1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/IR/IntrinsicInst.cpp
Kevin P. Neal d20252fbdf [FPEnv] Add fptosi and fptoui constrained intrinsics.
This implements constrained floating point intrinsics for FP to signed and
unsigned integers.

Quoting from D32319:
The purpose of the constrained intrinsics is to force the optimizer to
respect the restrictions that will be necessary to support things like the
STDC FENV_ACCESS ON pragma without interfering with optimizations when
these restrictions are not needed.

Reviewed by:	Andrew Kaylor, Craig Topper, Hal Finkel, Cameron McInally, Roman Lebedev, Kit Barton
Approved by:	Craig Topper
Differential Revision:	http://reviews.llvm.org/D63782

llvm-svn: 370228
2019-08-28 16:33:36 +00:00

262 lines
8.9 KiB
C++

//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements methods that make it really easy to deal with intrinsic
// functions.
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class. Note that none of these classes
// has state or virtual methods, which is an important part of this gross/neat
// hack working.
//
// In some cases, arguments to intrinsics need to be generic and are defined as
// type pointer to empty struct { }*. To access the real item of interest the
// cast instruction needs to be stripped away.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
/// DbgVariableIntrinsic - This is the common base class for debug info
/// intrinsics for variables.
///
Value *DbgVariableIntrinsic::getVariableLocation(bool AllowNullOp) const {
Value *Op = getArgOperand(0);
if (AllowNullOp && !Op)
return nullptr;
auto *MD = cast<MetadataAsValue>(Op)->getMetadata();
if (auto *V = dyn_cast<ValueAsMetadata>(MD))
return V->getValue();
// When the value goes to null, it gets replaced by an empty MDNode.
assert(!cast<MDNode>(MD)->getNumOperands() && "Expected an empty MDNode");
return nullptr;
}
Optional<uint64_t> DbgVariableIntrinsic::getFragmentSizeInBits() const {
if (auto Fragment = getExpression()->getFragmentInfo())
return Fragment->SizeInBits;
return getVariable()->getSizeInBits();
}
int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
StringRef Name) {
assert(Name.startswith("llvm."));
// Do successive binary searches of the dotted name components. For
// "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
// intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
// "llvm.gc.experimental.statepoint", and then we will stop as the range is
// size 1. During the search, we can skip the prefix that we already know is
// identical. By using strncmp we consider names with differing suffixes to
// be part of the equal range.
size_t CmpStart = 0;
size_t CmpEnd = 4; // Skip the "llvm" component.
const char *const *Low = NameTable.begin();
const char *const *High = NameTable.end();
const char *const *LastLow = Low;
while (CmpEnd < Name.size() && High - Low > 0) {
CmpStart = CmpEnd;
CmpEnd = Name.find('.', CmpStart + 1);
CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
};
LastLow = Low;
std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
}
if (High - Low > 0)
LastLow = Low;
if (LastLow == NameTable.end())
return -1;
StringRef NameFound = *LastLow;
if (Name == NameFound ||
(Name.startswith(NameFound) && Name[NameFound.size()] == '.'))
return LastLow - NameTable.begin();
return -1;
}
Value *InstrProfIncrementInst::getStep() const {
if (InstrProfIncrementInstStep::classof(this)) {
return const_cast<Value *>(getArgOperand(4));
}
const Module *M = getModule();
LLVMContext &Context = M->getContext();
return ConstantInt::get(Type::getInt64Ty(Context), 1);
}
Optional<ConstrainedFPIntrinsic::RoundingMode>
ConstrainedFPIntrinsic::getRoundingMode() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
dyn_cast<MetadataAsValue>(getArgOperand(NumOperands - 2))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToRoundingMode(cast<MDString>(MD)->getString());
}
