1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Analysis/StackSafetyAnalysis.cpp
2021-01-09 09:25:00 -08:00

1096 lines
36 KiB
C++

//===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/StackLifetime.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "stack-safety"
STATISTIC(NumAllocaStackSafe, "Number of safe allocas");
STATISTIC(NumAllocaTotal, "Number of total allocas");
STATISTIC(NumCombinedCalleeLookupTotal,
"Number of total callee lookups on combined index.");
STATISTIC(NumCombinedCalleeLookupFailed,
"Number of failed callee lookups on combined index.");
STATISTIC(NumModuleCalleeLookupTotal,
"Number of total callee lookups on module index.");
STATISTIC(NumModuleCalleeLookupFailed,
"Number of failed callee lookups on module index.");
STATISTIC(NumCombinedParamAccessesBefore,
"Number of total param accesses before generateParamAccessSummary.");
STATISTIC(NumCombinedParamAccessesAfter,
"Number of total param accesses after generateParamAccessSummary.");
STATISTIC(NumCombinedDataFlowNodes,
"Number of total nodes in combined index for dataflow processing.");
STATISTIC(NumIndexCalleeUnhandled, "Number of index callee which are unhandled.");
STATISTIC(NumIndexCalleeMultipleWeak, "Number of index callee non-unique weak.");
STATISTIC(NumIndexCalleeMultipleExternal, "Number of index callee non-unique external.");
static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations",
cl::init(20), cl::Hidden);
static cl::opt<bool> StackSafetyPrint("stack-safety-print", cl::init(false),
cl::Hidden);
static cl::opt<bool> StackSafetyRun("stack-safety-run", cl::init(false),
cl::Hidden);
namespace {
// Check if we should bailout for such ranges.
bool isUnsafe(const ConstantRange &R) {
return R.isEmptySet() || R.isFullSet() || R.isUpperSignWrapped();
}
ConstantRange addOverflowNever(const ConstantRange &L, const ConstantRange &R) {
assert(!L.isSignWrappedSet());
assert(!R.isSignWrappedSet());
if (L.signedAddMayOverflow(R) !=
ConstantRange::OverflowResult::NeverOverflows)
return ConstantRange::getFull(L.getBitWidth());
ConstantRange Result = L.add(R);
assert(!Result.isSignWrappedSet());
return Result;
}
ConstantRange unionNoWrap(const ConstantRange &L, const ConstantRange &R) {
assert(!L.isSignWrappedSet());
assert(!R.isSignWrappedSet());
auto Result = L.unionWith(R);
// Two non-wrapped sets can produce wrapped.
if (Result.isSignWrappedSet())
Result = ConstantRange::getFull(Result.getBitWidth());
return Result;
}
/// Describes use of address in as a function call argument.
template <typename CalleeTy> struct CallInfo {
/// Function being called.
const CalleeTy *Callee = nullptr;
/// Index of argument which pass address.
size_t ParamNo = 0;
CallInfo(const CalleeTy *Callee, size_t ParamNo)
: Callee(Callee), ParamNo(ParamNo) {}
struct Less {
bool operator()(const CallInfo &L, const CallInfo &R) const {
return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee);
}
};
};
/// Describe uses of address (alloca or parameter) inside of the function.
template <typename CalleeTy> struct UseInfo {
// Access range if the address (alloca or parameters).
// It is allowed to be empty-set when there are no known accesses.
ConstantRange Range;
// List of calls which pass address as an argument.
// Value is offset range of address from base address (alloca or calling
// function argument). Range should never set to empty-set, that is an invalid
// access range that can cause empty-set to be propagated with
// ConstantRange::add
using CallsTy = std::map<CallInfo<CalleeTy>, ConstantRange,
typename CallInfo<CalleeTy>::Less>;
CallsTy Calls;
UseInfo(unsigned PointerSize) : Range{PointerSize, false} {}
void updateRange(const ConstantRange &R) { Range = unionNoWrap(Range, R); }
};
template <typename CalleeTy>
raw_ostream &operator<<(raw_ostream &OS, const UseInfo<CalleeTy> &U) {
OS << U.Range;
for (auto &Call : U.Calls)
OS << ", "
<< "@" << Call.first.Callee->getName() << "(arg" << Call.first.ParamNo
<< ", " << Call.second << ")";
return OS;
}
/// Calculate the allocation size of a given alloca. Returns empty range
// in case of confution.
