1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-27 22:12:47 +01:00
llvm-mirror/lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
Chris Lattner 60739d60bf Make a new X8632_MachoTargetObjectFile TLOF implementation whose
getSymbolForDwarfGlobalReference is smart enough to know that it 
needs to register the stub it references with MachineModuleInfoMachO,
so that it gets emitted at the end of the file.

Move stub emission from X86ATTAsmPrinter::doFinalization to the
new X86ATTAsmPrinter::EmitEndOfAsmFile asmprinter hook.  The important
thing here is that EmitEndOfAsmFile is called *after* the ehframes are
emitted, so we get all the stubs.

This allows us to remove a gross hack from the asmprinter where it would
"just know" that it needed to output stubs for personality functions.
Now this is all driven from a consistent interface.

The testcase change is just reordering the expected output now that the
stubs come out after the ehframe instead of before.

This also unblocks other changes that Bill wants to make.

llvm-svn: 82269
2009-09-18 20:22:52 +00:00

995 lines
33 KiB
C++

//===-- X86ATTAsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to AT&T format assembly
// language. This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "X86ATTAsmPrinter.h"
#include "X86ATTInstPrinter.h"
#include "X86MCInstLower.h"
#include "X86.h"
#include "X86COFF.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
//===----------------------------------------------------------------------===//
// Primitive Helper Functions.
//===----------------------------------------------------------------------===//
void X86ATTAsmPrinter::printMCInst(const MCInst *MI) {
X86ATTInstPrinter(O, *MAI).printInstruction(MI);
}
void X86ATTAsmPrinter::PrintPICBaseSymbol() const {
// FIXME: Gross const cast hack.
X86ATTAsmPrinter *AP = const_cast<X86ATTAsmPrinter*>(this);
X86MCInstLower(OutContext, 0, *AP).GetPICBaseSymbol()->print(O, MAI);
}
static X86MachineFunctionInfo calculateFunctionInfo(const Function *F,
const TargetData *TD) {
X86MachineFunctionInfo Info;
uint64_t Size = 0;
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Info.setDecorationStyle(StdCall);
break;
case CallingConv::X86_FastCall:
Info.setDecorationStyle(FastCall);
break;
default:
return Info;
}
unsigned argNum = 1;
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI, ++argNum) {
const Type* Ty = AI->getType();
// 'Dereference' type in case of byval parameter attribute
if (F->paramHasAttr(argNum, Attribute::ByVal))
Ty = cast<PointerType>(Ty)->getElementType();
// Size should be aligned to DWORD boundary
Size += ((TD->getTypeAllocSize(Ty) + 3)/4)*4;
}
// We're not supporting tooooo huge arguments :)
Info.setBytesToPopOnReturn((unsigned int)Size);
return Info;
}
/// DecorateCygMingName - Query FunctionInfoMap and use this information for
/// various name decorations for Cygwin and MingW.
void X86ATTAsmPrinter::DecorateCygMingName(SmallVectorImpl<char> &Name,
const GlobalValue *GV) {
assert(Subtarget->isTargetCygMing() && "This is only for cygwin and mingw");
const Function *F = dyn_cast<Function>(GV);
if (!F) return;
// Save function name for later type emission.
if (F->isDeclaration())
CygMingStubs.insert(StringRef(Name.data(), Name.size()));
// We don't want to decorate non-stdcall or non-fastcall functions right now
CallingConv::ID CC = F->getCallingConv();
if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall)
return;
const X86MachineFunctionInfo *Info;
FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F);
if (info_item == FunctionInfoMap.end()) {
// Calculate apropriate function info and populate map
FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData());
Info = &FunctionInfoMap[F];
} else {
Info = &info_item->second;
}
if (Info->getDecorationStyle() == None) return;
const FunctionType *FT = F->getFunctionType();
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || FT->getNumParams() == 0 ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
raw_svector_ostream(Name) << '@' << Info->getBytesToPopOnReturn();
if (Info->getDecorationStyle() == FastCall) {
if (Name[0] == '_')
Name[0] = '@';
else
Name.insert(Name.begin(), '@');
}
}
/// DecorateCygMingName - Query FunctionInfoMap and use this information for
/// various name decorations for Cygwin and MingW.
