1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
Bevin Hansson d148a7c68f [MC] Widen the functional unit type from 32 to 64 bits.
Summary:
The type used to represent functional units in MC is
'unsigned', which is 32 bits wide. This is currently
not a problem in any upstream target as no one seems
to have hit the limit on this yet, but in our
downstream one, we need to define more than 32
functional units.

Increasing the size does not seem to cause a huge
size increase in the binary (an llc debug build went
from 1366497672 to 1366523984, a difference of 26k),
so perhaps it would be acceptable to have this patch
applied upstream as well.

Subscribers: hiraditya, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71210
2020-02-24 09:37:00 +01:00

1953 lines
67 KiB
C++

//===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a simple VLIW packetizer using DFA. The packetizer works on
// machine basic blocks. For each instruction I in BB, the packetizer consults
// the DFA to see if machine resources are available to execute I. If so, the
// packetizer checks if I depends on any instruction J in the current packet.
// If no dependency is found, I is added to current packet and machine resource
// is marked as taken. If any dependency is found, a target API call is made to
// prune the dependence.
//
//===----------------------------------------------------------------------===//
#include "HexagonVLIWPacketizer.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "packets"
static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
cl::ZeroOrMore, cl::init(false),
cl::desc("Disable Hexagon packetizer pass"));
static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
cl::ZeroOrMore, cl::init(true),
cl::desc("Allow slot1 store and slot0 load"));
static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
cl::ZeroOrMore, cl::Hidden, cl::init(true),
cl::desc("Allow non-solo packetization of volatile memory references"));
static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));
static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
cl::init(false), cl::Hidden, cl::ZeroOrMore,
cl::desc("Disable vector double new-value-stores"));
extern cl::opt<bool> ScheduleInlineAsm;
namespace llvm {
FunctionPass *createHexagonPacketizer(bool Minimal);
void initializeHexagonPacketizerPass(PassRegistry&);
} // end namespace llvm
namespace {
class HexagonPacketizer : public MachineFunctionPass {
public:
static char ID;
HexagonPacketizer(bool Min = false)
: MachineFunctionPass(ID), Minimal(Min) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MachineBranchProbabilityInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Hexagon Packetizer"; }
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
const HexagonInstrInfo *HII = nullptr;
const HexagonRegisterInfo *HRI = nullptr;
const bool Minimal = false;
};
} // end anonymous namespace
char HexagonPacketizer::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
"Hexagon Packetizer", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
"Hexagon Packetizer", false, false)
HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
MachineLoopInfo &MLI, AAResults *AA,
const MachineBranchProbabilityInfo *MBPI, bool Minimal)
: VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
Minimal(Minimal) {
HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
}
// Check if FirstI modifies a register that SecondI reads.
static bool hasWriteToReadDep(const MachineInstr &FirstI,
const MachineInstr &SecondI,
const TargetRegisterInfo *TRI) {
for (auto &MO : FirstI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
Register R = MO.getReg();
if (SecondI.readsRegister(R, TRI))
return true;
}
return false;
}
static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
MachineBasicBlock::iterator BundleIt, bool Before) {
MachineBasicBlock::instr_iterator InsertPt;
if (Before)
InsertPt = BundleIt.getInstrIterator();
else
InsertPt = std::next(BundleIt).getInstrIterator();
MachineBasicBlock &B = *MI.getParent();
// The instruction should at least be bundled with the preceding instruction
// (there will always be one, i.e. BUNDLE, if nothing else).
assert(MI.isBundledWithPred());
if (MI.isBundledWithSucc()) {
MI.clearFlag(MachineInstr::BundledSucc);
MI.clearFlag(MachineInstr::BundledPred);
} else {
// If it's not bundled with the successor (i.e. it is the last one
// in the bundle), then we can simply unbundle it from the predecessor,
// which will take care of updating the predecessor's flag.
MI.unbundleFromPred();
}
B.splice(InsertPt, &B, MI.getIterator());
// Get the size of the bundle without asserting.
MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
MachineBasicBlock::const_instr_iterator E = B.instr_end();
unsigned Size = 0;
for (++I; I != E && I->isBundledWithPred(); ++I)
++Size;
// If there are still two or more instructions, then there is nothing
// else to be done.
if (Size > 1)
return BundleIt;
// Otherwise, extract the single instruction out and delete the bundle.
MachineBasicBlock::iterator NextIt = std::next(BundleIt);
MachineInstr &SingleI = *BundleIt->getNextNode();
SingleI.unbundleFromPred();
assert(!SingleI.isBundledWithSucc());
BundleIt->eraseFromParent();
return NextIt;
}
bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
auto &HST = MF.getSubtarget<HexagonSubtarget>();
HII = HST.getInstrInfo();
HRI = HST.getRegisterInfo();
auto &MLI = getAnalysis<MachineLoopInfo>();
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
if (EnableGenAllInsnClass)
HII->genAllInsnTimingClasses(MF);
// Instantiate the packetizer.
bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
skipFunction(MF.getFunction());
HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
// DFA state table should not be empty.
assert(Packetizer.getResourceTracker() && "Empty DFA table!");
// Loop over all basic blocks and remove KILL pseudo-instructions
// These instructions confuse the dependence analysis. Consider:
// D0 = ... (Insn 0)
// R0 = KILL R0, D0 (Insn 1)
// R0 = ... (Insn 2)
// Here, Insn 1 will result in the dependence graph not emitting an output
// dependence between Insn 0 and Insn 2. This can lead to incorrect
// packetization
for (MachineBasicBlock &MB : MF) {
auto End = MB.end();
auto MI = MB.begin();
while (MI != End) {
auto NextI = std::next(MI);
if (MI->isKill()) {
MB.erase(MI);
End = MB.end();
}
MI = NextI;
}
}
// TinyCore with Duplexes: Translate to big-instructions.
if (HST.isTinyCoreWithDuplex())
HII->translateInstrsForDup(MF, true);
// Loop over all of the basic blocks.
for (auto &MB : MF) {
auto Begin = MB.begin(), End = MB.end();
while (Begin != End) {
// Find the first non-boundary starting from the end of the last
// scheduling region.
MachineBasicBlock::iterator RB = Begin;
while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
++RB;
// Find the first boundary starting from the beginning of the new
// region.
