1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/CodeGen/InstrSelection/InstrSelection.cpp
Vikram S. Adve 3fe5a9e913 Use vector for machine instructions returned by GetInstructionsByRule.
Fix constants in instructions generated for Phi elimination.

llvm-svn: 1902
2002-03-18 03:31:54 +00:00

373 lines
12 KiB
C++

// $Id$ -*-c++-*-
//***************************************************************************
// File:
// InstrSelection.cpp
//
// Purpose:
// Machine-independent driver file for instruction selection.
// This file constructs a forest of BURG instruction trees and then
// uses the BURG-generated tree grammar (BURM) to find the optimal
// instruction sequences for a given machine.
//
// History:
// 7/02/01 - Vikram Adve - Created
//**************************************************************************/
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/iPHINode.h"
#include "Support/CommandLine.h"
#include <iostream>
using std::cerr;
//******************** Internal Data Declarations ************************/
enum SelectDebugLevel_t {
Select_NoDebugInfo,
Select_PrintMachineCode,
Select_DebugInstTrees,
Select_DebugBurgTrees,
};
// Enable Debug Options to be specified on the command line
cl::Enum<enum SelectDebugLevel_t> SelectDebugLevel("dselect", cl::NoFlags,
"enable instruction selection debugging information",
clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
clEnumValN(Select_DebugInstTrees, "i", "print debugging info for instruction selection "),
clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"), 0);
//******************** Forward Function Declarations ***********************/
static bool SelectInstructionsForTree (InstrTreeNode* treeRoot,
int goalnt,
TargetMachine &target);
static void PostprocessMachineCodeForTree(InstructionNode* instrNode,
int ruleForNode,
short* nts,
TargetMachine &target);
static void InsertCode4AllPhisInMeth(Method *method, TargetMachine &target);
//******************* Externally Visible Functions *************************/
//---------------------------------------------------------------------------
// Entry point for instruction selection using BURG.
// Returns true if instruction selection failed, false otherwise.
//---------------------------------------------------------------------------
bool
SelectInstructionsForMethod(Method* method, TargetMachine &target)
{
bool failed = false;
//
// Build the instruction trees to be given as inputs to BURG.
//
InstrForest instrForest(method);
if (SelectDebugLevel >= Select_DebugInstTrees)
{
cerr << "\n\n*** Input to instruction selection for method "
<< (method->hasName()? method->getName() : "")
<< "\n\n";
method->dump();
cerr << "\n\n*** Instruction trees for method "
<< (method->hasName()? method->getName() : "")
<< "\n\n";
instrForest.dump();
}
//
// Invoke BURG instruction selection for each tree
//
const std::hash_set<InstructionNode*> &treeRoots = instrForest.getRootSet();
for (std::hash_set<InstructionNode*>::const_iterator
treeRootIter = treeRoots.begin(); treeRootIter != treeRoots.end();
++treeRootIter)
{
InstrTreeNode* basicNode = *treeRootIter;
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
if (SelectDebugLevel >= Select_DebugBurgTrees)
{
printcover(basicNode, 1, 0);
cerr << "\nCover cost == " << treecost(basicNode, 1, 0) << "\n\n";
printMatches(basicNode);
}
// Then recursively walk the tree to select instructions
if (SelectInstructionsForTree(basicNode, /*goalnt*/1, target))
{
failed = true;
break;
}
}
//
// Record instructions in the vector for each basic block
//
for (Method::iterator BI = method->begin(); BI != method->end(); ++BI)
{
MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec();
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II)
{
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(*II);
for (unsigned i=0; i < mvec.size(); i++)
bbMvec.push_back(mvec[i]);
}
}
// Insert phi elimination code -- added by Ruchira
InsertCode4AllPhisInMeth(method, target);
if (SelectDebugLevel >= Select_PrintMachineCode)
{
cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
MachineCodeForMethod::get(method).dump();
}
return false;
}
//*********************** Private Functions *****************************/
//-------------------------------------------------------------------------
// Thid method inserts a copy instruction to a predecessor BB as a result
// of phi elimination.
//-------------------------------------------------------------------------
void
InsertPhiElimInstructions(BasicBlock *BB, const vector<MachineInstr*>& CpVec)
{
Instruction *TermInst = (Instruction*)BB->getTerminator();
MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
MachineInstr *FirstMIOfTerm = *( MC4Term.begin() );
assert( FirstMIOfTerm && "No Machine Instrs for terminator" );
// get an iterator to machine instructions in the BB
MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec();
MachineCodeForBasicBlock::iterator MCIt = bbMvec.begin();
// find the position of first machine instruction generated by the
// terminator of this BB
for( ; (MCIt != bbMvec.end()) && (*MCIt != FirstMIOfTerm) ; ++MCIt )
;
assert( MCIt != bbMvec.end() && "Start inst of terminator not found");