ConstantRange getStaticAllocaSizeRange(const AllocaInst &AI) {
const DataLayout &DL = AI.getModule()->getDataLayout();
TypeSize TS = DL.getTypeAllocSize(AI.getAllocatedType());
unsigned PointerSize = DL.getMaxPointerSizeInBits();
// Fallback to empty range for alloca size.
ConstantRange R = ConstantRange::getEmpty(PointerSize);
if (TS.isScalable())
return R;
APInt APSize(PointerSize, TS.getFixedSize(), true);
if (APSize.isNonPositive())
return R;
if (AI.isArrayAllocation()) {
const auto *C = dyn_cast<ConstantInt>(AI.getArraySize());
if (!C)
return R;
bool Overflow = false;
APInt Mul = C->getValue();
if (Mul.isNonPositive())
return R;
Mul = Mul.sextOrTrunc(PointerSize);
APSize = APSize.smul_ov(Mul, Overflow);
if (Overflow)
return R;
}
R = ConstantRange(APInt::getNullValue(PointerSize), APSize);
assert(!isUnsafe(R));
return R;
}
template <typename CalleeTy> struct FunctionInfo {
std::map<const AllocaInst *, UseInfo<CalleeTy>> Allocas;
std::map<uint32_t, UseInfo<CalleeTy>> Params;
// TODO: describe return value as depending on one or more of its arguments.
// StackSafetyDataFlowAnalysis counter stored here for faster access.
int UpdateCount = 0;
void print(raw_ostream &O, StringRef Name, const Function *F) const {
// TODO: Consider different printout format after
// StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then.
O << " @" << Name << ((F && F->isDSOLocal()) ? "" : " dso_preemptable")
<< ((F && F->isInterposable()) ? " interposable" : "") << "\n";
O << " args uses:\n";
for (auto &KV : Params) {
O << " ";
if (F)
O << F->getArg(KV.first)->getName();
else
O << formatv("arg{0}", KV.first);
O << "[]: " << KV.second << "\n";
}
O << " allocas uses:\n";
if (F) {
for (auto &I : instructions(F)) {
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
auto &AS = Allocas.find(AI)->second;
O << " " << AI->getName() << "["
<< getStaticAllocaSizeRange(*AI).getUpper() << "]: " << AS << "\n";
}
}
} else {
assert(Allocas.empty());
}
O << "\n";
}
};
using GVToSSI = std::map<const GlobalValue *, FunctionInfo<GlobalValue>>;
} // namespace
struct StackSafetyInfo::InfoTy {
FunctionInfo<GlobalValue> Info;
};
struct StackSafetyGlobalInfo::InfoTy {
GVToSSI Info;
SmallPtrSet<const AllocaInst *, 8> SafeAllocas;
};
namespace {
class StackSafetyLocalAnalysis {
Function &F;
const DataLayout &DL;
ScalarEvolution &SE;
unsigned PointerSize = 0;
const ConstantRange UnknownRange;
ConstantRange offsetFrom(Value *Addr, Value *Base);
ConstantRange getAccessRange(Value *Addr, Value *Base,
const ConstantRange &SizeRange);
ConstantRange getAccessRange(Value *Addr, Value *Base, TypeSize Size);
ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U,
Value *Base);
bool analyzeAllUses(Value *Ptr, UseInfo<GlobalValue> &AS,
const StackLifetime &SL);
public:
StackSafetyLocalAnalysis(Function &F, ScalarEvolution &SE)
: F(F), DL(F.getParent()->getDataLayout()), SE(SE),
PointerSize(DL.getPointerSizeInBits()),
UnknownRange(PointerSize, true) {}
// Run the transformation on the associated function.
FunctionInfo<GlobalValue> run();
};
ConstantRange StackSafetyLocalAnalysis::offsetFrom(Value *Addr, Value *Base) {
if (!SE.isSCEVable(Addr->getType()) || !SE.isSCEVable(Base->getType()))
return UnknownRange;
auto *PtrTy = IntegerType::getInt8PtrTy(SE.getContext());
const SCEV *AddrExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Addr), PtrTy);
const SCEV *BaseExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Base), PtrTy);
const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp);
ConstantRange Offset = SE.getSignedRange(Diff);
if (isUnsafe(Offset))
return UnknownRange;
return Offset.sextOrTrunc(PointerSize);
}
ConstantRange
StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base,
const ConstantRange &SizeRange) {
// Zero-size loads and stores do not access memory.