MachineBasicBlock::iterator RE = RB;
while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
++RE;
// Add the scheduling boundary if it's not block end.
if (RE != End)
++RE;
// If RB == End, then RE == End.
if (RB != End)
Packetizer.PacketizeMIs(&MB, RB, RE);
Begin = RE;
}
}
// TinyCore with Duplexes: Translate to tiny-instructions.
if (HST.isTinyCoreWithDuplex())
HII->translateInstrsForDup(MF, false);
Packetizer.unpacketizeSoloInstrs(MF);
return true;
}
// Reserve resources for a constant extender. Trigger an assertion if the
// reservation fails.
void HexagonPacketizerList::reserveResourcesForConstExt() {
if (!tryAllocateResourcesForConstExt(true))
llvm_unreachable("Resources not available");
}
bool HexagonPacketizerList::canReserveResourcesForConstExt() {
return tryAllocateResourcesForConstExt(false);
}
// Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
// return true, otherwise, return false.
bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
bool Avail = ResourceTracker->canReserveResources(*ExtMI);
if (Reserve && Avail)
ResourceTracker->reserveResources(*ExtMI);
MF.DeleteMachineInstr(ExtMI);
return Avail;
}
bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
SDep::Kind DepType, unsigned DepReg) {
// Check for LR dependence.
if (DepReg == HRI->getRARegister())
return true;
if (HII->isDeallocRet(MI))
if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
return true;
// Call-like instructions can be packetized with preceding instructions
// that define registers implicitly used or modified by the call. Explicit
// uses are still prohibited, as in the case of indirect calls:
// r0 = ...
// J2_jumpr r0
if (DepType == SDep::Data) {
for (const MachineOperand &MO : MI.operands())
if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
return true;
}
return false;
}
static bool isRegDependence(const SDep::Kind DepType) {
return DepType == SDep::Data || DepType == SDep::Anti ||
DepType == SDep::Output;
}
static bool isDirectJump(const MachineInstr &MI) {
return MI.getOpcode() == Hexagon::J2_jump;
}
static bool isSchedBarrier(const MachineInstr &MI) {
switch (MI.getOpcode()) {
case Hexagon::Y2_barrier:
return true;
}
return false;
}
static bool isControlFlow(const MachineInstr &MI) {
return MI.getDesc().isTerminator() || MI.getDesc().isCall();
}
/// Returns true if the instruction modifies a callee-saved register.
static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
const TargetRegisterInfo *TRI) {
const MachineFunction &MF = *MI.getParent()->getParent();
for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
if (MI.modifiesRegister(*CSR, TRI))
return true;
return false;
}
// Returns true if an instruction can be promoted to .new predicate or
// new-value store.
bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
const TargetRegisterClass *NewRC) {
// Vector stores can be predicated, and can be new-value stores, but
// they cannot be predicated on a .new predicate value.
if (NewRC == &Hexagon::PredRegsRegClass) {
if (HII->isHVXVec(MI) && MI.mayStore())
return false;
return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
}
// If the class is not PredRegs, it could only apply to new-value stores.
return HII->mayBeNewStore(MI);
}
// Promote an instructiont to its .cur form.
// At this time, we have already made a call to canPromoteToDotCur and made
// sure that it can *indeed* be promoted.
bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
SDep::Kind DepType, MachineBasicBlock::iterator &MII,
const TargetRegisterClass* RC) {
assert(DepType == SDep::Data);
int CurOpcode = HII->getDotCurOp(MI);
MI.setDesc(HII->get(CurOpcode));
return true;
}
void HexagonPacketizerList::cleanUpDotCur() {
MachineInstr *MI = nullptr;
for (auto BI : CurrentPacketMIs) {
LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
if (HII->isDotCurInst(*BI)) {
MI = BI;
continue;
}
if (MI) {
for (auto &MO : BI->operands())
if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
return;
}
}
if (!MI)
return;
// We did not find a use of the CUR, so de-cur it.
MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
}
// Check to see if an instruction can be dot cur.
bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
const TargetRegisterClass *RC) {
if (!HII->isHVXVec(MI))
return false;
if (!HII->isHVXVec(*MII))
return false;
// Already a dot new instruction.
if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
return false;
if (!HII->mayBeCurLoad(MI))
return false;
// The "cur value" cannot come from inline asm.
if (PacketSU->getInstr()->isInlineAsm())
return false;
// Make sure candidate instruction uses cur.
LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
dbgs() << "in packet\n";);
MachineInstr &MJ = *MII;
LLVM_DEBUG({
dbgs() << "Checking CUR against ";
MJ.dump();
});
Register DestReg = MI.getOperand(0).getReg();
bool FoundMatch = false;
for (auto &MO : MJ.operands())
if (MO.isReg() && MO.getReg() == DestReg)
FoundMatch = true;
if (!FoundMatch)
return false;
// Check for existing uses of a vector register within the packet which
// would be affected by converting a vector load into .cur formt.
for (auto BI : CurrentPacketMIs) {
LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
return false;
}
LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
// We can convert the opcode into a .cur.
return true;
}
// Promote an instruction to its .new form. At this time, we have already
// made a call to canPromoteToDotNew and made sure that it can *indeed* be
// promoted.
bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
SDep::Kind DepType, MachineBasicBlock::iterator &MII,
const TargetRegisterClass* RC) {
assert(DepType == SDep::Data);
int NewOpcode;
if (RC == &Hexagon::PredRegsRegClass)
NewOpcode = HII->getDotNewPredOp(MI, MBPI);
else
NewOpcode = HII->getDotNewOp(MI);
MI.setDesc(HII->get(NewOpcode));
return true;
}
bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
int NewOpcode = HII->getDotOldOp(MI);
MI.setDesc(HII->get(NewOpcode));
return true;
}
bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::S2_storerd_io:
case Hexagon::S2_storeri_io:
case Hexagon::S2_storerh_io:
case Hexagon::S2_storerb_io:
break;
default:
llvm_unreachable("Unexpected instruction");
}
unsigned FrameSize = MF.getFrameInfo().getStackSize();
MachineOperand &Off = MI.getOperand(1);
int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
if (HII->isValidOffset(Opc, NewOff, HRI)) {
Off.setImm(NewOff);
return true;
}
return false;
}
void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::S2_storerd_io:
case Hexagon::S2_storeri_io:
case Hexagon::S2_storerh_io:
case Hexagon::S2_storerb_io:
break;
default:
llvm_unreachable("Unexpected instruction");
}
unsigned FrameSize = MF.getFrameInfo().getStackSize();
MachineOperand &Off = MI.getOperand(1);
Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
}
/// Return true if we can update the offset in MI so that MI and MJ
/// can be packetized together.
bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
assert(SUI->getInstr() && SUJ->getInstr());
MachineInstr &MI = *SUI->getInstr();
MachineInstr &MJ = *SUJ->getInstr();
unsigned BPI, OPI;
if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
return false;
unsigned BPJ, OPJ;
if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
return false;
Register Reg = MI.getOperand(BPI).getReg();
if (Reg != MJ.getOperand(BPJ).getReg())
return false;
// Make sure that the dependences do not restrict adding MI to the packet.
