mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 16:33:37 +01:00
0ac693a89e
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions. This eliminates MachineInstr's std::list member and allows the data to be created by isel and live for the remainder of codegen, avoiding a lot of copying and unnecessary translation. This also shrinks MemSDNode. - Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated fields for MachineMemOperands. - Change MemSDNode to have a MachineMemOperand member instead of its own fields with the same information. This introduces some redundancy, but it's more consistent with what MachineInstr will eventually want. - Ignore alignment when searching for redundant loads for CSE, but remember the greatest alignment. Target-specific code which previously used MemOperandSDNodes with generic SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range so that the SelectionDAG framework knows that MachineMemOperand information is available. llvm-svn: 82794
241 lines
9.0 KiB
C++
241 lines
9.0 KiB
C++
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetInstrInfoImpl class, it just provides default
|
|
// implementations of various methods.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
// commuteInstruction - The default implementation of this method just exchanges
|
|
// the two operands returned by findCommutedOpIndices.
|
|
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
|
|
bool NewMI) const {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
bool HasDef = TID.getNumDefs();
|
|
if (HasDef && !MI->getOperand(0).isReg())
|
|
// No idea how to commute this instruction. Target should implement its own.
|
|
return 0;
|
|
unsigned Idx1, Idx2;
|
|
if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
|
|
std::string msg;
|
|
raw_string_ostream Msg(msg);
|
|
Msg << "Don't know how to commute: " << *MI;
|
|
llvm_report_error(Msg.str());
|
|
}
|
|
|
|
assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
|
|
"This only knows how to commute register operands so far");
|
|
unsigned Reg1 = MI->getOperand(Idx1).getReg();
|
|
unsigned Reg2 = MI->getOperand(Idx2).getReg();
|
|
bool Reg1IsKill = MI->getOperand(Idx1).isKill();
|
|
bool Reg2IsKill = MI->getOperand(Idx2).isKill();
|
|
bool ChangeReg0 = false;
|
|
if (HasDef && MI->getOperand(0).getReg() == Reg1) {
|
|
// Must be two address instruction!
|
|
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
|
|
"Expecting a two-address instruction!");
|
|
Reg2IsKill = false;
|
|
ChangeReg0 = true;
|
|
}
|
|
|
|
if (NewMI) {
|
|
// Create a new instruction.
|
|
unsigned Reg0 = HasDef
|
|
? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
|
|
bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
if (HasDef)
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg2IsKill));
|
|
else
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg2IsKill));
|
|
}
|
|
|
|
if (ChangeReg0)
|
|
MI->getOperand(0).setReg(Reg2);
|
|
MI->getOperand(Idx2).setReg(Reg1);
|
|
MI->getOperand(Idx1).setReg(Reg2);
|
|
MI->getOperand(Idx2).setIsKill(Reg1IsKill);
|
|
MI->getOperand(Idx1).setIsKill(Reg2IsKill);
|
|
return MI;
|
|
}
|
|
|
|
/// findCommutedOpIndices - If specified MI is commutable, return the two
|
|
/// operand indices that would swap value. Return true if the instruction
|
|
/// is not in a form which this routine understands.
|
|
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isCommutable())
|
|
return false;
|
|
// This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
|
|
// is not true, then the target must implement this.
|
|
SrcOpIdx1 = TID.getNumDefs();
|
|
SrcOpIdx2 = SrcOpIdx1 + 1;
|
|
if (!MI->getOperand(SrcOpIdx1).isReg() ||
|
|
!MI->getOperand(SrcOpIdx2).isReg())
|
|
// No idea.
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
bool MadeChange = false;
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isPredicable())
|
|
return false;
|
|
|
|
for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (TID.OpInfo[i].isPredicate()) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg()) {
|
|
MO.setReg(Pred[j].getReg());
|
|
MadeChange = true;
|
|
} else if (MO.isImm()) {
|
|
MO.setImm(Pred[j].getImm());
|
|
MadeChange = true;
|
|
} else if (MO.isMBB()) {
|
|
MO.setMBB(Pred[j].getMBB());
|
|
MadeChange = true;
|
|
}
|
|
++j;
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DestReg,
|
|
unsigned SubIdx,
|
|
const MachineInstr *Orig) const {
|
|
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
|
|
MachineOperand &MO = MI->getOperand(0);
|
|
MO.setReg(DestReg);
|
|
MO.setSubReg(SubIdx);
|
|
MBB.insert(I, MI);
|
|
}
|
|
|
|
bool TargetInstrInfoImpl::isDeadInstruction(const MachineInstr *MI) const {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
|
|
TID.isCall() || TID.isBarrier() || TID.isReturn() ||
|
|
TID.hasUnmodeledSideEffects())
|
|
return false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (MO.isDef() && !MO.isDead())
|
|
return false;
|
|
if (MO.isUse() && MO.isKill())
|
|
// FIXME: We can't remove kill markers or else the scavenger will assert.
|
|
// An alternative is to add a ADD pseudo instruction to replace kill
|
|
// markers.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned
|
|
TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
|
|
unsigned FnSize = 0;
|
|
for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
|
|
MBBI != E; ++MBBI) {
|
|
const MachineBasicBlock &MBB = *MBBI;
|
|
for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
|
|
I != E; ++I)
|
|
FnSize += GetInstSizeInBytes(I);
|
|
}
|
|
return FnSize;
|
|
}
|
|
|
|
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
|
|
/// slot into the specified machine instruction for the specified operand(s).
|
|
/// If this is possible, a new instruction is returned with the specified
|
|
/// operand folded, otherwise NULL is returned. The client is responsible for
|
|
/// removing the old instruction and adding the new one in the instruction
|
|
/// stream.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FrameIndex) const {
|
|
unsigned Flags = 0;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
if (MI->getOperand(Ops[i]).isDef())
|
|
Flags |= MachineMemOperand::MOStore;
|
|
else
|
|
Flags |= MachineMemOperand::MOLoad;
|
|
|
|
// Ask the target to do the actual folding.
|
|
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
|
|
if (!NewMI) return 0;
|
|
|
|
assert((!(Flags & MachineMemOperand::MOStore) ||
|
|
NewMI->getDesc().mayStore()) &&
|
|
"Folded a def to a non-store!");
|
|
assert((!(Flags & MachineMemOperand::MOLoad) ||
|
|
NewMI->getDesc().mayLoad()) &&
|
|
"Folded a use to a non-load!");
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
assert(MFI.getObjectOffset(FrameIndex) != -1);
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex),
|
|
Flags, /*Offset=*/0,
|
|
MFI.getObjectSize(FrameIndex),
|
|
MFI.getObjectAlignment(FrameIndex));
|
|
NewMI->addMemOperand(MF, MMO);
|
|
|
|
return NewMI;
|
|
}
|
|
|
|
/// foldMemoryOperand - Same as the previous version except it allows folding
|
|
/// of any load and store from / to any address, not just from a specific
|
|
/// stack slot.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr* LoadMI) const {
|
|
assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
|
|
#endif
|
|
|
|
// Ask the target to do the actual folding.
|
|
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
|
|
if (!NewMI) return 0;
|
|
|
|
// Copy the memoperands from the load to the folded instruction.
|
|
NewMI->setMemRefs(LoadMI->memoperands_begin(),
|
|
LoadMI->memoperands_end());
|
|
|
|
return NewMI;
|
|
}
|