1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/unittests/CodeGen/AArch64SelectionDAGTest.cpp

652 lines
21 KiB
C++

//===- llvm/unittest/CodeGen/AArch64SelectionDAGTest.cpp -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "gtest/gtest.h"
namespace llvm {
class AArch64SelectionDAGTest : public testing::Test {
protected:
static void SetUpTestCase() {
InitializeAllTargets();
InitializeAllTargetMCs();
}
void SetUp() override {
StringRef Assembly = "define void @f() { ret void }";
Triple TargetTriple("aarch64--");
std::string Error;
const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error);
// FIXME: These tests do not depend on AArch64 specifically, but we have to
// initialize a target. A skeleton Target for unittests would allow us to
// always run these tests.
if (!T)
return;
TargetOptions Options;
TM = std::unique_ptr<LLVMTargetMachine>(static_cast<LLVMTargetMachine *>(
T->createTargetMachine("AArch64", "", "+sve", Options, None, None,
CodeGenOpt::Aggressive)));
if (!TM)
return;
SMDiagnostic SMError;
M = parseAssemblyString(Assembly, SMError, Context);
if (!M)
report_fatal_error(SMError.getMessage());
M->setDataLayout(TM->createDataLayout());
F = M->getFunction("f");
if (!F)
report_fatal_error("F?");
MachineModuleInfo MMI(TM.get());
MF = std::make_unique<MachineFunction>(*F, *TM, *TM->getSubtargetImpl(*F), 0,
MMI);
DAG = std::make_unique<SelectionDAG>(*TM, CodeGenOpt::None);
if (!DAG)
report_fatal_error("DAG?");
OptimizationRemarkEmitter ORE(F);
DAG->init(*MF, ORE, nullptr, nullptr, nullptr, nullptr, nullptr);
}
TargetLoweringBase::LegalizeTypeAction getTypeAction(EVT VT) {
return DAG->getTargetLoweringInfo().getTypeAction(Context, VT);
}
EVT getTypeToTransformTo(EVT VT) {
return DAG->getTargetLoweringInfo().getTypeToTransformTo(Context, VT);
}
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM;
std::unique_ptr<Module> M;
Function *F;
std::unique_ptr<MachineFunction> MF;
std::unique_ptr<SelectionDAG> DAG;
};
TEST_F(AArch64SelectionDAGTest, computeKnownBits_ZERO_EXTEND_VECTOR_INREG) {
if (!TM)
return;
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2);
auto InVec = DAG->getConstant(0, Loc, InVecVT);
auto Op = DAG->getNode(ISD::ZERO_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
KnownBits Known = DAG->computeKnownBits(Op, DemandedElts);
EXPECT_TRUE(Known.isZero());
}
TEST_F(AArch64SelectionDAGTest, computeKnownBitsSVE_ZERO_EXTEND_VECTOR_INREG) {
if (!TM)
return;
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4, true);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2, true);
auto InVec = DAG->getConstant(0, Loc, InVecVT);
auto Op = DAG->getNode(ISD::ZERO_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
KnownBits Known = DAG->computeKnownBits(Op, DemandedElts);
// We don't know anything for SVE at the moment.