// That is, ignore anti dependences, and make sure the only data dependence
// involves the specific register.
for (const auto &PI : SUI->Preds)
if (PI.getKind() != SDep::Anti &&
(PI.getKind() != SDep::Data || PI.getReg() != Reg))
return false;
int Incr;
if (!HII->getIncrementValue(MJ, Incr))
return false;
int64_t Offset = MI.getOperand(OPI).getImm();
if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
return false;
MI.getOperand(OPI).setImm(Offset + Incr);
ChangedOffset = Offset;
return true;
}
/// Undo the changed offset. This is needed if the instruction cannot be
/// added to the current packet due to a different instruction.
void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
unsigned BP, OP;
if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
llvm_unreachable("Unable to find base and offset operands.");
MI.getOperand(OP).setImm(ChangedOffset);
}
enum PredicateKind {
PK_False,
PK_True,
PK_Unknown
};
/// Returns true if an instruction is predicated on p0 and false if it's
/// predicated on !p0.
static PredicateKind getPredicateSense(const MachineInstr &MI,
const HexagonInstrInfo *HII) {
if (!HII->isPredicated(MI))
return PK_Unknown;
if (HII->isPredicatedTrue(MI))
return PK_True;
return PK_False;
}
static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
const HexagonInstrInfo *HII) {
assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
#ifndef NDEBUG
// Post Increment means duplicates. Use dense map to find duplicates in the
// list. Caution: Densemap initializes with the minimum of 64 buckets,
// whereas there are at most 5 operands in the post increment.
DenseSet<unsigned> DefRegsSet;
for (auto &MO : MI.operands())
if (MO.isReg() && MO.isDef())
DefRegsSet.insert(MO.getReg());
for (auto &MO : MI.operands())
if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
return MO;
#else
if (MI.mayLoad()) {
const MachineOperand &Op1 = MI.getOperand(1);
// The 2nd operand is always the post increment operand in load.
assert(Op1.isReg() && "Post increment operand has be to a register.");
return Op1;
}
if (MI.getDesc().mayStore()) {
const MachineOperand &Op0 = MI.getOperand(0);
// The 1st operand is always the post increment operand in store.
assert(Op0.isReg() && "Post increment operand has be to a register.");
return Op0;
}
#endif
// we should never come here.
llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
}
// Get the value being stored.
static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
// value being stored is always the last operand.
return MI.getOperand(MI.getNumOperands()-1);
}
static bool isLoadAbsSet(const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::L4_loadrd_ap:
case Hexagon::L4_loadrb_ap:
case Hexagon::L4_loadrh_ap:
case Hexagon::L4_loadrub_ap:
case Hexagon::L4_loadruh_ap:
case Hexagon::L4_loadri_ap:
return true;
}
return false;
}
static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
assert(isLoadAbsSet(MI));
return MI.getOperand(1);
}
// Can be new value store?
// Following restrictions are to be respected in convert a store into
// a new value store.
// 1. If an instruction uses auto-increment, its address register cannot
// be a new-value register. Arch Spec 5.4.2.1
// 2. If an instruction uses absolute-set addressing mode, its address
// register cannot be a new-value register. Arch Spec 5.4.2.1.
// 3. If an instruction produces a 64-bit result, its registers cannot be used
// as new-value registers. Arch Spec 5.4.2.2.
// 4. If the instruction that sets the new-value register is conditional, then
// the instruction that uses the new-value register must also be conditional,
// and both must always have their predicates evaluate identically.
// Arch Spec 5.4.2.3.
// 5. There is an implied restriction that a packet cannot have another store,
// if there is a new value store in the packet. Corollary: if there is
// already a store in a packet, there can not be a new value store.
// Arch Spec: 3.4.4.2
bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
const MachineInstr &PacketMI, unsigned DepReg) {
// Make sure we are looking at the store, that can be promoted.
if (!HII->mayBeNewStore(MI))
return false;
// Make sure there is dependency and can be new value'd.
const MachineOperand &Val = getStoreValueOperand(MI);
if (Val.isReg() && Val.getReg() != DepReg)
return false;
const MCInstrDesc& MCID = PacketMI.getDesc();
// First operand is always the result.
const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
// Double regs can not feed into new value store: PRM section: 5.4.2.2.
if (PacketRC == &Hexagon::DoubleRegsRegClass)
return false;
// New-value stores are of class NV (slot 0), dual stores require class ST
// in slot 0 (PRM 5.5).
for (auto I : CurrentPacketMIs) {
SUnit *PacketSU = MIToSUnit.find(I)->second;
if (PacketSU->getInstr()->mayStore())
return false;
}
// Make sure it's NOT the post increment register that we are going to
// new value.
if (HII->isPostIncrement(MI) &&
getPostIncrementOperand(MI, HII).getReg() == DepReg) {
return false;
}
if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
// If source is post_inc, or absolute-set addressing, it can not feed
// into new value store
// r3 = memw(r2++#4)
// memw(r30 + #-1404) = r2.new -> can not be new value store
// arch spec section: 5.4.2.1.
return false;
}
if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
return false;
// If the source that feeds the store is predicated, new value store must
// also be predicated.
if (HII->isPredicated(PacketMI)) {
if (!HII->isPredicated(MI))
return false;
// Check to make sure that they both will have their predicates
// evaluate identically.
unsigned predRegNumSrc = 0;
unsigned predRegNumDst = 0;
const TargetRegisterClass* predRegClass = nullptr;
// Get predicate register used in the source instruction.
for (auto &MO : PacketMI.operands()) {
if (!MO.isReg())
continue;
predRegNumSrc = MO.getReg();
predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
if (predRegClass == &Hexagon::PredRegsRegClass)
break;
}
assert((predRegClass == &Hexagon::PredRegsRegClass) &&
"predicate register not found in a predicated PacketMI instruction");
// Get predicate register used in new-value store instruction.
for (auto &MO : MI.operands()) {
if (!MO.isReg())
continue;
predRegNumDst = MO.getReg();
predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
if (predRegClass == &Hexagon::PredRegsRegClass)
break;
}
assert((predRegClass == &Hexagon::PredRegsRegClass) &&
"predicate register not found in a predicated MI instruction");
// New-value register producer and user (store) need to satisfy these
// constraints:
// 1) Both instructions should be predicated on the same register.
// 2) If producer of the new-value register is .new predicated then store
// should also be .new predicated and if producer is not .new predicated
// then store should not be .new predicated.
// 3) Both new-value register producer and user should have same predicate
// sense, i.e, either both should be negated or both should be non-negated.
if (predRegNumDst != predRegNumSrc ||
HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
return false;
}
// Make sure that other than the new-value register no other store instruction
// register has been modified in the same packet. Predicate registers can be
// modified by they should not be modified between the producer and the store
// instruction as it will make them both conditional on different values.