if (SizeRange.isEmptySet())
return ConstantRange::getEmpty(PointerSize);
assert(!isUnsafe(SizeRange));
ConstantRange Offsets = offsetFrom(Addr, Base);
if (isUnsafe(Offsets))
return UnknownRange;
Offsets = addOverflowNever(Offsets, SizeRange);
if (isUnsafe(Offsets))
return UnknownRange;
return Offsets;
}
ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base,
TypeSize Size) {
if (Size.isScalable())
return UnknownRange;
APInt APSize(PointerSize, Size.getFixedSize(), true);
if (APSize.isNegative())
return UnknownRange;
return getAccessRange(
Addr, Base, ConstantRange(APInt::getNullValue(PointerSize), APSize));
}
ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange(
const MemIntrinsic *MI, const Use &U, Value *Base) {
if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
if (MTI->getRawSource() != U && MTI->getRawDest() != U)
return ConstantRange::getEmpty(PointerSize);
} else {
if (MI->getRawDest() != U)
return ConstantRange::getEmpty(PointerSize);
}
auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize);
if (!SE.isSCEVable(MI->getLength()->getType()))
return UnknownRange;
const SCEV *Expr =
SE.getTruncateOrZeroExtend(SE.getSCEV(MI->getLength()), CalculationTy);
ConstantRange Sizes = SE.getSignedRange(Expr);
if (Sizes.getUpper().isNegative() || isUnsafe(Sizes))
return UnknownRange;
Sizes = Sizes.sextOrTrunc(PointerSize);
ConstantRange SizeRange(APInt::getNullValue(PointerSize),
Sizes.getUpper() - 1);
return getAccessRange(U, Base, SizeRange);
}
/// The function analyzes all local uses of Ptr (alloca or argument) and
/// calculates local access range and all function calls where it was used.
bool StackSafetyLocalAnalysis::analyzeAllUses(Value *Ptr,
UseInfo<GlobalValue> &US,
const StackLifetime &SL) {
SmallPtrSet<const Value *, 16> Visited;
SmallVector<const Value *, 8> WorkList;
WorkList.push_back(Ptr);
const AllocaInst *AI = dyn_cast<AllocaInst>(Ptr);
// A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
while (!WorkList.empty()) {
const Value *V = WorkList.pop_back_val();
for (const Use &UI : V->uses()) {
const auto *I = cast<Instruction>(UI.getUser());
if (!SL.isReachable(I))
continue;
assert(V == UI.get());
switch (I->getOpcode()) {
case Instruction::Load: {
if (AI && !SL.isAliveAfter(AI, I)) {
US.updateRange(UnknownRange);
return false;
}
US.updateRange(
getAccessRange(UI, Ptr, DL.getTypeStoreSize(I->getType())));
break;
}
case Instruction::VAArg:
// "va-arg" from a pointer is safe.
break;
case Instruction::Store: {
if (V == I->getOperand(0)) {
// Stored the pointer - conservatively assume it may be unsafe.
US.updateRange(UnknownRange);
return false;
}
if (AI && !SL.isAliveAfter(AI, I)) {
US.updateRange(UnknownRange);
return false;
}
US.updateRange(getAccessRange(
UI, Ptr, DL.getTypeStoreSize(I->getOperand(0)->getType())));
break;
}
case Instruction::Ret:
// Information leak.
// FIXME: Process parameters correctly. This is a leak only if we return
// alloca.
US.updateRange(UnknownRange);
return false;
case Instruction::Call:
case Instruction::Invoke: {
if (I->isLifetimeStartOrEnd())
break;
if (AI && !SL.isAliveAfter(AI, I)) {
US.updateRange(UnknownRange);
return false;
}
if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
US.updateRange(getMemIntrinsicAccessRange(MI, UI, Ptr));
break;
}
const auto &CB = cast<CallBase>(*I);
if (!CB.isArgOperand(&UI)) {
US.updateRange(UnknownRange);
return false;
}
unsigned ArgNo = CB.getArgOperandNo(&UI);
if (CB.isByValArgument(ArgNo)) {
US.updateRange(getAccessRange(
UI, Ptr, DL.getTypeStoreSize(CB.getParamByValType(ArgNo))));
break;
}
// FIXME: consult devirt?
