mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
09801d8a06
in the same round of SCC update. In https://reviews.llvm.org/rL309784, inline history is added to prevent infinite inlining across multiple run of inliner and SCC update, but the history will only be kept when new SCC is actually generated during SCC update. We found a case that SCC can be split and then merge into itself in the same round of SCC update, so the same SCC will be pop out from UR.CWorklist and then added back immediately, without any new SCC generated, that is why the existing patch cannot catch the infinite inline case. What the patch does is even if no new SCC is generated, if only the current SCC appears in UR.CWorklist again, then keep the inline history. Differential Revision: https://reviews.llvm.org/D52915 llvm-svn: 345103
233 lines
7.7 KiB
LLVM
233 lines
7.7 KiB
LLVM
; This test contains extremely tricky call graph structures for the inliner to
|
|
; handle correctly. They form cycles where the inliner introduces code that is
|
|
; immediately or can eventually be transformed back into the original code. And
|
|
; each step changes the call graph and so will trigger iteration. This requires
|
|
; some out-of-band way to prevent infinitely re-inlining and re-transforming the
|
|
; code.
|
|
;
|
|
; RUN: opt < %s -passes='cgscc(inline,function(sroa,instcombine))' -inline-threshold=50 -S | FileCheck %s
|
|
|
|
|
|
; The `test1_*` collection of functions form a directly cycling pattern.
|
|
|
|
define void @test1_a(i8** %ptr) {
|
|
; CHECK-LABEL: define void @test1_a(
|
|
entry:
|
|
call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 0)
|
|
; Inlining and simplifying this call will reliably produce the exact same call,
|
|
; over and over again. However, each inlining increments the count, and so we
|
|
; expect this test case to stop after one round of inlining with a final
|
|
; argument of '1'.
|
|
; CHECK-NOT: call
|
|
; CHECK: call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 1)
|
|
; CHECK-NOT: call
|
|
|
|
ret void
|
|
}
|
|
|
|
define void @test1_b(i8* %arg, i1 %flag, i32 %inline_count) {
|
|
; CHECK-LABEL: define void @test1_b(
|
|
entry:
|
|
%a = alloca i8*
|
|
store i8* %arg, i8** %a
|
|
; This alloca and store should remain through any optimization.
|
|
; CHECK: %[[A:.*]] = alloca
|
|
; CHECK: store i8* %arg, i8** %[[A]]
|
|
|
|
br i1 %flag, label %bb1, label %bb2
|
|
|
|
bb1:
|
|
call void @test1_a(i8** %a) noinline
|
|
br label %bb2
|
|
|
|
bb2:
|
|
%cast = bitcast i8** %a to void (i8*, i1, i32)**
|
|
%p = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %cast
|
|
%inline_count_inc = add i32 %inline_count, 1
|
|
call void %p(i8* %arg, i1 %flag, i32 %inline_count_inc)
|
|
; And we should continue to load and call indirectly through optimization.
|
|
; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i1, i32)**
|
|
; CHECK: %[[P:.*]] = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %[[CAST]]
|
|
; CHECK: call void %[[P]](
|
|
|
|
ret void
|
|
}
|
|
|
|
define void @test2_a(i8** %ptr) {
|
|
; CHECK-LABEL: define void @test2_a(
|
|
entry:
|
|
call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 0)
|
|
; Inlining and simplifying this call will reliably produce the exact same call,
|
|
; but only after doing two rounds if inlining, first from @test2_b then
|
|
; @test2_c. We check the exact number of inlining rounds before we cut off to
|
|
; break the cycle by inspecting the last paramater that gets incremented with
|
|
; each inlined function body.
|
|
; CHECK-NOT: call
|
|
; CHECK: call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 2)
|
|
; CHECK-NOT: call
|
|
ret void
|
|
}
|
|
|
|
define void @test2_b(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) {
|
|
; CHECK-LABEL: define void @test2_b(
|
|
entry:
|
|
%a = alloca i8*
|
|
store i8* %arg2, i8** %a
|
|
; This alloca and store should remain through any optimization.
|
|
; CHECK: %[[A:.*]] = alloca
|
|
; CHECK: store i8* %arg2, i8** %[[A]]
|
|
|
|
br i1 %flag, label %bb1, label %bb2
|
|
|
|
bb1:
|
|
call void @test2_a(i8** %a) noinline
|
|
br label %bb2
|
|
|
|
bb2:
|
|
%p = load i8*, i8** %a
|
|
%cast = bitcast i8* %p to void (i8*, i8*, i1, i32)*
|
|
%inline_count_inc = add i32 %inline_count, 1
|
|
call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc)
|
|
; And we should continue to load and call indirectly through optimization.
|
|
; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)**
|
|
; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]]
|
|
; CHECK: call void %[[P]](
|
|
|
|
ret void
|
|
}
|
|
|
|
define void @test2_c(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) {
|
|
; CHECK-LABEL: define void @test2_c(
|
|
entry:
|
|
%a = alloca i8*
|
|
store i8* %arg1, i8** %a
|
|
; This alloca and store should remain through any optimization.