EXPECT_EQ(Known.Zero, APInt(16, 0u));
EXPECT_EQ(Known.One, APInt(16, 0u));
EXPECT_FALSE(Known.isZero());
}
TEST_F(AArch64SelectionDAGTest, computeKnownBits_EXTRACT_SUBVECTOR) {
if (!TM)
return;
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 3);
auto IdxVT = EVT::getIntegerVT(Context, 64);
auto Vec = DAG->getConstant(0, Loc, VecVT);
auto ZeroIdx = DAG->getConstant(0, Loc, IdxVT);
auto Op = DAG->getNode(ISD::EXTRACT_SUBVECTOR, Loc, VecVT, Vec, ZeroIdx);
auto DemandedElts = APInt(3, 7);
KnownBits Known = DAG->computeKnownBits(Op, DemandedElts);
EXPECT_TRUE(Known.isZero());
}
TEST_F(AArch64SelectionDAGTest, ComputeNumSignBits_SIGN_EXTEND_VECTOR_INREG) {
if (!TM)
return;
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2);
auto InVec = DAG->getConstant(1, Loc, InVecVT);
auto Op = DAG->getNode(ISD::SIGN_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
EXPECT_EQ(DAG->ComputeNumSignBits(Op, DemandedElts), 15u);
}
TEST_F(AArch64SelectionDAGTest, ComputeNumSignBitsSVE_SIGN_EXTEND_VECTOR_INREG) {
if (!TM)
return;
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto Int16VT = EVT::getIntegerVT(Context, 16);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 4, /*IsScalable=*/true);
auto OutVecVT = EVT::getVectorVT(Context, Int16VT, 2, /*IsScalable=*/true);
auto InVec = DAG->getConstant(1, Loc, InVecVT);
auto Op = DAG->getNode(ISD::SIGN_EXTEND_VECTOR_INREG, Loc, OutVecVT, InVec);
auto DemandedElts = APInt(2, 3);
EXPECT_EQ(DAG->ComputeNumSignBits(Op, DemandedElts), 1u);
}
TEST_F(AArch64SelectionDAGTest, ComputeNumSignBits_EXTRACT_SUBVECTOR) {
if (!TM)
return;
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 3);
auto IdxVT = EVT::getIntegerVT(Context, 64);
auto Vec = DAG->getConstant(1, Loc, VecVT);
auto ZeroIdx = DAG->getConstant(0, Loc, IdxVT);
auto Op = DAG->getNode(ISD::EXTRACT_SUBVECTOR, Loc, VecVT, Vec, ZeroIdx);
auto DemandedElts = APInt(3, 7);
EXPECT_EQ(DAG->ComputeNumSignBits(Op, DemandedElts), 7u);
}
TEST_F(AArch64SelectionDAGTest, SimplifyDemandedVectorElts_EXTRACT_SUBVECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 3);
auto IdxVT = EVT::getIntegerVT(Context, 64);
auto Vec = DAG->getConstant(1, Loc, VecVT);
auto ZeroIdx = DAG->getConstant(0, Loc, IdxVT);
auto Op = DAG->getNode(ISD::EXTRACT_SUBVECTOR, Loc, VecVT, Vec, ZeroIdx);
auto DemandedElts = APInt(3, 7);
auto KnownUndef = APInt(3, 0);
auto KnownZero = APInt(3, 0);
TargetLowering::TargetLoweringOpt TLO(*DAG, false, false);
EXPECT_EQ(TL.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef,
KnownZero, TLO),
false);
}
TEST_F(AArch64SelectionDAGTest, SimplifyDemandedBitsNEON) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 16);
SDValue UnknownOp = DAG->getRegister(0, InVecVT);
SDValue Mask1S = DAG->getConstant(0x8A, Loc, Int8VT);
SDValue Mask1V = DAG->getSplatBuildVector(InVecVT, Loc, Mask1S);
SDValue N0 = DAG->getNode(ISD::AND, Loc, InVecVT, Mask1V, UnknownOp);
SDValue Mask2S = DAG->getConstant(0x55, Loc, Int8VT);
SDValue Mask2V = DAG->getSplatBuildVector(InVecVT, Loc, Mask2S);
SDValue Op = DAG->getNode(ISD::AND, Loc, InVecVT, N0, Mask2V);
// N0 = ?000?0?0
// Mask2V = 01010101
// =>
// Known.Zero = 00100000 (0xAA)
KnownBits Known;
APInt DemandedBits = APInt(8, 0xFF);
TargetLowering::TargetLoweringOpt TLO(*DAG, false, false);
EXPECT_TRUE(TL.SimplifyDemandedBits(Op, DemandedBits, Known, TLO));
EXPECT_EQ(Known.Zero, APInt(8, 0xAA));
}
TEST_F(AArch64SelectionDAGTest, SimplifyDemandedBitsSVE) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto Int8VT = EVT::getIntegerVT(Context, 8);
auto InVecVT = EVT::getVectorVT(Context, Int8VT, 16, /*IsScalable=*/true);
SDValue UnknownOp = DAG->getRegister(0, InVecVT);
SDValue Mask1S = DAG->getConstant(0x8A, Loc, Int8VT);
SDValue Mask1V = DAG->getSplatVector(InVecVT, Loc, Mask1S);
SDValue N0 = DAG->getNode(ISD::AND, Loc, InVecVT, Mask1V, UnknownOp);
SDValue Mask2S = DAG->getConstant(0x55, Loc, Int8VT);
SDValue Mask2V = DAG->getSplatVector(InVecVT, Loc, Mask2S);
SDValue Op = DAG->getNode(ISD::AND, Loc, InVecVT, N0, Mask2V);
KnownBits Known;
APInt DemandedBits = APInt(8, 0xFF);
TargetLowering::TargetLoweringOpt TLO(*DAG, false, false);
EXPECT_FALSE(TL.SimplifyDemandedBits(Op, DemandedBits, Known, TLO));
EXPECT_EQ(Known.Zero, APInt(8, 0));
}
// Piggy-backing on the AArch64 tests to verify SelectionDAG::computeKnownBits.