// Do not follow aliases, otherwise we could inadvertently follow
// dso_preemptable aliases or aliases with interposable linkage.
const GlobalValue *Callee =
dyn_cast<GlobalValue>(CB.getCalledOperand()->stripPointerCasts());
if (!Callee) {
US.updateRange(UnknownRange);
return false;
}
assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee));
ConstantRange Offsets = offsetFrom(UI, Ptr);
auto Insert =
US.Calls.emplace(CallInfo<GlobalValue>(Callee, ArgNo), Offsets);
if (!Insert.second)
Insert.first->second = Insert.first->second.unionWith(Offsets);
break;
}
default:
if (Visited.insert(I).second)
WorkList.push_back(cast<const Instruction>(I));
}
}
}
return true;
}
FunctionInfo<GlobalValue> StackSafetyLocalAnalysis::run() {
FunctionInfo<GlobalValue> Info;
assert(!F.isDeclaration() &&
"Can't run StackSafety on a function declaration");
LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n");
SmallVector<AllocaInst *, 64> Allocas;
for (auto &I : instructions(F))
if (auto *AI = dyn_cast<AllocaInst>(&I))
Allocas.push_back(AI);
StackLifetime SL(F, Allocas, StackLifetime::LivenessType::Must);
SL.run();
for (auto *AI : Allocas) {
auto &UI = Info.Allocas.emplace(AI, PointerSize).first->second;
analyzeAllUses(AI, UI, SL);
}
for (Argument &A : F.args()) {
// Non pointers and bypass arguments are not going to be used in any global
// processing.
if (A.getType()->isPointerTy() && !A.hasByValAttr()) {
auto &UI = Info.Params.emplace(A.getArgNo(), PointerSize).first->second;
analyzeAllUses(&A, UI, SL);
}
}
LLVM_DEBUG(Info.print(dbgs(), F.getName(), &F));
LLVM_DEBUG(dbgs() << "[StackSafety] done\n");
return Info;
}
template <typename CalleeTy> class StackSafetyDataFlowAnalysis {
using FunctionMap = std::map<const CalleeTy *, FunctionInfo<CalleeTy>>;
FunctionMap Functions;
const ConstantRange UnknownRange;
// Callee-to-Caller multimap.
DenseMap<const CalleeTy *, SmallVector<const CalleeTy *, 4>> Callers;
SetVector<const CalleeTy *> WorkList;
bool updateOneUse(UseInfo<CalleeTy> &US, bool UpdateToFullSet);
void updateOneNode(const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS);
void updateOneNode(const CalleeTy *Callee) {
updateOneNode(Callee, Functions.find(Callee)->second);
}
void updateAllNodes() {
for (auto &F : Functions)
updateOneNode(F.first, F.second);
}
void runDataFlow();
#ifndef NDEBUG
void verifyFixedPoint();
#endif
public:
StackSafetyDataFlowAnalysis(uint32_t PointerBitWidth, FunctionMap Functions)
: Functions(std::move(Functions)),
UnknownRange(ConstantRange::getFull(PointerBitWidth)) {}
const FunctionMap &run();
ConstantRange getArgumentAccessRange(const CalleeTy *Callee, unsigned ParamNo,
const ConstantRange &Offsets) const;
};
template <typename CalleeTy>
ConstantRange StackSafetyDataFlowAnalysis<CalleeTy>::getArgumentAccessRange(
const CalleeTy *Callee, unsigned ParamNo,
const ConstantRange &Offsets) const {
auto FnIt = Functions.find(Callee);
// Unknown callee (outside of LTO domain or an indirect call).
if (FnIt == Functions.end())
return UnknownRange;
auto &FS = FnIt->second;
auto ParamIt = FS.Params.find(ParamNo);
if (ParamIt == FS.Params.end())
return UnknownRange;
auto &Access = ParamIt->second.Range;
if (Access.isEmptySet())
return Access;
if (Access.isFullSet())
return UnknownRange;
return addOverflowNever(Access, Offsets);
}
template <typename CalleeTy>
bool StackSafetyDataFlowAnalysis<CalleeTy>::updateOneUse(UseInfo<CalleeTy> &US,
bool UpdateToFullSet) {
bool Changed = false;
for (auto &KV : US.Calls) {
assert(!KV.second.isEmptySet() &&
"Param range can't be empty-set, invalid offset range");
ConstantRange CalleeRange =
getArgumentAccessRange(KV.first.Callee, KV.first.ParamNo, KV.second);
if (!US.Range.contains(CalleeRange)) {
Changed = true;
if (UpdateToFullSet)
US.Range = UnknownRange;
else
US.updateRange(CalleeRange);
}
}
return Changed;
}
template <typename CalleeTy>
void StackSafetyDataFlowAnalysis<CalleeTy>::updateOneNode(
const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS) {
bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations;
bool Changed = false;
for (auto &KV : FS.Params)
Changed |= updateOneUse(KV.second, UpdateToFullSet);
if (Changed) {
LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount
<< (UpdateToFullSet ? ", full-set" : "") << "] " << &FS
<< "\n");
// Callers of this function may need updating.