|
|
; CHECK: %[[A:.*]] = alloca
|
|
; CHECK: store i8* %arg1, i8** %[[A]]
|
|
|
|
br i1 %flag, label %bb1, label %bb2
|
|
|
|
bb1:
|
|
call void @test2_a(i8** %a) noinline
|
|
br label %bb2
|
|
|
|
bb2:
|
|
%p = load i8*, i8** %a
|
|
%cast = bitcast i8* %p to void (i8*, i8*, i1, i32)*
|
|
%inline_count_inc = add i32 %inline_count, 1
|
|
call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc)
|
|
; And we should continue to load and call indirectly through optimization.
|
|
; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)**
|
|
; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]]
|
|
; CHECK: call void %[[P]](
|
|
|
|
ret void
|
|
}
|
|
|
|
; Another infinite inlining case. The initial callgraph is like following:
|
|
;
|
|
; test3_a <---> test3_b
|
|
; | ^
|
|
; v |
|
|
; test3_c <---> test3_d
|
|
;
|
|
; For all the call edges in the call graph, only test3_c and test3_d can be
|
|
; inlined into test3_a, and no other call edge can be inlined.
|
|
;
|
|
; After test3_c is inlined into test3_a, the original call edge test3_a->test3_c
|
|
; will be removed, a new call edge will be added and the call graph becomes:
|
|
;
|
|
; test3_a <---> test3_b
|
|
; \ ^
|
|
; v /
|
|
; test3_c <---> test3_d
|
|
; But test3_a, test3_b, test3_c and test3_d still belong to the same SCC.
|
|
;
|
|
; Then after test3_a->test3_d is inlined, when test3_a->test3_d is converted to
|
|
; a ref edge, the original SCC will be split into two: {test3_c, test3_d} and
|
|
; {test3_a, test3_b}, immediately after the newly added ref edge
|
|
; test3_a->test3_c will be converted to a call edge, and the two SCCs will be
|
|
; merged into the original one again. During this cycle, the original SCC will
|
|
; be added into UR.CWorklist again and this creates an infinite loop.
|
|
|
|
@a = global i64 0
|
|
@b = global i64 0
|
|
|
|
define void @test3_c(i32 %i) {
|
|
entry:
|
|
%cmp = icmp eq i32 %i, 5
|
|
br i1 %cmp, label %if.end, label %if.then
|
|
|
|
if.then: ; preds = %entry
|
|
%call = tail call i64 @random()
|
|
%t0 = load i64, i64* @a
|
|
%add = add nsw i64 %t0, %call
|
|
store i64 %add, i64* @a
|
|
br label %if.end
|
|
|
|
if.end: ; preds = %entry, %if.then
|
|
tail call void @test3_d(i32 %i)
|
|
%t6 = load i64, i64* @a
|
|
%add85 = add nsw i64 %t6, 1
|
|
store i64 %add85, i64* @a
|
|
ret void
|
|
}
|
|
|
|
declare i64 @random()
|
|
|
|
define void @test3_d(i32 %i) {
|
|
entry:
|
|
%cmp = icmp eq i32 %i, 5
|
|
br i1 %cmp, label %if.end, label %if.then
|
|
|
|
if.then: ; preds = %entry
|
|
%call = tail call i64 @random()
|
|
%t0 = load i64, i64* @a
|
|
%add = add nsw i64 %t0, %call
|
|
store i64 %add, i64* @a
|
|
br label %if.end
|
|
|
|
if.end: ; preds = %entry, %if.then
|
|
tail call void @test3_c(i32 %i)
|
|
tail call void @test3_b()
|
|
%t6 = load i64, i64* @a
|
|
%add79 = add nsw i64 %t6, 3
|
|
store i64 %add79, i64* @a
|
|
ret void
|
|
}
|
|
|
|
; Function Attrs: noinline
|
|
define void @test3_b() #0 {
|
|
entry:
|
|
tail call void @test3_a()
|
|
%t0 = load i64, i64* @a
|
|
%add = add nsw i64 %t0, 2
|
|
store i64 %add, i64* @a
|
|
ret void
|
|
}
|
|
|
|
; Check test3_c is inlined into test3_a once and only once.
|
|
; CHECK-LABEL: @test3_a(
|
|
; CHECK: tail call void @test3_b()
|
|
; CHECK-NEXT: tail call void @test3_d(i32 5)
|
|
; CHECK-NEXT: %[[LD1:.*]] = load i64, i64* @a
|
|
; CHECK-NEXT: %[[ADD1:.*]] = add nsw i64 %[[LD1]], 1
|
|
; CHECK-NEXT: store i64 %[[ADD1]], i64* @a
|
|
; CHECK-NEXT: %[[LD2:.*]] = load i64, i64* @b
|
|
; CHECK-NEXT: %[[ADD2:.*]] = add nsw i64 %[[LD2]], 5
|
|
; CHECK-NEXT: store i64 %[[ADD2]], i64* @b
|
|
; CHECK-NEXT: ret void
|
|
|
|
; Function Attrs: noinline
|
|
define void @test3_a() #0 {
|
|
entry:
|
|
tail call void @test3_b()
|
|
tail call void @test3_c(i32 5)
|
|
%t0 = load i64, i64* @b
|
|
%add = add nsw i64 %t0, 5
|
|
store i64 %add, i64* @b
|
|
ret void
|
|
}
|
|
|
|
attributes #0 = { noinline }
|