void X86ATTAsmPrinter::DecorateCygMingName(std::string &Name,
const GlobalValue *GV) {
SmallString<128> NameStr(Name.begin(), Name.end());
DecorateCygMingName(NameStr, GV);
Name.assign(NameStr.begin(), NameStr.end());
}
void X86ATTAsmPrinter::emitFunctionHeader(const MachineFunction &MF) {
unsigned FnAlign = MF.getAlignment();
const Function *F = MF.getFunction();
if (Subtarget->isTargetCygMing())
DecorateCygMingName(CurrentFnName, F);
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
EmitAlignment(FnAlign, F);
switch (F->getLinkage()) {
default: llvm_unreachable("Unknown linkage type!");
case Function::InternalLinkage: // Symbols default to internal.
case Function::PrivateLinkage:
break;
case Function::DLLExportLinkage:
case Function::ExternalLinkage:
O << "\t.globl\t" << CurrentFnName << '\n';
break;
case Function::LinkerPrivateLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl\t" << CurrentFnName << '\n';
O << MAI->getWeakDefDirective() << CurrentFnName << '\n';
} else if (Subtarget->isTargetCygMing()) {
O << "\t.globl\t" << CurrentFnName << "\n"
"\t.linkonce discard\n";
} else {
O << "\t.weak\t" << CurrentFnName << '\n';
}
break;
}
printVisibility(CurrentFnName, F->getVisibility());
if (Subtarget->isTargetELF())
O << "\t.type\t" << CurrentFnName << ",@function\n";
else if (Subtarget->isTargetCygMing()) {
O << "\t.def\t " << CurrentFnName
<< ";\t.scl\t" <<
(F->hasInternalLinkage() ? COFF::C_STAT : COFF::C_EXT)
<< ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
<< ";\t.endef\n";
}
O << CurrentFnName << ':';
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
WriteAsOperand(O, F, /*PrintType=*/false, F->getParent());
}
O << '\n';
// Add some workaround for linkonce linkage on Cygwin\MinGW
if (Subtarget->isTargetCygMing() &&
(F->hasLinkOnceLinkage() || F->hasWeakLinkage()))
O << "Lllvm$workaround$fake$stub$" << CurrentFnName << ":\n";
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
const Function *F = MF.getFunction();
this->MF = &MF;
CallingConv::ID CC = F->getCallingConv();
SetupMachineFunction(MF);
O << "\n\n";
// Populate function information map. Actually, We don't want to populate
// non-stdcall or non-fastcall functions' information right now.
if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall)
FunctionInfoMap[F] = *MF.getInfo<X86MachineFunctionInfo>();
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
if (F->hasDLLExportLinkage())
DLLExportedFns.insert(Mang->getMangledName(F));
// Print the 'header' of function
emitFunctionHeader(MF);
// Emit pre-function debug and/or EH information.
if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
DW->BeginFunction(&MF);
// Print out code for the function.
bool hasAnyRealCode = false;
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (!VerboseAsm && (I->pred_empty() || I->isOnlyReachableByFallthrough())) {
// This is an entry block or a block that's only reachable via a
// fallthrough edge. In non-VerboseAsm mode, don't print the label.
} else {
EmitBasicBlockStart(I);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
// Print the assembly for the instruction.
if (!II->isLabel())
hasAnyRealCode = true;
printMachineInstruction(II);
}
}
if (Subtarget->isTargetDarwin() && !hasAnyRealCode) {
// If the function is empty, then we need to emit *something*. Otherwise,
// the function's label might be associated with something that it wasn't
// meant to be associated with. We emit a noop in this situation.
// We are assuming inline asms are code.