for (auto &CallerID : Callers[Callee])
WorkList.insert(CallerID);
++FS.UpdateCount;
}
}
template <typename CalleeTy>
void StackSafetyDataFlowAnalysis<CalleeTy>::runDataFlow() {
SmallVector<const CalleeTy *, 16> Callees;
for (auto &F : Functions) {
Callees.clear();
auto &FS = F.second;
for (auto &KV : FS.Params)
for (auto &CS : KV.second.Calls)
Callees.push_back(CS.first.Callee);
llvm::sort(Callees);
Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end());
for (auto &Callee : Callees)
Callers[Callee].push_back(F.first);
}
updateAllNodes();
while (!WorkList.empty()) {
const CalleeTy *Callee = WorkList.back();
WorkList.pop_back();
updateOneNode(Callee);
}
}
#ifndef NDEBUG
template <typename CalleeTy>
void StackSafetyDataFlowAnalysis<CalleeTy>::verifyFixedPoint() {
WorkList.clear();
updateAllNodes();
assert(WorkList.empty());
}
#endif
template <typename CalleeTy>
const typename StackSafetyDataFlowAnalysis<CalleeTy>::FunctionMap &
StackSafetyDataFlowAnalysis<CalleeTy>::run() {
runDataFlow();
LLVM_DEBUG(verifyFixedPoint());
return Functions;
}
FunctionSummary *findCalleeFunctionSummary(ValueInfo VI, StringRef ModuleId) {
if (!VI)
return nullptr;
auto SummaryList = VI.getSummaryList();
GlobalValueSummary* S = nullptr;
for (const auto& GVS : SummaryList) {
if (!GVS->isLive())
continue;
if (const AliasSummary *AS = dyn_cast<AliasSummary>(GVS.get()))
if (!AS->hasAliasee())
continue;
if (!isa<FunctionSummary>(GVS->getBaseObject()))
continue;
if (GlobalValue::isLocalLinkage(GVS->linkage())) {
if (GVS->modulePath() == ModuleId) {
S = GVS.get();
break;
}
} else if (GlobalValue::isExternalLinkage(GVS->linkage())) {
if (S) {
++NumIndexCalleeMultipleExternal;
return nullptr;
}
S = GVS.get();
} else if (GlobalValue::isWeakLinkage(GVS->linkage())) {
if (S) {
++NumIndexCalleeMultipleWeak;
return nullptr;
}
S = GVS.get();
} else if (GlobalValue::isAvailableExternallyLinkage(GVS->linkage()) ||
GlobalValue::isLinkOnceLinkage(GVS->linkage())) {
if (SummaryList.size() == 1)
S = GVS.get();
// According thinLTOResolvePrevailingGUID these are unlikely prevailing.
} else {
++NumIndexCalleeUnhandled;
}
};
while (S) {
if (!S->isLive() || !S->isDSOLocal())
return nullptr;
if (FunctionSummary *FS = dyn_cast<FunctionSummary>(S))
return FS;
AliasSummary *AS = dyn_cast<AliasSummary>(S);
if (!AS || !AS->hasAliasee())
return nullptr;
S = AS->getBaseObject();
if (S == AS)
return nullptr;
}
return nullptr;
}
const Function *findCalleeInModule(const GlobalValue *GV) {
while (GV) {
if (GV->isDeclaration() || GV->isInterposable() || !GV->isDSOLocal())
return nullptr;
if (const Function *F = dyn_cast<Function>(GV))
return F;
const GlobalAlias *A = dyn_cast<GlobalAlias>(GV);
if (!A)
return nullptr;
GV = A->getBaseObject();
if (GV == A)
return nullptr;
}
return nullptr;
}
const ConstantRange *findParamAccess(const FunctionSummary &FS,
uint32_t ParamNo) {
assert(FS.isLive());
assert(FS.isDSOLocal());
for (auto &PS : FS.paramAccesses())
if (ParamNo == PS.ParamNo)
return &PS.Use;
return nullptr;
}
void resolveAllCalls(UseInfo<GlobalValue> &Use,
const ModuleSummaryIndex *Index) {
ConstantRange FullSet(Use.Range.getBitWidth(), true);
// Move Use.Calls to a temp storage and repopulate - don't use std::move as it
// leaves Use.Calls in an undefined state.