// We already know this to be true for all the instructions before and
// including PacketMI. Howerver, we need to perform the check for the
// remaining instructions in the packet.
unsigned StartCheck = 0;
for (auto I : CurrentPacketMIs) {
SUnit *TempSU = MIToSUnit.find(I)->second;
MachineInstr &TempMI = *TempSU->getInstr();
// Following condition is true for all the instructions until PacketMI is
// reached (StartCheck is set to 0 before the for loop).
// StartCheck flag is 1 for all the instructions after PacketMI.
if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
continue; // encountering PacketMI.
StartCheck = 1;
if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
continue;
for (auto &MO : MI.operands())
if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
return false;
}
// Make sure that for non-POST_INC stores:
// 1. The only use of reg is DepReg and no other registers.
// This handles base+index registers.
// The following store can not be dot new.
// Eg. r0 = add(r0, #3)
// memw(r1+r0<<#2) = r0
if (!HII->isPostIncrement(MI)) {
for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
const MachineOperand &MO = MI.getOperand(opNum);
if (MO.isReg() && MO.getReg() == DepReg)
return false;
}
}
// If data definition is because of implicit definition of the register,
// do not newify the store. Eg.
// %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
// S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
for (auto &MO : PacketMI.operands()) {
if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
return false;
if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
continue;
Register R = MO.getReg();
if (R == DepReg || HRI->isSuperRegister(DepReg, R))
return false;
}
// Handle imp-use of super reg case. There is a target independent side
// change that should prevent this situation but I am handling it for
// just-in-case. For example, we cannot newify R2 in the following case:
// %r3 = A2_tfrsi 0;
// S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
for (auto &MO : MI.operands()) {
if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
return false;
}
// Can be dot new store.
return true;
}
// Can this MI to promoted to either new value store or new value jump.
bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
const SUnit *PacketSU, unsigned DepReg,
MachineBasicBlock::iterator &MII) {
if (!HII->mayBeNewStore(MI))
return false;
// Check to see the store can be new value'ed.
MachineInstr &PacketMI = *PacketSU->getInstr();
if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
return true;
// Check to see the compare/jump can be new value'ed.
// This is done as a pass on its own. Don't need to check it here.
return false;
}
static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
unsigned DepReg) {
for (auto &MO : I.operands()) {
if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
return true;
if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
continue;
if (CheckDef == MO.isDef())
return true;
}
return false;
}
// Check to see if an instruction can be dot new.
bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
const TargetRegisterClass* RC) {
// Already a dot new instruction.
if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
return false;
if (!isNewifiable(MI, RC))
return false;
const MachineInstr &PI = *PacketSU->getInstr();
// The "new value" cannot come from inline asm.
if (PI.isInlineAsm())
return false;
// IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
// sense.
if (PI.isImplicitDef())
return false;
// If dependency is trough an implicitly defined register, we should not
// newify the use.
if (isImplicitDependency(PI, true, DepReg) ||
isImplicitDependency(MI, false, DepReg))
return false;
const MCInstrDesc& MCID = PI.getDesc();
const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
return false;
// predicate .new
if (RC == &Hexagon::PredRegsRegClass)
return HII->predCanBeUsedAsDotNew(PI, DepReg);
if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
return false;
// Create a dot new machine instruction to see if resources can be
// allocated. If not, bail out now.
int NewOpcode = HII->getDotNewOp(MI);
const MCInstrDesc &D = HII->get(NewOpcode);
MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
MF.DeleteMachineInstr(NewMI);
if (!ResourcesAvailable)
return false;
// New Value Store only. New Value Jump generated as a separate pass.
if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
return false;
return true;
}
// Go through the packet instructions and search for an anti dependency between
// them and DepReg from MI. Consider this case:
// Trying to add
// a) %r1 = TFRI_cdNotPt %p3, 2
// to this packet:
// {
// b) %p0 = C2_or killed %p3, killed %p0
// c) %p3 = C2_tfrrp %r23
// d) %r1 = C2_cmovenewit %p3, 4
// }
// The P3 from a) and d) will be complements after
// a)'s P3 is converted to .new form
// Anti-dep between c) and b) is irrelevant for this case
bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
unsigned DepReg) {
SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
for (auto I : CurrentPacketMIs) {
// We only care for dependencies to predicated instructions
if (!HII->isPredicated(*I))
continue;
// Scheduling Unit for current insn in the packet
SUnit *PacketSU = MIToSUnit.find(I)->second;
// Look at dependencies between current members of the packet and
// predicate defining instruction MI. Make sure that dependency is
// on the exact register we care about.
if (PacketSU->isSucc(PacketSUDep)) {
for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
auto &Dep = PacketSU->Succs[i];
if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
Dep.getReg() == DepReg)
return true;
}
}
}
return false;
}
/// Gets the predicate register of a predicated instruction.
static unsigned getPredicatedRegister(MachineInstr &MI,
const HexagonInstrInfo *QII) {
/// We use the following rule: The first predicate register that is a use is
/// the predicate register of a predicated instruction.
assert(QII->isPredicated(MI) && "Must be predicated instruction");
for (auto &Op : MI.operands()) {
if (Op.isReg() && Op.getReg() && Op.isUse() &&
Hexagon::PredRegsRegClass.contains(Op.getReg()))
return Op.getReg();
}
llvm_unreachable("Unknown instruction operand layout");
return 0;
}
// Given two predicated instructions, this function detects whether
// the predicates are complements.
bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
MachineInstr &MI2) {
// If we don't know the predicate sense of the instructions bail out early, we
// need it later.
if (getPredicateSense(MI1, HII) == PK_Unknown ||
getPredicateSense(MI2, HII) == PK_Unknown)
return false;
// Scheduling unit for candidate.
SUnit *SU = MIToSUnit[&MI1];
// One corner case deals with the following scenario:
// Trying to add
// a) %r24 = A2_tfrt %p0, %r25
// to this packet:
// {
// b) %r25 = A2_tfrf %p0, %r24
// c) %p0 = C2_cmpeqi %r26, 1
// }
//
// On general check a) and b) are complements, but presence of c) will
// convert a) to .new form, and then it is not a complement.
// We attempt to detect it by analyzing existing dependencies in the packet.
// Analyze relationships between all existing members of the packet.
// Look for Anti dependecy on the same predicate reg as used in the
// candidate.
for (auto I : CurrentPacketMIs) {
// Scheduling Unit for current insn in the packet.
