by environment variables.
long HalfArgMax = EffectiveArgMax / 2;
size_t ArgLength = Program.size() + 1;
for (StringRef Arg : Args) {
// Ensure that we do not exceed the MAX_ARG_STRLEN constant on Linux, which
// does not have a constant unlike what the man pages would have you
// believe. Since this limit is pretty high, perform the check
// unconditionally rather than trying to be aggressive and limiting it to
// Linux only.
if (Arg.size() >= (32 * 4096))
return false;
ArgLength += Arg.size() + 1;
if (ArgLength > size_t(HalfArgMax)) {
return false;
}
}
return true;
}