1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/unittests/Analysis/VectorFunctionABITest.cpp

647 lines
24 KiB
C++

//===------- VectorFunctionABITest.cpp - VFABI Unittests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/InstIterator.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
// Test fixture needed that holds the veariables needed by the parser.
class VFABIParserTest : public ::testing::Test {
private:
// Parser output.
VFInfo Info;
// Reset the data needed for the test.
void reset(const StringRef Name, const StringRef IRType) {
M = parseAssemblyString("declare void @dummy()", Err, Ctx);
EXPECT_NE(M.get(), nullptr) << "Loading an invalid module.\n "
<< Err.getMessage() << "\n";
Type *Ty = parseType(IRType, Err, *(M.get()));
FunctionType *FTy = dyn_cast<FunctionType>(Ty);
EXPECT_NE(FTy, nullptr) << "Invalid function type string: " << IRType
<< "\n"
<< Err.getMessage() << "\n";
FunctionCallee F = M->getOrInsertFunction(Name, FTy);
EXPECT_NE(F.getCallee(), nullptr)
<< "The function must be present in the module\n";
// Reset the VFInfo
Info = VFInfo();
}
// Data needed to load the optional IR passed to invokeParser
LLVMContext Ctx;
SMDiagnostic Err;
std::unique_ptr<Module> M;
// CallInst *CI;
protected:
// Referencies to the parser output field.
unsigned &VF = Info.Shape.VF;
VFISAKind &ISA = Info.ISA;
SmallVector<VFParameter, 8> &Parameters = Info.Shape.Parameters;
std::string &ScalarName = Info.ScalarName;
std::string &VectorName = Info.VectorName;
bool &IsScalable = Info.Shape.IsScalable;
// Invoke the parser. We need to make sure that a function exist in
// the module because the parser fails if such function don't
// exists. Every time this method is invoked the state of the test
// is reset.
//
// \p MangledName -> the string the parser has to demangle.
//
// \p VectorName -> optional vector name that the method needs to
// use to create the function in the module if it differs from the
// standard mangled name.
//
// \p IRType -> FunctionType string to be used for the signature of
// the vector function. The correct signature is needed by the
// parser only for scalable functions. For the sake of testing, the
// generic fixed-length case can use as signature `void()`.
//
bool invokeParser(const StringRef MangledName,
const StringRef VectorName = "",
const StringRef IRType = "void()") {
StringRef Name = MangledName;
if (!VectorName.empty())
Name = VectorName;
// Reset the VFInfo and the Module to be able to invoke
// `invokeParser` multiple times in the same test.
reset(Name, IRType);
const auto OptInfo = VFABI::tryDemangleForVFABI(MangledName, *(M.get()));
if (OptInfo.hasValue()) {
Info = OptInfo.getValue();
return true;
}
return false;
}
// Checks that 1. the last Parameter in the Shape is of type
// VFParamKind::GlobalPredicate and 2. it is the only one of such
// type.
bool IsMasked() const {
const auto NGlobalPreds =
std::count_if(Info.Shape.Parameters.begin(),
Info.Shape.Parameters.end(), [](const VFParameter PK) {
return PK.ParamKind == VFParamKind::GlobalPredicate;
});
return NGlobalPreds == 1 && Info.Shape.Parameters.back().ParamKind ==
VFParamKind::GlobalPredicate;
}
};
} // unnamed namespace
// This test makes sure correct mangling occurs for given string.
TEST_F(VFABIParserTest, ManglingVectorTLINames) {
EXPECT_EQ(VFABI::mangleTLIVectorName("vec", "scalar", 3, 4),
"_ZGV_LLVM_N4vvv_scalar(vec)");
EXPECT_EQ(VFABI::mangleTLIVectorName("custom.call.v5", "custom.call", 1, 5),
"_ZGV_LLVM_N5v_custom.call(custom.call.v5)");
}
// This test makes sure that the demangling method succeeds only on
// valid values of the string.
TEST_F(VFABIParserTest, OnlyValidNames) {
// Incomplete string.
EXPECT_FALSE(invokeParser(""));
EXPECT_FALSE(invokeParser("_ZGV"));
EXPECT_FALSE(invokeParser("_ZGVn"));
EXPECT_FALSE(invokeParser("_ZGVnN"));
EXPECT_FALSE(invokeParser("_ZGVnN2"));
EXPECT_FALSE(invokeParser("_ZGVnN2v"));
EXPECT_FALSE(invokeParser("_ZGVnN2v_"));
// Missing parameters.
EXPECT_FALSE(invokeParser("_ZGVnN2_foo"));
// Missing _ZGV prefix.
EXPECT_FALSE(invokeParser("_ZVnN2v_foo"));
// Missing <isa>.
EXPECT_FALSE(invokeParser("_ZGVN2v_foo"));
// Missing <mask>.
EXPECT_FALSE(invokeParser("_ZGVn2v_foo"));
// Missing <vlen>.
