mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
649f05aa24
GCC<5 did not support std::is_trivially_copyable. Now LLVM builds require 5.1 we can migrate to std::is_trivially_copyable. The Optional.h change made MSVC choke (https://buildkite.com/llvm-project/premerge-checks/builds/18587#cd1bb616-ffdc-4581-9795-b42c284196de) so I leave it out for now. Differential Revision: https://reviews.llvm.org/D92514
269 lines
9.0 KiB
C++
269 lines
9.0 KiB
C++
//===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "gtest/gtest.h"
|
|
#include <limits>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
// Check that the ArrayRef-of-pointer converting constructor only allows adding
|
|
// cv qualifiers (not removing them, or otherwise changing the type)
|
|
static_assert(
|
|
std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value,
|
|
"Adding const");
|
|
static_assert(
|
|
std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value,
|
|
"Adding volatile");
|
|
static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value,
|
|
"Changing pointer of one type to a pointer of another");
|
|
static_assert(
|
|
!std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value,
|
|
"Removing const");
|
|
static_assert(
|
|
!std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value,
|
|
"Removing volatile");
|
|
|
|
// Check that we can't accidentally assign a temporary location to an ArrayRef.
|
|
// (Unfortunately we can't make use of the same thing with constructors.)
|
|
static_assert(
|
|
!std::is_assignable<ArrayRef<int *>&, int *>::value,
|
|
"Assigning from single prvalue element");
|
|
static_assert(
|
|
!std::is_assignable<ArrayRef<int *>&, int * &&>::value,
|
|
"Assigning from single xvalue element");
|
|
static_assert(
|
|
std::is_assignable<ArrayRef<int *>&, int * &>::value,
|
|
"Assigning from single lvalue element");
|
|
static_assert(
|
|
!std::is_assignable<ArrayRef<int *>&, std::initializer_list<int *>>::value,
|
|
"Assigning from an initializer list");
|
|
|
|
namespace {
|
|
|
|
TEST(ArrayRefTest, AllocatorCopy) {
|
|
BumpPtrAllocator Alloc;
|
|
static const uint16_t Words1[] = { 1, 4, 200, 37 };
|
|
ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4);
|
|
static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
|
|
ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5);
|
|
ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
|
|
ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
|
|
EXPECT_TRUE(Array1.equals(Array1c));
|
|
EXPECT_NE(Array1.data(), Array1c.data());
|
|
EXPECT_TRUE(Array2.equals(Array2c));
|
|
EXPECT_NE(Array2.data(), Array2c.data());
|
|
|
|
// Check that copy can cope with uninitialized memory.
|
|
struct NonAssignable {
|
|
const char *Ptr;
|
|
|
|
NonAssignable(const char *Ptr) : Ptr(Ptr) {}
|
|
NonAssignable(const NonAssignable &RHS) = default;
|
|
void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
|
|
bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
|
|
} Array3Src[] = {"hello", "world"};
|
|
ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc);
|
|
EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy);
|
|
EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data());
|
|
}
|
|
|
|
// This test is pure UB given the ArrayRef<> implementation.
|
|
// You are not allowed to produce non-null pointers given null base pointer.
|
|
TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) {
|
|
ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
|
|
|
|
// Check that drop_back accepts size_t-sized numbers.
|
|
EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
|
|
|
|
// Check that drop_front accepts size_t-sized numbers.
|
|
EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
|
|
|
|
// Check that slice accepts size_t-sized numbers.