TEST_F(AArch64SelectionDAGTest, ComputeKnownBits_ADD) {
if (!TM)
return;
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto UnknownOp = DAG->getRegister(0, IntVT);
auto Mask = DAG->getConstant(0x8A, Loc, IntVT);
auto N0 = DAG->getNode(ISD::AND, Loc, IntVT, Mask, UnknownOp);
auto N1 = DAG->getConstant(0x55, Loc, IntVT);
auto Op = DAG->getNode(ISD::ADD, Loc, IntVT, N0, N1);
// N0 = ?000?0?0
// N1 = 01010101
// =>
// Known.One = 01010101 (0x55)
// Known.Zero = 00100000 (0x20)
KnownBits Known = DAG->computeKnownBits(Op);
EXPECT_EQ(Known.Zero, APInt(8, 0x20));
EXPECT_EQ(Known.One, APInt(8, 0x55));
}
// Piggy-backing on the AArch64 tests to verify SelectionDAG::computeKnownBits.
TEST_F(AArch64SelectionDAGTest, ComputeKnownBits_SUB) {
if (!TM)
return;
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto N0 = DAG->getConstant(0x55, Loc, IntVT);
auto UnknownOp = DAG->getRegister(0, IntVT);
auto Mask = DAG->getConstant(0x2e, Loc, IntVT);
auto N1 = DAG->getNode(ISD::AND, Loc, IntVT, Mask, UnknownOp);
auto Op = DAG->getNode(ISD::SUB, Loc, IntVT, N0, N1);
// N0 = 01010101
// N1 = 00?0???0
// =>
// Known.One = 00000001 (0x1)
// Known.Zero = 10000000 (0x80)
KnownBits Known = DAG->computeKnownBits(Op);
EXPECT_EQ(Known.Zero, APInt(8, 0x80));
EXPECT_EQ(Known.One, APInt(8, 0x1));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Fixed_BUILD_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Create a BUILD_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::BUILD_VECTOR);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_FALSE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Fixed_ADD_of_BUILD_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Should create BUILD_VECTORs
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::BUILD_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_FALSE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Scalable_SPLAT_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Create a SPLAT_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::SPLAT_VECTOR);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3. These bits should be ignored.
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, isSplatValue_Scalable_ADD_of_SPLAT_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Should create SPLAT_VECTORS
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::SPLAT_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
EXPECT_TRUE(DAG->isSplatValue(Op, /*AllowUndefs=*/false));
APInt UndefElts;
APInt DemandedElts;
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
// Width=16, Mask=3. These bits should be ignored.