Optional<ConstrainedFPIntrinsic::RoundingMode>
ConstrainedFPIntrinsic::StrToRoundingMode(StringRef RoundingArg) {
// For dynamic rounding mode, we use round to nearest but we will set the
// 'exact' SDNodeFlag so that the value will not be rounded.
return StringSwitch<Optional<RoundingMode>>(RoundingArg)
.Case("round.dynamic", rmDynamic)
.Case("round.tonearest", rmToNearest)
.Case("round.downward", rmDownward)
.Case("round.upward", rmUpward)
.Case("round.towardzero", rmTowardZero)
.Default(None);
}
Optional<StringRef>
ConstrainedFPIntrinsic::RoundingModeToStr(RoundingMode UseRounding) {
Optional<StringRef> RoundingStr = None;
switch (UseRounding) {
case ConstrainedFPIntrinsic::rmDynamic:
RoundingStr = "round.dynamic";
break;
case ConstrainedFPIntrinsic::rmToNearest:
RoundingStr = "round.tonearest";
break;
case ConstrainedFPIntrinsic::rmDownward:
RoundingStr = "round.downward";
break;
case ConstrainedFPIntrinsic::rmUpward:
RoundingStr = "round.upward";
break;
case ConstrainedFPIntrinsic::rmTowardZero:
RoundingStr = "round.towardzero";
break;
}
return RoundingStr;
}
Optional<ConstrainedFPIntrinsic::ExceptionBehavior>
ConstrainedFPIntrinsic::getExceptionBehavior() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
dyn_cast<MetadataAsValue>(getArgOperand(NumOperands - 1))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToExceptionBehavior(cast<MDString>(MD)->getString());
}
Optional<ConstrainedFPIntrinsic::ExceptionBehavior>
ConstrainedFPIntrinsic::StrToExceptionBehavior(StringRef ExceptionArg) {
return StringSwitch<Optional<ExceptionBehavior>>(ExceptionArg)
.Case("fpexcept.ignore", ebIgnore)
.Case("fpexcept.maytrap", ebMayTrap)
.Case("fpexcept.strict", ebStrict)
.Default(None);
}
Optional<StringRef>
ConstrainedFPIntrinsic::ExceptionBehaviorToStr(ExceptionBehavior UseExcept) {
Optional<StringRef> ExceptStr = None;
switch (UseExcept) {
case ConstrainedFPIntrinsic::ebStrict:
ExceptStr = "fpexcept.strict";
break;
case ConstrainedFPIntrinsic::ebIgnore:
ExceptStr = "fpexcept.ignore";
break;
case ConstrainedFPIntrinsic::ebMayTrap:
ExceptStr = "fpexcept.maytrap";
break;
}
return ExceptStr;
}
bool ConstrainedFPIntrinsic::isUnaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
case Intrinsic::experimental_constrained_fptosi:
case Intrinsic::experimental_constrained_fptoui:
case Intrinsic::experimental_constrained_fptrunc:
case Intrinsic::experimental_constrained_fpext:
case Intrinsic::experimental_constrained_sqrt:
case Intrinsic::experimental_constrained_sin:
case Intrinsic::experimental_constrained_cos:
case Intrinsic::experimental_constrained_exp:
case Intrinsic::experimental_constrained_exp2:
case Intrinsic::experimental_constrained_log:
case Intrinsic::experimental_constrained_log10:
case Intrinsic::experimental_constrained_log2:
case Intrinsic::experimental_constrained_rint:
case Intrinsic::experimental_constrained_nearbyint:
case Intrinsic::experimental_constrained_ceil:
case Intrinsic::experimental_constrained_floor:
case Intrinsic::experimental_constrained_round:
case Intrinsic::experimental_constrained_trunc:
return true;
}
}
bool ConstrainedFPIntrinsic::isTernaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
case Intrinsic::experimental_constrained_fma:
return true;
}
}
Instruction::BinaryOps BinaryOpIntrinsic::getBinaryOp() const {
switch (getIntrinsicID()) {
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
return Instruction::Add;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
return Instruction::Sub;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
return Instruction::Mul;
default:
llvm_unreachable("Invalid intrinsic");
}
}
bool BinaryOpIntrinsic::isSigned() const {
switch (getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
unsigned BinaryOpIntrinsic::getNoWrapKind() const {
if (isSigned())
return OverflowingBinaryOperator::NoSignedWrap;
else
return OverflowingBinaryOperator::NoUnsignedWrap;
}