|
|
EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
|
|
EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropBack) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
|
|
EXPECT_TRUE(AR1.drop_back().equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropFront) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
|
|
EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropWhile) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.drop_front(3);
|
|
EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
|
|
|
|
EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.drop_while([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropUntil) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.drop_front(3);
|
|
EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
|
|
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.drop_until([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeBack) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(AR1.end() - 1, 1);
|
|
EXPECT_TRUE(AR1.take_back().equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeFront) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(AR1.data(), 2);
|
|
EXPECT_TRUE(AR1.take_front(2).equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeWhile) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.take_front(3);
|
|
EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
|
|
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.take_while([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeUntil) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.take_front(3);
|
|
EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
|
|
|
|
EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.take_until([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, Equals) {
|
|
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
ArrayRef<int> AR1(A1);
|
|
EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
|
|
EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
|
|
EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
|
|
EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
|
|
EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
|
|
|
ArrayRef<int> AR1a = AR1.drop_back();
|
|
EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
|
|
EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
|
|
|
|
ArrayRef<int> AR1b = AR1a.slice(2, 4);
|
|
EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
|
|
EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
|
|
EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
|
|
}
|
|
|
|
TEST(ArrayRefTest, EmptyEquals) {
|
|
EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
|
|
}
|
|
|
|
TEST(ArrayRefTest, ConstConvert) {
|
|
int buf[4];
|
|
for (int i = 0; i < 4; ++i)
|
|
buf[i] = i;
|
|
|
|
static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
|
|
ArrayRef<const int *> a((ArrayRef<int *>(A)));
|
|
a = ArrayRef<int *>(A);
|
|
}
|
|
|
|
static std::vector<int> ReturnTest12() { return {1, 2}; }
|
|
static void ArgTest12(ArrayRef<int> A) {
|
|
EXPECT_EQ(2U, A.size());
|
|
EXPECT_EQ(1, A[0]);
|
|
EXPECT_EQ(2, A[1]);
|
|
}
|
|
|
|
TEST(ArrayRefTest, InitializerList) {
|
|
std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
|
|
ArrayRef<int> A = init_list;
|
|
for (int i = 0; i < 5; ++i)
|
|
EXPECT_EQ(i, A[i]);
|
|
|
|
std::vector<int> B = ReturnTest12();
|
|
A = B;
|
|
EXPECT_EQ(1, A[0]);
|
|
EXPECT_EQ(2, A[1]);
|
|
|
|
ArgTest12({1, 2});
|
|
}
|
|
|
|
TEST(ArrayRefTest, EmptyInitializerList) {
|
|
ArrayRef<int> A = {};
|
|
EXPECT_TRUE(A.empty());
|
|
|
|
A = {};
|
|
EXPECT_TRUE(A.empty());
|
|
}
|
|
|
|
// Test that makeArrayRef works on ArrayRef (no-op)
|
|
TEST(ArrayRefTest, makeArrayRef) {
|
|
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
|
|
// No copy expected for non-const ArrayRef (true no-op)
|
|
ArrayRef<int> AR1(A1);
|
|
ArrayRef<int> &AR1Ref = makeArrayRef(AR1);
|
|
EXPECT_EQ(&AR1, &AR1Ref);
|
|
|
|
// A copy is expected for non-const ArrayRef (thin copy)
|
|
const ArrayRef<int> AR2(A1);
|
|
const ArrayRef<int> &AR2Ref = makeArrayRef(AR2);
|
|
EXPECT_NE(&AR2Ref, &AR2);
|
|
EXPECT_TRUE(AR2.equals(AR2Ref));
|
|
}
|
|
|
|
TEST(ArrayRefTest, OwningArrayRef) {
|
|
static const int A1[] = {0, 1};
|
|
OwningArrayRef<int> A(makeArrayRef(A1));
|
|
OwningArrayRef<int> B(std::move(A));
|
|
EXPECT_EQ(A.data(), nullptr);
|
|
}
|
|
|
|
TEST(ArrayRefTest, makeArrayRefFromStdArray) {
|
|
std::array<int, 5> A1{{42, -5, 0, 1000000, -1000000}};
|
|
ArrayRef<int> A2 = makeArrayRef(A1);
|
|
|
|
EXPECT_EQ(A1.size(), A2.size());
|
|
for (std::size_t i = 0; i < A1.size(); ++i) {
|
|
EXPECT_EQ(A1[i], A2[i]);
|
|
}
|
|
}
|
|
|
|
static_assert(std::is_trivially_copyable<ArrayRef<int>>::value,
|
|
"trivially copyable");
|
|
|
|
} // end anonymous namespace
|