UseInfo<GlobalValue>::CallsTy TmpCalls;
std::swap(TmpCalls, Use.Calls);
for (const auto &C : TmpCalls) {
const Function *F = findCalleeInModule(C.first.Callee);
if (F) {
Use.Calls.emplace(CallInfo<GlobalValue>(F, C.first.ParamNo), C.second);
continue;
}
if (!Index)
return Use.updateRange(FullSet);
FunctionSummary *FS =
findCalleeFunctionSummary(Index->getValueInfo(C.first.Callee->getGUID()),
C.first.Callee->getParent()->getModuleIdentifier());
++NumModuleCalleeLookupTotal;
if (!FS) {
++NumModuleCalleeLookupFailed;
return Use.updateRange(FullSet);
}
const ConstantRange *Found = findParamAccess(*FS, C.first.ParamNo);
if (!Found || Found->isFullSet())
return Use.updateRange(FullSet);
ConstantRange Access = Found->sextOrTrunc(Use.Range.getBitWidth());
if (!Access.isEmptySet())
Use.updateRange(addOverflowNever(Access, C.second));
}
}
GVToSSI createGlobalStackSafetyInfo(
std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions,
const ModuleSummaryIndex *Index) {
GVToSSI SSI;
if (Functions.empty())
return SSI;
// FIXME: Simplify printing and remove copying here.
auto Copy = Functions;
for (auto &FnKV : Copy)
for (auto &KV : FnKV.second.Params) {
resolveAllCalls(KV.second, Index);
if (KV.second.Range.isFullSet())
KV.second.Calls.clear();
}
uint32_t PointerSize = Copy.begin()
->first->getParent()
->getDataLayout()
.getMaxPointerSizeInBits();
StackSafetyDataFlowAnalysis<GlobalValue> SSDFA(PointerSize, std::move(Copy));
for (auto &F : SSDFA.run()) {
auto FI = F.second;
auto &SrcF = Functions[F.first];
for (auto &KV : FI.Allocas) {
auto &A = KV.second;
resolveAllCalls(A, Index);
for (auto &C : A.Calls) {
A.updateRange(SSDFA.getArgumentAccessRange(C.first.Callee,
C.first.ParamNo, C.second));
}
// FIXME: This is needed only to preserve calls in print() results.
A.Calls = SrcF.Allocas.find(KV.first)->second.Calls;
}
for (auto &KV : FI.Params) {
auto &P = KV.second;
P.Calls = SrcF.Params.find(KV.first)->second.Calls;
}
SSI[F.first] = std::move(FI);
}
return SSI;
}
} // end anonymous namespace
StackSafetyInfo::StackSafetyInfo() = default;
StackSafetyInfo::StackSafetyInfo(Function *F,
std::function<ScalarEvolution &()> GetSE)
: F(F), GetSE(GetSE) {}
StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default;
StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default;
StackSafetyInfo::~StackSafetyInfo() = default;
const StackSafetyInfo::InfoTy &StackSafetyInfo::getInfo() const {
if (!Info) {
StackSafetyLocalAnalysis SSLA(*F, GetSE());
Info.reset(new InfoTy{SSLA.run()});
}
return *Info;
}
void StackSafetyInfo::print(raw_ostream &O) const {
getInfo().Info.print(O, F->getName(), dyn_cast<Function>(F));
}
const StackSafetyGlobalInfo::InfoTy &StackSafetyGlobalInfo::getInfo() const {
if (!Info) {
std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions;
for (auto &F : M->functions()) {
if (!F.isDeclaration()) {
auto FI = GetSSI(F).getInfo().Info;
Functions.emplace(&F, std::move(FI));
}
}
Info.reset(new InfoTy{
createGlobalStackSafetyInfo(std::move(Functions), Index), {}});
for (auto &FnKV : Info->Info) {
for (auto &KV : FnKV.second.Allocas) {
++NumAllocaTotal;
const AllocaInst *AI = KV.first;
if (getStaticAllocaSizeRange(*AI).contains(KV.second.Range)) {
Info->SafeAllocas.insert(AI);
++NumAllocaStackSafe;
}
}
}
if (StackSafetyPrint)
print(errs());
}
return *Info;
}
std::vector<FunctionSummary::ParamAccess>
StackSafetyInfo::getParamAccesses(ModuleSummaryIndex &Index) const {
// Implementation transforms internal representation of parameter information
// into FunctionSummary format.