SUnit *PacketSU = MIToSUnit.find(I)->second;
// If this instruction in the packet is succeeded by the candidate...
if (PacketSU->isSucc(SU)) {
for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
auto Dep = PacketSU->Succs[i];
// The corner case exist when there is true data dependency between
// candidate and one of current packet members, this dep is on
// predicate reg, and there already exist anti dep on the same pred in
// the packet.
if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
// Here I know that I is predicate setting instruction with true
// data dep to candidate on the register we care about - c) in the
// above example. Now I need to see if there is an anti dependency
// from c) to any other instruction in the same packet on the pred
// reg of interest.
if (restrictingDepExistInPacket(*I, Dep.getReg()))
return false;
}
}
}
}
// If the above case does not apply, check regular complement condition.
// Check that the predicate register is the same and that the predicate
// sense is different We also need to differentiate .old vs. .new: !p0
// is not complementary to p0.new.
unsigned PReg1 = getPredicatedRegister(MI1, HII);
unsigned PReg2 = getPredicatedRegister(MI2, HII);
return PReg1 == PReg2 &&
Hexagon::PredRegsRegClass.contains(PReg1) &&
Hexagon::PredRegsRegClass.contains(PReg2) &&
getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
}
// Initialize packetizer flags.
void HexagonPacketizerList::initPacketizerState() {
Dependence = false;
PromotedToDotNew = false;
GlueToNewValueJump = false;
GlueAllocframeStore = false;
FoundSequentialDependence = false;
ChangedOffset = INT64_MAX;
}
// Ignore bundling of pseudo instructions.
bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
const MachineBasicBlock *) {
if (MI.isDebugInstr())
return true;
if (MI.isCFIInstruction())
return false;
// We must print out inline assembly.
if (MI.isInlineAsm())
return false;
if (MI.isImplicitDef())
return false;
// We check if MI has any functional units mapped to it. If it doesn't,
// we ignore the instruction.
const MCInstrDesc& TID = MI.getDesc();
auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
return !IS->getUnits();
}
bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
// Ensure any bundles created by gather packetize remain seperate.
if (MI.isBundle())
return true;
if (MI.isEHLabel() || MI.isCFIInstruction())
return true;
// Consider inline asm to not be a solo instruction by default.
// Inline asm will be put in a packet temporarily, but then it will be
// removed, and placed outside of the packet (before or after, depending
// on dependencies). This is to reduce the impact of inline asm as a
// "packet splitting" instruction.
if (MI.isInlineAsm() && !ScheduleInlineAsm)
return true;
if (isSchedBarrier(MI))
return true;
if (HII->isSolo(MI))
return true;
if (MI.getOpcode() == Hexagon::A2_nop)
return true;
return false;
}
// Quick check if instructions MI and MJ cannot coexist in the same packet.
// Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm",
// but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
// For full test call this function twice:
// cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
// Doing the test only one way saves the amount of code in this function,
// since every test would need to be repeated with the MI and MJ reversed.
static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
const HexagonInstrInfo &HII) {
const MachineFunction *MF = MI.getParent()->getParent();
if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
HII.isHVXMemWithAIndirect(MI, MJ))
return true;
// An inline asm cannot be together with a branch, because we may not be
// able to remove the asm out after packetizing (i.e. if the asm must be
// moved past the bundle). Similarly, two asms cannot be together to avoid
// complications when determining their relative order outside of a bundle.
if (MI.isInlineAsm())
return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
MJ.isCall() || MJ.isTerminator();
// New-value stores cannot coexist with any other stores.
if (HII.isNewValueStore(MI) && MJ.mayStore())
return true;
switch (MI.getOpcode()) {
case Hexagon::S2_storew_locked:
case Hexagon::S4_stored_locked:
case Hexagon::L2_loadw_locked:
case Hexagon::L4_loadd_locked:
case Hexagon::Y2_dccleana:
case Hexagon::Y2_dccleaninva:
case Hexagon::Y2_dcinva:
case Hexagon::Y2_dczeroa:
case Hexagon::Y4_l2fetch:
case Hexagon::Y5_l2fetch: {
// These instructions can only be grouped with ALU32 or non-floating-point
// XTYPE instructions. Since there is no convenient way of identifying fp
// XTYPE instructions, only allow grouping with ALU32 for now.
unsigned TJ = HII.getType(MJ);
if (TJ != HexagonII::TypeALU32_2op &&
TJ != HexagonII::TypeALU32_3op &&
TJ != HexagonII::TypeALU32_ADDI)
return true;
break;
}
default:
break;
}
// "False" really means that the quick check failed to determine if
// I and J cannot coexist.
return false;
}
// Full, symmetric check.
bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
const MachineInstr &MJ) {
return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
}
void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
for (auto &B : MF) {
MachineBasicBlock::iterator BundleIt;
MachineBasicBlock::instr_iterator NextI;
for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) {
NextI = std::next(I);
MachineInstr &MI = *I;
if (MI.isBundle())
BundleIt = I;
if (!MI.isInsideBundle())
continue;
// Decide on where to insert the instruction that we are pulling out.
// Debug instructions always go before the bundle, but the placement of
// INLINE_ASM depends on potential dependencies. By default, try to
// put it before the bundle, but if the asm writes to a register that
// other instructions in the bundle read, then we need to place it
// after the bundle (to preserve the bundle semantics).
bool InsertBeforeBundle;
if (MI.isInlineAsm())
InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
else if (MI.isDebugValue())
InsertBeforeBundle = true;
else
continue;
BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
}
}
}
// Check if a given instruction is of class "system".
static bool isSystemInstr(const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::Y2_barrier:
case Hexagon::Y2_dcfetchbo:
case Hexagon::Y4_l2fetch:
case Hexagon::Y5_l2fetch:
return true;
}
return false;
}
bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
const MachineInstr &J) {
// The dependence graph may not include edges between dead definitions,
// so without extra checks, we could end up packetizing two instruction
// defining the same (dead) register.
if (I.isCall() || J.isCall())
return false;
if (HII->isPredicated(I) || HII->isPredicated(J))
return false;
BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
for (auto &MO : I.operands()) {
if (!MO.isReg() || !MO.isDef() || !MO.isDead())
continue;
DeadDefs[MO.getReg()] = true;
}
for (auto &MO : J.operands()) {
if (!MO.isReg() || !MO.isDef() || !MO.isDead())
continue;
Register R = MO.getReg();
if (R != Hexagon::USR_OVF && DeadDefs[R])
return true;
}
return false;
}
bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
const MachineInstr &J) {
// A save callee-save register function call can only be in a packet
// with instructions that don't write to the callee-save registers.
if ((HII->isSaveCalleeSavedRegsCall(I) &&
doesModifyCalleeSavedReg(J, HRI)) ||
(HII->isSaveCalleeSavedRegsCall(J) &&
doesModifyCalleeSavedReg(I, HRI)))
return true;
// Two control flow instructions cannot go in the same packet.
if (isControlFlow(I) && isControlFlow(J))
return true;
// \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
// contain a speculative indirect jump,
// a new-value compare jump or a dealloc_return.
auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
return true;
if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
return true;
return false;
};
if (HII->isLoopN(I) && isBadForLoopN(J))
return true;
if (HII->isLoopN(J) && isBadForLoopN(I))
return true;
// dealloc_return cannot appear in the same packet as a conditional or
// unconditional jump.
return HII->isDeallocRet(I) &&
(J.isBranch() || J.isCall() || J.isBarrier());
}
bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
const MachineInstr &J) {
// Adding I to a packet that has J.