O << "\tnop\n";
}
if (MAI->hasDotTypeDotSizeDirective())
O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
// Emit post-function debug information.
if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
DW->EndFunction(&MF);
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
// We didn't modify anything.
return false;
}
/// printSymbolOperand - Print a raw symbol reference operand. This handles
/// jump tables, constant pools, global address and external symbols, all of
/// which print to a label with various suffixes for relocation types etc.
void X86ATTAsmPrinter::printSymbolOperand(const MachineOperand &MO) {
switch (MO.getType()) {
default: llvm_unreachable("unknown symbol type!");
case MachineOperand::MO_JumpTableIndex:
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_'
<< MO.getIndex();
break;
case MachineOperand::MO_ConstantPoolIndex:
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< MO.getIndex();
printOffset(MO.getOffset());
break;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
const char *Suffix = "";
if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB)
Suffix = "$stub";
else if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
Suffix = "$non_lazy_ptr";
std::string Name = Mang->getMangledName(GV, Suffix, Suffix[0] != '\0');
if (Subtarget->isTargetCygMing())
DecorateCygMingName(Name, GV);
// Handle dllimport linkage.
if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
Name = "__imp_" + Name;
if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) {
SmallString<128> NameStr;
Mang->getNameWithPrefix(NameStr, GV, true);
NameStr += "$non_lazy_ptr";
MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym);
if (StubSym == 0) {
NameStr.clear();
Mang->getNameWithPrefix(NameStr, GV, false);
StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
}
} else if (MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE){
SmallString<128> NameStr;
Mang->getNameWithPrefix(NameStr, GV, true);
NameStr += "$non_lazy_ptr";
MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getHiddenGVStubEntry(Sym);
if (StubSym == 0) {
NameStr.clear();
Mang->getNameWithPrefix(NameStr, GV, false);
StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
}
} else if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
SmallString<128> NameStr;
Mang->getNameWithPrefix(NameStr, GV, true);
NameStr += "$stub";
MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
if (StubSym == 0) {
NameStr.clear();
Mang->getNameWithPrefix(NameStr, GV, false);
StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
}
}
// If the name begins with a dollar-sign, enclose it in parens. We do this
// to avoid having it look like an integer immediate to the assembler.
if (Name[0] == '$')
O << '(' << Name << ')';
else
O << Name;
printOffset(MO.getOffset());
break;
}
case MachineOperand::MO_ExternalSymbol: {
std::string Name = Mang->makeNameProper(MO.getSymbolName());
if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
Name += "$stub";
MCSymbol *Sym = OutContext.GetOrCreateSymbol(Name);
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
if (StubSym == 0) {
Name.erase(Name.end()-5, Name.end());
StubSym = OutContext.GetOrCreateSymbol(Name);
}
}
// If the name begins with a dollar-sign, enclose it in parens. We do this
// to avoid having it look like an integer immediate to the assembler.
if (Name[0] == '$')
O << '(' << Name << ')';
else
O << Name;
break;
}
}
switch (MO.getTargetFlags()) {
default:
llvm_unreachable("Unknown target flag on GV operand");
case X86II::MO_NO_FLAG: // No flag.
break;
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DLLIMPORT:
case X86II::MO_DARWIN_STUB:
// These affect the name of the symbol, not any suffix.
break;
case X86II::MO_GOT_ABSOLUTE_ADDRESS:
O << " + [.-";
PrintPICBaseSymbol();
O << ']';
break;
case X86II::MO_PIC_BASE_OFFSET:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
O << '-';
PrintPICBaseSymbol();
break;
case X86II::MO_TLSGD: O << "@TLSGD"; break;
case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break;
case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break;
case X86II::MO_TPOFF: O << "@TPOFF"; break;
case X86II::MO_NTPOFF: O << "@NTPOFF"; break;
case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break;
case X86II::MO_GOT: O << "@GOT"; break;
case X86II::MO_GOTOFF: O << "@GOTOFF"; break;
case X86II::MO_PLT: O << "@PLT"; break;
}
}
/// print_pcrel_imm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value. These print slightly differently, for
/// example, a $ is not emitted.
void X86ATTAsmPrinter::print_pcrel_imm(const MachineInstr *MI, unsigned OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default: llvm_unreachable("Unknown pcrel immediate operand");
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
printSymbolOperand(MO);
return;
}
}
void X86ATTAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default: llvm_unreachable("unknown operand type!");
case MachineOperand::MO_Register: {
O << '%';
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
EVT VT = (strcmp(Modifier+6,"64") == 0) ?
MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 :
((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8));
Reg = getX86SubSuperRegister(Reg, VT);
}
O << X86ATTInstPrinter::getRegisterName(Reg);
return;
}
case MachineOperand::MO_Immediate:
O << '$' << MO.getImm();
return;
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol: {
O << '$';
printSymbolOperand(MO);
break;
}
}
}
void X86ATTAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) {
unsigned char value = MI->getOperand(Op).getImm();
assert(value <= 7 && "Invalid ssecc argument!");
switch (value) {
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
}
}
void X86ATTAsmPrinter::printLeaMemReference(const MachineInstr *MI, unsigned Op,
const char *Modifier) {
const MachineOperand &BaseReg = MI->getOperand(Op);
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &DispSpec = MI->getOperand(Op+3);
// If we really don't want to print out (rip), don't.
bool HasBaseReg = BaseReg.getReg() != 0;
if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") &&
BaseReg.getReg() == X86::RIP)
HasBaseReg = false;
// HasParenPart - True if we will print out the () part of the mem ref.
bool HasParenPart = IndexReg.getReg() || HasBaseReg;
if (DispSpec.isImm()) {
int DispVal = DispSpec.getImm();
if (DispVal || !HasParenPart)
O << DispVal;
} else {
assert(DispSpec.isGlobal() || DispSpec.isCPI() ||
DispSpec.isJTI() || DispSpec.isSymbol());
printSymbolOperand(MI->getOperand(Op+3));
}
if (HasParenPart) {
assert(IndexReg.getReg() != X86::ESP &&
"X86 doesn't allow scaling by ESP");
O << '(';
if (HasBaseReg)
printOperand(MI, Op, Modifier);
if (IndexReg.getReg()) {
O << ',';
printOperand(MI, Op+2, Modifier);
unsigned ScaleVal = MI->getOperand(Op+1).getImm();
if (ScaleVal != 1)
O << ',' << ScaleVal;
}
O << ')';
}
}
void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op,
const char *Modifier) {
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &Segment = MI->getOperand(Op+4);
if (Segment.getReg()) {
printOperand(MI, Op+4, Modifier);
O << ':';
}
printLeaMemReference(MI, Op, Modifier);
}
void X86ATTAsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!MAI->getSetDirective())
return;
// We don't need .set machinery if we have GOT-style relocations
if (Subtarget->isPICStyleGOT())
return;
O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
if (Subtarget->isPICStyleRIPRel())
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
else {
O << '-';
PrintPICBaseSymbol();
O << '\n';
}
}
void X86ATTAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) {
PrintPICBaseSymbol();
O << '\n';
PrintPICBaseSymbol();
O << ':';
}
void X86ATTAsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const {
const char *JTEntryDirective = MJTI->getEntrySize() == 4 ?
MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
O << JTEntryDirective << ' ';
if (Subtarget->isPICStyleRIPRel() || Subtarget->isPICStyleStubPIC()) {
O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << uid << "_set_" << MBB->getNumber();
} else if (Subtarget->isPICStyleGOT()) {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << "@GOTOFF";
} else
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
}
bool X86ATTAsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode) {
unsigned Reg = MO.getReg();
switch (Mode) {
default: return true; // Unknown mode.