// insert the copy instructions just before the first machine instruction
// generated for the terminator
bbMvec.insert(MCIt, CpVec.begin(), CpVec.end());
//cerr << "\nPhiElimination copy inst: " << *CopyInstVec[0];
}
//-------------------------------------------------------------------------
// This method inserts phi elimination code for all BBs in a method
//-------------------------------------------------------------------------
void
InsertCode4AllPhisInMeth(Method *method, TargetMachine &target)
{
// for all basic blocks in method
//
for (Method::iterator BI = method->begin(); BI != method->end(); ++BI) {
BasicBlock *BB = *BI;
const BasicBlock::InstListType &InstList = BB->getInstList();
BasicBlock::InstListType::const_iterator IIt = InstList.begin();
// for all instructions in the basic block
//
for( ; IIt != InstList.end(); ++IIt ) {
if( (*IIt)->getOpcode() == Instruction::PHINode ) {
PHINode *PN = (PHINode *) (*IIt);
Value *PhiCpRes = new Value(PN->getType(), PN->getValueType(),"PhiCp:");
// for each incoming value of the phi, insert phi elimination
//
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
// insert the copy instruction to the predecessor BB
MachineInstr *CpMI =
target.getRegInfo().cpValue2Value(PN->getIncomingValue(i),
PhiCpRes);
vector<MachineInstr*> CpVec = FixConstantOperandsForInstr(PN, CpMI, target);
CpVec.push_back(CpMI);
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
}
MachineInstr *CpMI2 =
target.getRegInfo().cpValue2Value(PhiCpRes, PN);
// get an iterator to machine instructions in the BB
MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec();
bbMvec.insert( bbMvec.begin(), CpMI2);
}
else break; // since PHI nodes can only be at the top
} // for each Phi Instr in BB
} // for all BBs in method
}
//---------------------------------------------------------------------------
// Function PostprocessMachineCodeForTree
//
// Apply any final cleanups to machine code for the root of a subtree
// after selection for all its children has been completed.
//---------------------------------------------------------------------------
static void
PostprocessMachineCodeForTree(InstructionNode* instrNode,
int ruleForNode,
short* nts,
TargetMachine &target)
{
// Fix up any constant operands in the machine instructions to either
// use an immediate field or to load the constant into a register
// Walk backwards and use direct indexes to allow insertion before current
//
Instruction* vmInstr = instrNode->getInstruction();
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
for (int i = (int) mvec.size()-1; i >= 0; i--)
{
std::vector<MachineInstr*> loadConstVec =
FixConstantOperandsForInstr(vmInstr, mvec[i], target);
if (loadConstVec.size() > 0)
mvec.insert(mvec.begin()+i, loadConstVec.begin(), loadConstVec.end());
}
}
//---------------------------------------------------------------------------
// Function SelectInstructionsForTree
//
// Recursively walk the tree to select instructions.
// Do this top-down so that child instructions can exploit decisions
// made at the child instructions.
//
// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
// a branch-on-integer-register instruction, then the setle node
// can use that information to avoid generating the SUBcc instruction.
//
// Note that this cannot be done bottom-up because setle must do this
// only if it is a child of the branch (otherwise, the result of setle
// may be used by multiple instructions).
//---------------------------------------------------------------------------
bool
SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt,
TargetMachine &target)
{
// Get the rule that matches this node.
//
int ruleForNode = burm_rule(treeRoot->state, goalnt);
if (ruleForNode == 0)
{
cerr << "Could not match instruction tree for instr selection\n";
assert(0);
return true;
}
// Get this rule's non-terminals and the corresponding child nodes (if any)
//
short *nts = burm_nts[ruleForNode];
// First, select instructions for the current node and rule.
// (If this is a list node, not an instruction, then skip this step).
// This function is specific to the target architecture.
//
if (treeRoot->opLabel != VRegListOp)
{
vector<MachineInstr*> minstrVec;
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
GetInstructionsByRule(instrNode, ruleForNode, nts, target, minstrVec);
MachineCodeForInstruction &mvec =
MachineCodeForInstruction::get(instrNode->getInstruction());
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
}
// Then, recursively compile the child nodes, if any.
//
if (nts[0])
{ // i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule))
{
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
burm_kids(treeRoot, currentRule, kids);
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (int i = 0; nts[i]; i++)
{
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode)
{
if (SelectInstructionsForTree(kids[i], nts[i], target))
return true; // failure
}
}
}
// Finally, do any postprocessing on this node after its children
// have been translated
//
if (treeRoot->opLabel != VRegListOp)
{
InstructionNode* instrNode = (InstructionNode*)treeRoot;
PostprocessMachineCodeForTree(instrNode, ruleForNode, nts, target);
}
return false; // success
}