// Regmasks are not reflected in the scheduling dependency graph, so
// we need to check them manually. This code assumes that regmasks only
// occur on calls, and the problematic case is when we add an instruction
// defining a register R to a packet that has a call that clobbers R via
// a regmask. Those cannot be packetized together, because the call will
// be executed last. That's also a reson why it is ok to add a call
// clobbering R to a packet that defines R.
// Look for regmasks in J.
for (const MachineOperand &OpJ : J.operands()) {
if (!OpJ.isRegMask())
continue;
assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
for (const MachineOperand &OpI : I.operands()) {
if (OpI.isReg()) {
if (OpJ.clobbersPhysReg(OpI.getReg()))
return true;
} else if (OpI.isRegMask()) {
// Both are regmasks. Assume that they intersect.
return true;
}
}
}
return false;
}
bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
const MachineInstr &J) {
bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
bool StoreI = I.mayStore(), StoreJ = J.mayStore();
if ((SysI && StoreJ) || (SysJ && StoreI))
return true;
if (StoreI && StoreJ) {
if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
return true;
} else {
// A memop cannot be in the same packet with another memop or a store.
// Two stores can be together, but here I and J cannot both be stores.
bool MopStI = HII->isMemOp(I) || StoreI;
bool MopStJ = HII->isMemOp(J) || StoreJ;
if (MopStI && MopStJ)
return true;
}
return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
}
// SUI is the current instruction that is out side of the current packet.
// SUJ is the current instruction inside the current packet against which that
// SUI will be packetized.
bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
assert(SUI->getInstr() && SUJ->getInstr());
MachineInstr &I = *SUI->getInstr();
MachineInstr &J = *SUJ->getInstr();
// Clear IgnoreDepMIs when Packet starts.
if (CurrentPacketMIs.size() == 1)
IgnoreDepMIs.clear();
MachineBasicBlock::iterator II = I.getIterator();
// Solo instructions cannot go in the packet.
assert(!isSoloInstruction(I) && "Unexpected solo instr!");
if (cannotCoexist(I, J))
return false;
Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
if (Dependence)
return false;
// Regmasks are not accounted for in the scheduling graph, so we need
// to explicitly check for dependencies caused by them. They should only
// appear on calls, so it's not too pessimistic to reject all regmask
// dependencies.
Dependence = hasRegMaskDependence(I, J);
if (Dependence)
return false;
// Dual-store does not allow second store, if the first store is not
// in SLOT0. New value store, new value jump, dealloc_return and memop
// always take SLOT0. Arch spec 3.4.4.2.
Dependence = hasDualStoreDependence(I, J);
if (Dependence)
return false;
// If an instruction feeds new value jump, glue it.
MachineBasicBlock::iterator NextMII = I.getIterator();
++NextMII;
if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
MachineInstr &NextMI = *NextMII;
bool secondRegMatch = false;
const MachineOperand &NOp0 = NextMI.getOperand(0);
const MachineOperand &NOp1 = NextMI.getOperand(1);
if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
secondRegMatch = true;
for (MachineInstr *PI : CurrentPacketMIs) {
// NVJ can not be part of the dual jump - Arch Spec: section 7.8.
if (PI->isCall()) {
Dependence = true;
break;
}
// Validate:
// 1. Packet does not have a store in it.
// 2. If the first operand of the nvj is newified, and the second
// operand is also a reg, it (second reg) is not defined in
// the same packet.
// 3. If the second operand of the nvj is newified, (which means
// first operand is also a reg), first reg is not defined in
// the same packet.
if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
HII->isLoopN(*PI)) {
Dependence = true;
break;
}
// Check #2/#3.
const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
Dependence = true;
break;
}
}
GlueToNewValueJump = true;
if (Dependence)
return false;
}
// There no dependency between a prolog instruction and its successor.
if (!SUJ->isSucc(SUI))
return true;
for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
if (FoundSequentialDependence)
break;
if (SUJ->Succs[i].getSUnit() != SUI)
continue;
SDep::Kind DepType = SUJ->Succs[i].getKind();
// For direct calls:
// Ignore register dependences for call instructions for packetization
// purposes except for those due to r31 and predicate registers.
//
// For indirect calls:
// Same as direct calls + check for true dependences to the register
// used in the indirect call.
//
// We completely ignore Order dependences for call instructions.
//
// For returns:
// Ignore register dependences for return instructions like jumpr,
// dealloc return unless we have dependencies on the explicit uses
// of the registers used by jumpr (like r31) or dealloc return
// (like r29 or r30).
unsigned DepReg = 0;
const TargetRegisterClass *RC = nullptr;
if (DepType == SDep::Data) {
DepReg = SUJ->Succs[i].getReg();
RC = HRI->getMinimalPhysRegClass(DepReg);
}
if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
if (!isRegDependence(DepType))
continue;
if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
continue;
}
if (DepType == SDep::Data) {
if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
if (promoteToDotCur(J, DepType, II, RC))
continue;
}
// Data dpendence ok if we have load.cur.
if (DepType == SDep::Data && HII->isDotCurInst(J)) {
if (HII->isHVXVec(I))
continue;
}
// For instructions that can be promoted to dot-new, try to promote.
if (DepType == SDep::Data) {
if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
if (promoteToDotNew(I, DepType, II, RC)) {
PromotedToDotNew = true;
if (cannotCoexist(I, J))
FoundSequentialDependence = true;
continue;
}
}
if (HII->isNewValueJump(I))
continue;
}
// For predicated instructions, if the predicates are complements then
// there can be no dependence.
if (HII->isPredicated(I) && HII->isPredicated(J) &&
arePredicatesComplements(I, J)) {
// Not always safe to do this translation.
// DAG Builder attempts to reduce dependence edges using transitive
// nature of dependencies. Here is an example:
//
// r0 = tfr_pt ... (1)
// r0 = tfr_pf ... (2)
// r0 = tfr_pt ... (3)
//
// There will be an output dependence between (1)->(2) and (2)->(3).