EXPECT_FALSE(invokeParser("_ZGVnNv_foo"));
// Missing <scalarname>.
EXPECT_FALSE(invokeParser("_ZGVnN2v_"));
// Missing _ separator.
EXPECT_FALSE(invokeParser("_ZGVnN2vfoo"));
// Missing <vectorname>. Using `fakename` because the string being
// parsed is not a valid function name that `invokeParser` can add.
EXPECT_FALSE(invokeParser("_ZGVnN2v_foo()", "fakename"));
// Unterminated name. Using `fakename` because the string being
// parsed is not a valid function name that `invokeParser` can add.
EXPECT_FALSE(invokeParser("_ZGVnN2v_foo(bar", "fakename"));
}
TEST_F(VFABIParserTest, ParamListParsing) {
EXPECT_TRUE(invokeParser("_ZGVnN2vl16Ls32R3l_foo"));
EXPECT_EQ(Parameters.size(), (unsigned)5);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector, 0}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::OMP_Linear, 16}));
EXPECT_EQ(Parameters[2], VFParameter({2, VFParamKind::OMP_LinearValPos, 32}));
EXPECT_EQ(Parameters[3], VFParameter({3, VFParamKind::OMP_LinearRef, 3}));
EXPECT_EQ(Parameters[4], VFParameter({4, VFParamKind::OMP_Linear, 1}));
}
TEST_F(VFABIParserTest, ScalarNameAndVectorName_01) {
EXPECT_TRUE(invokeParser("_ZGVnM2v_sin"));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "_ZGVnM2v_sin");
}
TEST_F(VFABIParserTest, ScalarNameAndVectorName_02) {
EXPECT_TRUE(invokeParser("_ZGVnM2v_sin(UserFunc)", "UserFunc"));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "UserFunc");
}
TEST_F(VFABIParserTest, ScalarNameAndVectorName_03) {
EXPECT_TRUE(invokeParser("_ZGVnM2v___sin_sin_sin"));
EXPECT_EQ(ScalarName, "__sin_sin_sin");
EXPECT_EQ(VectorName, "_ZGVnM2v___sin_sin_sin");
}
TEST_F(VFABIParserTest, Parse) {
EXPECT_TRUE(invokeParser("_ZGVnN2vls2Ls27Us4Rs5l1L10U100R1000_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_FALSE(IsMasked());
EXPECT_EQ(ISA, VFISAKind::AdvancedSIMD);
EXPECT_FALSE(IsScalable);
EXPECT_EQ(Parameters.size(), (unsigned)9);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector, 0}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::OMP_LinearPos, 2}));
EXPECT_EQ(Parameters[2], VFParameter({2, VFParamKind::OMP_LinearValPos, 27}));
EXPECT_EQ(Parameters[3], VFParameter({3, VFParamKind::OMP_LinearUValPos, 4}));
EXPECT_EQ(Parameters[4], VFParameter({4, VFParamKind::OMP_LinearRefPos, 5}));
EXPECT_EQ(Parameters[5], VFParameter({5, VFParamKind::OMP_Linear, 1}));
EXPECT_EQ(Parameters[6], VFParameter({6, VFParamKind::OMP_LinearVal, 10}));
EXPECT_EQ(Parameters[7], VFParameter({7, VFParamKind::OMP_LinearUVal, 100}));
EXPECT_EQ(Parameters[8], VFParameter({8, VFParamKind::OMP_LinearRef, 1000}));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "_ZGVnN2vls2Ls27Us4Rs5l1L10U100R1000_sin");
}
TEST_F(VFABIParserTest, ParseVectorName) {
EXPECT_TRUE(invokeParser("_ZGVnN2v_sin(my_v_sin)", "my_v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_FALSE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::AdvancedSIMD);
EXPECT_EQ(Parameters.size(), (unsigned)1);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector, 0}));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "my_v_sin");
}
TEST_F(VFABIParserTest, LinearWithCompileTimeNegativeStep) {
EXPECT_TRUE(invokeParser("_ZGVnN2ln1Ln10Un100Rn1000_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_FALSE(IsMasked());
EXPECT_EQ(ISA, VFISAKind::AdvancedSIMD);
EXPECT_FALSE(IsScalable);
EXPECT_EQ(Parameters.size(), (unsigned)4);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::OMP_Linear, -1}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::OMP_LinearVal, -10}));
EXPECT_EQ(Parameters[2], VFParameter({2, VFParamKind::OMP_LinearUVal, -100}));
EXPECT_EQ(Parameters[3], VFParameter({3, VFParamKind::OMP_LinearRef, -1000}));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "_ZGVnN2ln1Ln10Un100Rn1000_sin");
}
TEST_F(VFABIParserTest, ParseScalableSVE) {
EXPECT_TRUE(invokeParser(
"_ZGVsMxv_sin(custom_vg)", "custom_vg",
"<vscale x 2 x i32>(<vscale x 2 x i32>, <vscale x 2 x i1>)"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_TRUE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::SVE);
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "custom_vg");
}
TEST_F(VFABIParserTest, ParseFixedWidthSVE) {
EXPECT_TRUE(invokeParser("_ZGVsM2v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::SVE);
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "_ZGVsM2v_sin");
}
TEST_F(VFABIParserTest, NotAVectorFunctionABIName) {
// Vector names should start with `_ZGV`.