DemandedElts = APInt(16, 3);
EXPECT_TRUE(DAG->isSplatValue(Op, DemandedElts, UndefElts));
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Fixed_BUILD_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Create a BUILD_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::BUILD_VECTOR);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Fixed_ADD_of_BUILD_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, false);
// Should create BUILD_VECTORs
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::BUILD_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Scalable_SPLAT_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Create a SPLAT_VECTOR
SDValue Op = DAG->getConstant(1, Loc, VecVT);
EXPECT_EQ(Op->getOpcode(), ISD::SPLAT_VECTOR);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getSplatSourceVector_Scalable_ADD_of_SPLAT_VECTOR) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
auto IntVT = EVT::getIntegerVT(Context, 8);
auto VecVT = EVT::getVectorVT(Context, IntVT, 16, true);
// Should create SPLAT_VECTORS
SDValue Val1 = DAG->getConstant(1, Loc, VecVT);
SDValue Val2 = DAG->getConstant(3, Loc, VecVT);
EXPECT_EQ(Val1->getOpcode(), ISD::SPLAT_VECTOR);
SDValue Op = DAG->getNode(ISD::ADD, Loc, VecVT, Val1, Val2);
int SplatIdx = -1;
EXPECT_EQ(DAG->getSplatSourceVector(Op, SplatIdx), Op);
EXPECT_EQ(SplatIdx, 0);
}
TEST_F(AArch64SelectionDAGTest, getRepeatedSequence_Patterns) {
if (!TM)
return;
TargetLowering TL(*TM);
SDLoc Loc;
unsigned NumElts = 16;
MVT IntVT = MVT::i8;
MVT VecVT = MVT::getVectorVT(IntVT, NumElts);
// Base scalar constants.
SDValue Val0 = DAG->getConstant(0, Loc, IntVT);
SDValue Val1 = DAG->getConstant(1, Loc, IntVT);
SDValue Val2 = DAG->getConstant(2, Loc, IntVT);
SDValue Val3 = DAG->getConstant(3, Loc, IntVT);
SDValue UndefVal = DAG->getUNDEF(IntVT);
// Build some repeating sequences.
SmallVector<SDValue, 16> Pattern1111, Pattern1133, Pattern0123;
for(int I = 0; I != 4; ++I) {
Pattern1111.append(4, Val1);
Pattern1133.append(2, Val1);
Pattern1133.append(2, Val3);
Pattern0123.push_back(Val0);
Pattern0123.push_back(Val1);
Pattern0123.push_back(Val2);
Pattern0123.push_back(Val3);
}
// Build a non-pow2 repeating sequence.
SmallVector<SDValue, 16> Pattern022;
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
Pattern022.append(2, Val2);
Pattern022.push_back(Val0);
// Build a non-repeating sequence.
SmallVector<SDValue, 16> Pattern1_3;
Pattern1_3.append(8, Val1);
Pattern1_3.append(8, Val3);
// Add some undefs to make it trickier.
Pattern1111[1] = Pattern1111[2] = Pattern1111[15] = UndefVal;
Pattern1133[0] = Pattern1133[2] = UndefVal;
auto *BV1111 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern1111));
auto *BV1133 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern1133));
auto *BV0123=
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern0123));
auto *BV022 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern022));
auto *BV1_3 =
cast<BuildVectorSDNode>(DAG->getBuildVector(VecVT, Loc, Pattern1_3));
// Check for sequences.
SmallVector<SDValue, 16> Seq1111, Seq1133, Seq0123, Seq022, Seq1_3;
BitVector Undefs1111, Undefs1133, Undefs0123, Undefs022, Undefs1_3;
EXPECT_TRUE(BV1111->getRepeatedSequence(Seq1111, &Undefs1111));
EXPECT_EQ(Undefs1111.count(), 3u);
EXPECT_EQ(Seq1111.size(), 1u);
EXPECT_EQ(Seq1111[0], Val1);
EXPECT_TRUE(BV1133->getRepeatedSequence(Seq1133, &Undefs1133));
EXPECT_EQ(Undefs1133.count(), 2u);
EXPECT_EQ(Seq1133.size(), 4u);
EXPECT_EQ(Seq1133[0], Val1);
EXPECT_EQ(Seq1133[1], Val1);
EXPECT_EQ(Seq1133[2], Val3);
EXPECT_EQ(Seq1133[3], Val3);
EXPECT_TRUE(BV0123->getRepeatedSequence(Seq0123, &Undefs0123));
EXPECT_EQ(Undefs0123.count(), 0u);
EXPECT_EQ(Seq0123.size(), 4u);
EXPECT_EQ(Seq0123[0], Val0);
EXPECT_EQ(Seq0123[1], Val1);
EXPECT_EQ(Seq0123[2], Val2);
EXPECT_EQ(Seq0123[3], Val3);
EXPECT_FALSE(BV022->getRepeatedSequence(Seq022, &Undefs022));
EXPECT_FALSE(BV1_3->getRepeatedSequence(Seq1_3, &Undefs1_3));
// Try again with DemandedElts masks.