// However, there is no dependence edge between (1)->(3). This results
// in all 3 instructions going in the same packet. We ignore dependce
// only once to avoid this situation.
auto Itr = find(IgnoreDepMIs, &J);
if (Itr != IgnoreDepMIs.end()) {
Dependence = true;
return false;
}
IgnoreDepMIs.push_back(&I);
continue;
}
// Ignore Order dependences between unconditional direct branches
// and non-control-flow instructions.
if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
DepType == SDep::Order)
continue;
// Ignore all dependences for jumps except for true and output
// dependences.
if (I.isConditionalBranch() && DepType != SDep::Data &&
DepType != SDep::Output)
continue;
if (DepType == SDep::Output) {
FoundSequentialDependence = true;
break;
}
// For Order dependences:
// 1. Volatile loads/stores can be packetized together, unless other
// rules prevent is.
// 2. Store followed by a load is not allowed.
// 3. Store followed by a store is valid.
// 4. Load followed by any memory operation is allowed.
if (DepType == SDep::Order) {
if (!PacketizeVolatiles) {
bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
if (OrdRefs) {
FoundSequentialDependence = true;
break;
}
}
// J is first, I is second.
bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
bool LoadI = I.mayLoad(), StoreI = I.mayStore();
bool NVStoreJ = HII->isNewValueStore(J);
bool NVStoreI = HII->isNewValueStore(I);
bool IsVecJ = HII->isHVXVec(J);
bool IsVecI = HII->isHVXVec(I);
if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
((LoadJ && StoreI && !NVStoreI) ||
(StoreJ && LoadI && !NVStoreJ)) &&
(J.getOpcode() != Hexagon::S2_allocframe &&
I.getOpcode() != Hexagon::S2_allocframe) &&
(J.getOpcode() != Hexagon::L2_deallocframe &&
I.getOpcode() != Hexagon::L2_deallocframe) &&
(!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
setmemShufDisabled(true);
else
if (StoreJ && LoadI && alias(J, I)) {
FoundSequentialDependence = true;
break;
}
if (!StoreJ)
if (!LoadJ || (!LoadI && !StoreI)) {
// If J is neither load nor store, assume a dependency.
// If J is a load, but I is neither, also assume a dependency.
FoundSequentialDependence = true;
break;
}
// Store followed by store: not OK on V2.
// Store followed by load: not OK on all.
// Load followed by store: OK on all.
// Load followed by load: OK on all.
continue;
}
// Special case for ALLOCFRAME: even though there is dependency
// between ALLOCFRAME and subsequent store, allow it to be packetized
// in a same packet. This implies that the store is using the caller's
// SP. Hence, offset needs to be updated accordingly.
if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
unsigned Opc = I.getOpcode();
switch (Opc) {
case Hexagon::S2_storerd_io:
case Hexagon::S2_storeri_io:
case Hexagon::S2_storerh_io:
case Hexagon::S2_storerb_io:
if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
// Since this store is to be glued with allocframe in the same
// packet, it will use SP of the previous stack frame, i.e.
// caller's SP. Therefore, we need to recalculate offset
// according to this change.
GlueAllocframeStore = useCallersSP(I);
if (GlueAllocframeStore)
continue;
}
break;
default:
break;
}
}
// There are certain anti-dependencies that cannot be ignored.
// Specifically:
// J2_call ... implicit-def %r0 ; SUJ
// R0 = ... ; SUI
// Those cannot be packetized together, since the call will observe
// the effect of the assignment to R0.
if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
// Check if I defines any volatile register. We should also check
// registers that the call may read, but these happen to be a
// subset of the volatile register set.
for (const MachineOperand &Op : I.operands()) {
if (Op.isReg() && Op.isDef()) {
Register R = Op.getReg();
if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
continue;
} else if (!Op.isRegMask()) {
// If I has a regmask assume dependency.
continue;
}
FoundSequentialDependence = true;
break;
}
}
// Skip over remaining anti-dependences. Two instructions that are
// anti-dependent can share a packet, since in most such cases all
// operands are read before any modifications take place.
// The exceptions are branch and call instructions, since they are
// executed after all other instructions have completed (at least
// conceptually).
if (DepType != SDep::Anti) {
FoundSequentialDependence = true;
break;
}
}
if (FoundSequentialDependence) {
Dependence = true;
return false;
}
return true;
}
bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
assert(SUI->getInstr() && SUJ->getInstr());
MachineInstr &I = *SUI->getInstr();
MachineInstr &J = *SUJ->getInstr();
bool Coexist = !cannotCoexist(I, J);
if (Coexist && !Dependence)
return true;
// Check if the instruction was promoted to a dot-new. If so, demote it
// back into a dot-old.
if (PromotedToDotNew)
demoteToDotOld(I);
cleanUpDotCur();
// Check if the instruction (must be a store) was glued with an allocframe
// instruction. If so, restore its offset to its original value, i.e. use
// current SP instead of caller's SP.
if (GlueAllocframeStore) {
useCalleesSP(I);
GlueAllocframeStore = false;
}
if (ChangedOffset != INT64_MAX)
undoChangedOffset(I);
if (GlueToNewValueJump) {
// Putting I and J together would prevent the new-value jump from being
// packetized with the producer. In that case I and J must be separated.
GlueToNewValueJump = false;
return false;
}
if (!Coexist)
return false;
if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
FoundSequentialDependence = false;
Dependence = false;
return true;
}
return false;
}
bool HexagonPacketizerList::foundLSInPacket() {
bool FoundLoad = false;
bool FoundStore = false;
for (auto MJ : CurrentPacketMIs) {
unsigned Opc = MJ->getOpcode();
if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
continue;
if (HII->isMemOp(*MJ))
continue;
if (MJ->mayLoad())
FoundLoad = true;
if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
FoundStore = true;
}
return FoundLoad && FoundStore;
}
MachineBasicBlock::iterator
HexagonPacketizerList::addToPacket(MachineInstr &MI) {
MachineBasicBlock::iterator MII = MI.getIterator();
MachineBasicBlock *MBB = MI.getParent();
if (CurrentPacketMIs.empty())
PacketStalls = false;
PacketStalls |= producesStall(MI);
if (MI.isImplicitDef()) {
// Add to the packet to allow subsequent instructions to be checked
// properly.
CurrentPacketMIs.push_back(&MI);
return MII;
}
assert(ResourceTracker->canReserveResources(MI));
bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
bool Good = true;
if (GlueToNewValueJump) {
MachineInstr &NvjMI = *++MII;
// We need to put both instructions in the same packet: MI and NvjMI.
// Either of them can require a constant extender. Try to add both to
// the current packet, and if that fails, end the packet and start a
// new one.