case 'b': // Print QImode register
Reg = getX86SubSuperRegister(Reg, MVT::i8);
break;
case 'h': // Print QImode high register
Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
break;
case 'w': // Print HImode register
Reg = getX86SubSuperRegister(Reg, MVT::i16);
break;
case 'k': // Print SImode register
Reg = getX86SubSuperRegister(Reg, MVT::i32);
break;
case 'q': // Print DImode register
Reg = getX86SubSuperRegister(Reg, MVT::i64);
break;
}
O << '%' << X86ATTInstPrinter::getRegisterName(Reg);
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool X86ATTAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNo);
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // This is an address. Currently only 'i' and 'r' are expected.
if (MO.isImm()) {
O << MO.getImm();
return false;
}
if (MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isSymbol()) {
printSymbolOperand(MO);
return false;
}
if (MO.isReg()) {
O << '(';
printOperand(MI, OpNo);
O << ')';
return false;
}
return true;
case 'c': // Don't print "$" before a global var name or constant.
if (MO.isImm())
O << MO.getImm();
else if (MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isSymbol())
printSymbolOperand(MO);
else
printOperand(MI, OpNo);
return false;
case 'A': // Print '*' before a register (it must be a register)
if (MO.isReg()) {
O << '*';
printOperand(MI, OpNo);
return false;
}
return true;
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print DImode register
if (MO.isReg())
return printAsmMRegister(MO, ExtraCode[0]);
printOperand(MI, OpNo);
return false;
case 'P': // This is the operand of a call, treat specially.
print_pcrel_imm(MI, OpNo);
return false;
case 'n': // Negate the immediate or print a '-' before the operand.
// Note: this is a temporary solution. It should be handled target
// independently as part of the 'MC' work.
if (MO.isImm()) {
O << -MO.getImm();
return false;
}
O << '-';
}
}
printOperand(MI, OpNo);
return false;
}
bool X86ATTAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print SImode register
// These only apply to registers, ignore on mem.
break;
case 'P': // Don't print @PLT, but do print as memory.
printMemReference(MI, OpNo, "no-rip");
return false;
}
}
printMemReference(MI, OpNo);
return false;
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction MI in
/// AT&T syntax to the current output stream.
///
void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
processDebugLoc(MI->getDebugLoc());
printInstructionThroughMCStreamer(MI);
if (VerboseAsm && !MI->getDebugLoc().isUnknown())
EmitComments(*MI);
O << '\n';
}
void X86ATTAsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) {
if (!GVar->hasInitializer())
return; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar)) {
if (Subtarget->isTargetDarwin() &&
TM.getRelocationModel() == Reloc::Static) {
if (GVar->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (GVar->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
return;
}
const TargetData *TD = TM.getTargetData();
std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
printVisibility(name, GVar->getVisibility());
if (Subtarget->isTargetELF())
O << "\t.type\t" << name << ",@object\n";
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GVar, TM);
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GVar, GVKind, Mang, TM);
OutStreamer.SwitchSection(TheSection);
// FIXME: get this stuff from section kind flags.
if (C->isNullValue() && !GVar->hasSection() &&
// Don't put things that should go in the cstring section into "comm".