std::vector<FunctionSummary::ParamAccess> ParamAccesses;
for (const auto &KV : getInfo().Info.Params) {
auto &PS = KV.second;
// Parameter accessed by any or unknown offset, represented as FullSet by
// StackSafety, is handled as the parameter for which we have no
// StackSafety info at all. So drop it to reduce summary size.
if (PS.Range.isFullSet())
continue;
ParamAccesses.emplace_back(KV.first, PS.Range);
FunctionSummary::ParamAccess &Param = ParamAccesses.back();
Param.Calls.reserve(PS.Calls.size());
for (auto &C : PS.Calls) {
// Parameter forwarded into another function by any or unknown offset
// will make ParamAccess::Range as FullSet anyway. So we can drop the
// entire parameter like we did above.
// TODO(vitalybuka): Return already filtered parameters from getInfo().
if (C.second.isFullSet()) {
ParamAccesses.pop_back();
break;
}
Param.Calls.emplace_back(C.first.ParamNo,
Index.getOrInsertValueInfo(C.first.Callee),
C.second);
}
}
for (FunctionSummary::ParamAccess &Param : ParamAccesses) {
sort(Param.Calls, [](const FunctionSummary::ParamAccess::Call &L,
const FunctionSummary::ParamAccess::Call &R) {
return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee);
});
}
return ParamAccesses;
}
StackSafetyGlobalInfo::StackSafetyGlobalInfo() = default;
StackSafetyGlobalInfo::StackSafetyGlobalInfo(
Module *M, std::function<const StackSafetyInfo &(Function &F)> GetSSI,
const ModuleSummaryIndex *Index)
: M(M), GetSSI(GetSSI), Index(Index) {
if (StackSafetyRun)
getInfo();
}
StackSafetyGlobalInfo::StackSafetyGlobalInfo(StackSafetyGlobalInfo &&) =
default;
StackSafetyGlobalInfo &
StackSafetyGlobalInfo::operator=(StackSafetyGlobalInfo &&) = default;
StackSafetyGlobalInfo::~StackSafetyGlobalInfo() = default;
bool StackSafetyGlobalInfo::isSafe(const AllocaInst &AI) const {
const auto &Info = getInfo();
return Info.SafeAllocas.count(&AI);
}
void StackSafetyGlobalInfo::print(raw_ostream &O) const {
auto &SSI = getInfo().Info;
if (SSI.empty())
return;
const Module &M = *SSI.begin()->first->getParent();
for (auto &F : M.functions()) {
if (!F.isDeclaration()) {
SSI.find(&F)->second.print(O, F.getName(), &F);
O << "\n";
}
}
}
LLVM_DUMP_METHOD void StackSafetyGlobalInfo::dump() const { print(dbgs()); }
AnalysisKey StackSafetyAnalysis::Key;
StackSafetyInfo StackSafetyAnalysis::run(Function &F,
FunctionAnalysisManager &AM) {
return StackSafetyInfo(&F, [&AM, &F]() -> ScalarEvolution & {
return AM.getResult<ScalarEvolutionAnalysis>(F);
});
}
PreservedAnalyses StackSafetyPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n";
AM.getResult<StackSafetyAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}
char StackSafetyInfoWrapperPass::ID = 0;
StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) {
initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
AU.setPreservesAll();
}
void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const {
SSI.print(O);
}
bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) {
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
SSI = {&F, [SE]() -> ScalarEvolution & { return *SE; }};
return false;
}
AnalysisKey StackSafetyGlobalAnalysis::Key;
StackSafetyGlobalInfo
StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
// FIXME: Lookup Module Summary.