ResourceTracker->reserveResources(MI);
if (ExtMI)
Good = tryAllocateResourcesForConstExt(true);
bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
if (Good) {
if (ResourceTracker->canReserveResources(NvjMI))
ResourceTracker->reserveResources(NvjMI);
else
Good = false;
}
if (Good && ExtNvjMI)
Good = tryAllocateResourcesForConstExt(true);
if (!Good) {
endPacket(MBB, MI);
assert(ResourceTracker->canReserveResources(MI));
ResourceTracker->reserveResources(MI);
if (ExtMI) {
assert(canReserveResourcesForConstExt());
tryAllocateResourcesForConstExt(true);
}
assert(ResourceTracker->canReserveResources(NvjMI));
ResourceTracker->reserveResources(NvjMI);
if (ExtNvjMI) {
assert(canReserveResourcesForConstExt());
reserveResourcesForConstExt();
}
}
CurrentPacketMIs.push_back(&MI);
CurrentPacketMIs.push_back(&NvjMI);
return MII;
}
ResourceTracker->reserveResources(MI);
if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
endPacket(MBB, MI);
if (PromotedToDotNew)
demoteToDotOld(MI);
if (GlueAllocframeStore) {
useCalleesSP(MI);
GlueAllocframeStore = false;
}
ResourceTracker->reserveResources(MI);
reserveResourcesForConstExt();
}
CurrentPacketMIs.push_back(&MI);
return MII;
}
void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
MachineBasicBlock::iterator EndMI) {
// Replace VLIWPacketizerList::endPacket(MBB, EndMI).
LLVM_DEBUG({
if (!CurrentPacketMIs.empty()) {
dbgs() << "Finalizing packet:\n";
unsigned Idx = 0;
for (MachineInstr *MI : CurrentPacketMIs) {
unsigned R = ResourceTracker->getUsedResources(Idx++);
dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
}
}
});
bool memShufDisabled = getmemShufDisabled();
if (memShufDisabled && !foundLSInPacket()) {
setmemShufDisabled(false);
LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n");
}
memShufDisabled = getmemShufDisabled();
OldPacketMIs.clear();
for (MachineInstr *MI : CurrentPacketMIs) {
MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
OldPacketMIs.push_back(&I);
}
CurrentPacketMIs.clear();
if (OldPacketMIs.size() > 1) {
MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
finalizeBundle(*MBB, FirstMI, LastMI);
auto BundleMII = std::prev(FirstMI);
if (memShufDisabled)
HII->setBundleNoShuf(BundleMII);
setmemShufDisabled(false);
}
PacketHasDuplex = false;
PacketHasSLOT0OnlyInsn = false;
ResourceTracker->clearResources();
LLVM_DEBUG(dbgs() << "End packet\n");
}
bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
if (Minimal)
return false;
// Constrainst for not packetizing this MI with existing instructions in a
// packet.
// MI is a store instruction.
// CurrentPacketMIs has a SLOT0 only instruction with constraint
// A_RESTRICT_NOSLOT1_STORE/isRestrictNoSlot1Store.
if (MI.mayStore() && isPureSlot0InsnWithNoSlot1Store(MI))
return false;
if (producesStall(MI))
return false;
// If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
// with any other instruction in the existing packet.
auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>();
// Constraint 1: Only one duplex allowed per packet.
// Constraint 2: Consider duplex checks only if there is atleast one
// instruction in a packet.
// Constraint 3: If one of the existing instructions in the packet has a
// SLOT0 only instruction that can not be duplexed, do not attempt to form
// duplexes. (TODO: This will invalidate the L4_return* instructions to form a
// duplex)
if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 &&
!PacketHasDuplex) {
// Check for SLOT0 only non-duplexable instruction in packet.
for (auto &MJ : CurrentPacketMIs)
PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ);
// Get the Big Core Opcode (dup_*).
int Opcode = HII->getDuplexOpcode(MI, false);
if (Opcode >= 0) {
// We now have an instruction that can be duplexed.
for (auto &MJ : CurrentPacketMIs) {
if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) {
PacketHasDuplex = true;
return true;
}
}
// If it can not be duplexed, check if there is a valid transition in DFA
// with the original opcode.
MachineInstr &MIRef = const_cast<MachineInstr &>(MI);
MIRef.setDesc(HII->get(Opcode));
return ResourceTracker->canReserveResources(MIRef);
}
}
return true;
}
bool HexagonPacketizerList::isPureSlot0InsnWithNoSlot1Store(
const MachineInstr &MI) {
bool noSlot1Store = false;
bool isSlot0Only = false;
for (auto J : CurrentPacketMIs) {
noSlot1Store |= HII->isRestrictNoSlot1Store(*J);
isSlot0Only |= HII->isPureSlot0(*J);
}
return (noSlot1Store && isSlot0Only);
}
// V60 forward scheduling.
bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
// If the packet already stalls, then ignore the stall from a subsequent
// instruction in the same packet.
if (PacketStalls)
return false;
// Check whether the previous packet is in a different loop. If this is the
// case, there is little point in trying to avoid a stall because that would
// favor the rare case (loop entry) over the common case (loop iteration).
//
// TODO: We should really be able to check all the incoming edges if this is
// the first packet in a basic block, so we can avoid stalls from the loop
// backedge.
if (!OldPacketMIs.empty()) {
auto *OldBB = OldPacketMIs.front()->getParent();
auto *ThisBB = I.getParent();
if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
return false;
}
SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
// If the latency is 0 and there is a data dependence between this
// instruction and any instruction in the current packet, we disregard any
// potential stalls due to the instructions in the previous packet. Most of
// the instruction pairs that can go together in the same packet have 0
// latency between them. The exceptions are
// 1. NewValueJumps as they're generated much later and the latencies can't
// be changed at that point.
// 2. .cur instructions, if its consumer has a 0 latency successor (such as
// .new). In this case, the latency between .cur and the consumer stays
// non-zero even though we can have both .cur and .new in the same packet.
// Changing the latency to 0 is not an option as it causes software pipeliner
// to not pipeline in some cases.
// For Example:
// {
// I1: v6.cur = vmem(r0++#1)
// I2: v7 = valign(v6,v4,r2)
// I3: vmem(r5++#1) = v7.new
// }
// Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
for (auto J : CurrentPacketMIs) {
SUnit *SUJ = MIToSUnit[J];
for (auto &Pred : SUI->Preds)
if (Pred.getSUnit() == SUJ)
if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
return false;
}
// Check if the latency is greater than one between this instruction and any
// instruction in the previous packet.
for (auto J : OldPacketMIs) {
SUnit *SUJ = MIToSUnit[J];
for (auto &Pred : SUI->Preds)
if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
return new HexagonPacketizer(Minimal);
}