APInt Mask1111_0 = APInt::getOneBitSet(NumElts, 0);
EXPECT_TRUE(BV1111->getRepeatedSequence(Mask1111_0, Seq1111, &Undefs1111));
EXPECT_EQ(Undefs1111.count(), 0u);
EXPECT_EQ(Seq1111.size(), 1u);
EXPECT_EQ(Seq1111[0], Val1);
APInt Mask1111_1 = APInt::getOneBitSet(NumElts, 2);
EXPECT_TRUE(BV1111->getRepeatedSequence(Mask1111_1, Seq1111, &Undefs1111));
EXPECT_EQ(Undefs1111.count(), 1u);
EXPECT_EQ(Seq1111.size(), 1u);
EXPECT_EQ(Seq1111[0], UndefVal);
APInt Mask0123 = APInt(NumElts, 0x7777);
EXPECT_TRUE(BV0123->getRepeatedSequence(Mask0123, Seq0123, &Undefs0123));
EXPECT_EQ(Undefs0123.count(), 0u);
EXPECT_EQ(Seq0123.size(), 4u);
EXPECT_EQ(Seq0123[0], Val0);
EXPECT_EQ(Seq0123[1], Val1);
EXPECT_EQ(Seq0123[2], Val2);
EXPECT_EQ(Seq0123[3], SDValue());
APInt Mask1_3 = APInt::getHighBitsSet(16, 8);
EXPECT_TRUE(BV1_3->getRepeatedSequence(Mask1_3, Seq1_3, &Undefs1_3));
EXPECT_EQ(Undefs1_3.count(), 0u);
EXPECT_EQ(Seq1_3.size(), 1u);
EXPECT_EQ(Seq1_3[0], Val3);
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_SplitScalableMVT) {
if (!TM)
return;
MVT VT = MVT::nxv4i64;
EXPECT_EQ(getTypeAction(VT), TargetLoweringBase::TypeSplitVector);
ASSERT_TRUE(getTypeToTransformTo(VT).isScalableVector());
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_PromoteScalableMVT) {
if (!TM)
return;
MVT VT = MVT::nxv2i32;
EXPECT_EQ(getTypeAction(VT), TargetLoweringBase::TypePromoteInteger);
ASSERT_TRUE(getTypeToTransformTo(VT).isScalableVector());
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_NoScalarizeMVT_nxv1f32) {
if (!TM)
return;
MVT VT = MVT::nxv1f32;
EXPECT_NE(getTypeAction(VT), TargetLoweringBase::TypeScalarizeVector);
ASSERT_TRUE(getTypeToTransformTo(VT).isScalableVector());
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_SplitScalableEVT) {
if (!TM)
return;
EVT VT = EVT::getVectorVT(Context, MVT::i64, 256, true);
EXPECT_EQ(getTypeAction(VT), TargetLoweringBase::TypeSplitVector);
EXPECT_EQ(getTypeToTransformTo(VT), VT.getHalfNumVectorElementsVT(Context));
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_WidenScalableEVT) {
if (!TM)
return;
EVT FromVT = EVT::getVectorVT(Context, MVT::i64, 6, true);
EVT ToVT = EVT::getVectorVT(Context, MVT::i64, 8, true);
EXPECT_EQ(getTypeAction(FromVT), TargetLoweringBase::TypeWidenVector);
EXPECT_EQ(getTypeToTransformTo(FromVT), ToVT);
}
TEST_F(AArch64SelectionDAGTest, getTypeConversion_NoScalarizeEVT_nxv1f128) {
if (!TM)
return;
EVT FromVT = EVT::getVectorVT(Context, MVT::f128, 1, true);
EXPECT_DEATH(getTypeAction(FromVT), "Cannot legalize this vector");
}
} // end namespace llvm