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
return {&M,
[&FAM](Function &F) -> const StackSafetyInfo & {
return FAM.getResult<StackSafetyAnalysis>(F);
},
nullptr};
}
PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M,
ModuleAnalysisManager &AM) {
OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n";
AM.getResult<StackSafetyGlobalAnalysis>(M).print(OS);
return PreservedAnalyses::all();
}
char StackSafetyGlobalInfoWrapperPass::ID = 0;
StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass()
: ModulePass(ID) {
initializeStackSafetyGlobalInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
StackSafetyGlobalInfoWrapperPass::~StackSafetyGlobalInfoWrapperPass() = default;
void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O,
const Module *M) const {
SSGI.print(O);
}
void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage(
AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<StackSafetyInfoWrapperPass>();
}
bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) {
const ModuleSummaryIndex *ImportSummary = nullptr;
if (auto *IndexWrapperPass =
getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>())
ImportSummary = IndexWrapperPass->getIndex();
SSGI = {&M,
[this](Function &F) -> const StackSafetyInfo & {
return getAnalysis<StackSafetyInfoWrapperPass>(F).getResult();
},
ImportSummary};
return false;
}
bool llvm::needsParamAccessSummary(const Module &M) {
if (StackSafetyRun)
return true;
for (auto &F : M.functions())
if (F.hasFnAttribute(Attribute::SanitizeMemTag))
return true;
return false;
}
void llvm::generateParamAccessSummary(ModuleSummaryIndex &Index) {
if (!Index.hasParamAccess())
return;
const ConstantRange FullSet(FunctionSummary::ParamAccess::RangeWidth, true);
auto CountParamAccesses = [&](auto &Stat) {
if (!AreStatisticsEnabled())
return;
for (auto &GVS : Index)
for (auto &GV : GVS.second.SummaryList)
if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get()))
Stat += FS->paramAccesses().size();
};
CountParamAccesses(NumCombinedParamAccessesBefore);
std::map<const FunctionSummary *, FunctionInfo<FunctionSummary>> Functions;
// Convert the ModuleSummaryIndex to a FunctionMap
for (auto &GVS : Index) {
for (auto &GV : GVS.second.SummaryList) {
FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get());
if (!FS || FS->paramAccesses().empty())
continue;
if (FS->isLive() && FS->isDSOLocal()) {
FunctionInfo<FunctionSummary> FI;
for (auto &PS : FS->paramAccesses()) {
auto &US =
FI.Params
.emplace(PS.ParamNo, FunctionSummary::ParamAccess::RangeWidth)
.first->second;
US.Range = PS.Use;
for (auto &Call : PS.Calls) {
assert(!Call.Offsets.isFullSet());
FunctionSummary *S =
findCalleeFunctionSummary(Call.Callee, FS->modulePath());
++NumCombinedCalleeLookupTotal;
if (!S) {
++NumCombinedCalleeLookupFailed;
US.Range = FullSet;
US.Calls.clear();
break;
}
US.Calls.emplace(CallInfo<FunctionSummary>(S, Call.ParamNo),
Call.Offsets);
}
}
Functions.emplace(FS, std::move(FI));
}
// Reset data for all summaries. Alive and DSO local will be set back from
// of data flow results below. Anything else will not be accessed
// by ThinLTO backend, so we can save on bitcode size.
FS->setParamAccesses({});
}
}
NumCombinedDataFlowNodes += Functions.size();
StackSafetyDataFlowAnalysis<FunctionSummary> SSDFA(
FunctionSummary::ParamAccess::RangeWidth, std::move(Functions));
for (auto &KV : SSDFA.run()) {
std::vector<FunctionSummary::ParamAccess> NewParams;
NewParams.reserve(KV.second.Params.size());
for (auto &Param : KV.second.Params) {
// It's not needed as FullSet is processed the same as a missing value.
if (Param.second.Range.isFullSet())
continue;
NewParams.emplace_back();
FunctionSummary::ParamAccess &New = NewParams.back();
New.ParamNo = Param.first;
New.Use = Param.second.Range; // Only range is needed.
}
const_cast<FunctionSummary *>(KV.first)->setParamAccesses(
std::move(NewParams));
}
CountParamAccesses(NumCombinedParamAccessesAfter);
}
static const char LocalPassArg[] = "stack-safety-local";
static const char LocalPassName[] = "Stack Safety Local Analysis";
INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
false, true)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
false, true)
static const char GlobalPassName[] = "Stack Safety Analysis";
INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
GlobalPassName, false, true)
INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ImmutableModuleSummaryIndexWrapperPass)
INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
GlobalPassName, false, true)