!TheSection->getKind().isMergeableCString()) {
if (GVar->hasExternalLinkage()) {
if (const char *Directive = MAI->getZeroFillDirective()) {
O << "\t.globl " << name << '\n';
O << Directive << "__DATA, __common, " << name << ", "
<< Size << ", " << Align << '\n';
return;
}
}
if (!GVar->isThreadLocal() &&
(GVar->hasLocalLinkage() || GVar->isWeakForLinker())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (MAI->getLCOMMDirective() != NULL) {
if (GVar->hasLocalLinkage()) {
O << MAI->getLCOMMDirective() << name << ',' << Size;
if (Subtarget->isTargetDarwin())
O << ',' << Align;
} else if (Subtarget->isTargetDarwin() && !GVar->hasCommonLinkage()) {
O << "\t.globl " << name << '\n'
<< MAI->getWeakDefDirective() << name << '\n';
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << '\n';
EmitGlobalConstant(C);
return;
} else {
O << MAI->getCOMMDirective() << name << ',' << Size;
if (MAI->getCOMMDirectiveTakesAlignment())
O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
} else {
if (!Subtarget->isTargetCygMing()) {
if (GVar->hasLocalLinkage())
O << "\t.local\t" << name << '\n';
}
O << MAI->getCOMMDirective() << name << ',' << Size;
if (MAI->getCOMMDirectiveTakesAlignment())
O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << '\n';
return;
}
}
switch (GVar->getLinkage()) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::LinkerPrivateLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl " << name << '\n'
<< MAI->getWeakDefDirective() << name << '\n';
} else if (Subtarget->isTargetCygMing()) {
O << "\t.globl\t" << name << "\n"
"\t.linkonce same_size\n";
} else {
O << "\t.weak\t" << name << '\n';
}
break;
case GlobalValue::DLLExportLinkage:
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << '\n';
// FALL THROUGH
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
break;
default:
llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm){
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << '\n';
EmitGlobalConstant(C);
if (MAI->hasDotTypeDotSizeDirective())
O << "\t.size\t" << name << ", " << Size << '\n';
}
void X86ATTAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output stubs for dynamically-linked functions.
MachineModuleInfoMachO::SymbolListTy Stubs;
Stubs = MMIMacho.GetFnStubList();
if (!Stubs.empty()) {
const MCSection *TheSection =
TLOFMacho.getMachOSection("__IMPORT", "__jump_table",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_SELF_MODIFYING_CODE |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
5, SectionKind::getMetadata());
OutStreamer.SwitchSection(TheSection);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
Stubs[i].first->print(O, MAI);
O << ":\n" << "\t.indirect_symbol ";
// Get the MCSymbol without the $stub suffix.
Stubs[i].second->print(O, MAI);
O << "\n\thlt ; hlt ; hlt ; hlt ; hlt\n";
}
O << '\n';
Stubs.clear();
}
// Output stubs for external and common global variables.
Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
const MCSection *TheSection =
TLOFMacho.getMachOSection("__IMPORT", "__pointers",
MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS,
SectionKind::getMetadata());
OutStreamer.SwitchSection(TheSection);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
Stubs[i].first->print(O, MAI);
O << ":\n\t.indirect_symbol ";
Stubs[i].second->print(O, MAI);
O << "\n\t.long\t0\n";
}
Stubs.clear();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
Stubs[i].first->print(O, MAI);
O << ":\n" << MAI->getData32bitsDirective();
Stubs[i].second->print(O, MAI);
O << '\n';
}
Stubs.clear();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
}
if (Subtarget->isTargetCOFF()) {
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (I->hasDLLExportLinkage())
DLLExportedGVs.insert(Mang->getMangledName(I));
if (Subtarget->isTargetCygMing()) {
// Emit type information for external functions
for (StringSet<>::iterator i = CygMingStubs.begin(), e = CygMingStubs.end();
i != e; ++i) {
O << "\t.def\t " << i->getKeyData()
<< ";\t.scl\t" << COFF::C_EXT
<< ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
<< ";\t.endef\n";
}
}
// Output linker support code for dllexported globals on windows.
if (!DLLExportedGVs.empty() || !DLLExportedFns.empty()) {
// dllexport symbols only exist on coff targets.
TargetLoweringObjectFileCOFF &TLOFCOFF =
static_cast<TargetLoweringObjectFileCOFF&>(getObjFileLowering());
OutStreamer.SwitchSection(TLOFCOFF.getCOFFSection(".section .drectve",
true,
SectionKind::getMetadata()));
for (StringSet<>::iterator i = DLLExportedGVs.begin(),
e = DLLExportedGVs.end(); i != e; ++i)
O << "\t.ascii \" -export:" << i->getKeyData() << ",data\"\n";
for (StringSet<>::iterator i = DLLExportedFns.begin(),
e = DLLExportedFns.end();
i != e; ++i)
O << "\t.ascii \" -export:" << i->getKeyData() << "\"\n";
}
}
}