EXPECT_FALSE(invokeParser("ZGVnN2v_sin"));
}
TEST_F(VFABIParserTest, LinearWithRuntimeStep) {
EXPECT_FALSE(invokeParser("_ZGVnN2ls_sin"))
<< "A number should be present after \"ls\".";
EXPECT_TRUE(invokeParser("_ZGVnN2ls2_sin"));
EXPECT_FALSE(invokeParser("_ZGVnN2Rs_sin"))
<< "A number should be present after \"Rs\".";
EXPECT_TRUE(invokeParser("_ZGVnN2Rs4_sin"));
EXPECT_FALSE(invokeParser("_ZGVnN2Ls_sin"))
<< "A number should be present after \"Ls\".";
EXPECT_TRUE(invokeParser("_ZGVnN2Ls6_sin"));
EXPECT_FALSE(invokeParser("_ZGVnN2Us_sin"))
<< "A number should be present after \"Us\".";
EXPECT_TRUE(invokeParser("_ZGVnN2Us8_sin"));
}
TEST_F(VFABIParserTest, LinearWithoutCompileTime) {
EXPECT_TRUE(invokeParser("_ZGVnN3lLRUlnLnRnUn_sin"));
EXPECT_EQ(Parameters.size(), (unsigned)8);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::OMP_Linear, 1}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::OMP_LinearVal, 1}));
EXPECT_EQ(Parameters[2], VFParameter({2, VFParamKind::OMP_LinearRef, 1}));
EXPECT_EQ(Parameters[3], VFParameter({3, VFParamKind::OMP_LinearUVal, 1}));
EXPECT_EQ(Parameters[4], VFParameter({4, VFParamKind::OMP_Linear, -1}));
EXPECT_EQ(Parameters[5], VFParameter({5, VFParamKind::OMP_LinearVal, -1}));
EXPECT_EQ(Parameters[6], VFParameter({6, VFParamKind::OMP_LinearRef, -1}));
EXPECT_EQ(Parameters[7], VFParameter({7, VFParamKind::OMP_LinearUVal, -1}));
}
TEST_F(VFABIParserTest, ISA) {
EXPECT_TRUE(invokeParser("_ZGVqN2v_sin"));
EXPECT_EQ(ISA, VFISAKind::Unknown);
EXPECT_TRUE(invokeParser("_ZGVnN2v_sin"));
EXPECT_EQ(ISA, VFISAKind::AdvancedSIMD);
EXPECT_TRUE(invokeParser("_ZGVsN2v_sin"));
EXPECT_EQ(ISA, VFISAKind::SVE);
EXPECT_TRUE(invokeParser("_ZGVbN2v_sin"));
EXPECT_EQ(ISA, VFISAKind::SSE);
EXPECT_TRUE(invokeParser("_ZGVcN2v_sin"));
EXPECT_EQ(ISA, VFISAKind::AVX);
EXPECT_TRUE(invokeParser("_ZGVdN2v_sin"));
EXPECT_EQ(ISA, VFISAKind::AVX2);
EXPECT_TRUE(invokeParser("_ZGVeN2v_sin"));
EXPECT_EQ(ISA, VFISAKind::AVX512);
}
TEST_F(VFABIParserTest, LLVM_ISA) {
EXPECT_FALSE(invokeParser("_ZGV_LLVM_N2v_sin"));
EXPECT_TRUE(invokeParser("_ZGV_LLVM_N2v_sin_(vector_name)", "vector_name"));
EXPECT_EQ(ISA, VFISAKind::LLVM);
}
TEST_F(VFABIParserTest, InvalidMask) {
EXPECT_FALSE(invokeParser("_ZGVsK2v_sin"));
}
TEST_F(VFABIParserTest, InvalidParameter) {
EXPECT_FALSE(invokeParser("_ZGVsM2vX_sin"));
}
TEST_F(VFABIParserTest, Align) {
EXPECT_TRUE(invokeParser("_ZGVsN2l2a2_sin"));
EXPECT_EQ(Parameters.size(), (unsigned)1);
EXPECT_EQ(Parameters[0].Alignment, Align(2));
// Missing alignment value.
EXPECT_FALSE(invokeParser("_ZGVsM2l2a_sin"));
// Invalid alignment token "x".
EXPECT_FALSE(invokeParser("_ZGVsM2l2ax_sin"));
// Alignment MUST be associated to a paramater.
EXPECT_FALSE(invokeParser("_ZGVsM2a2_sin"));
// Alignment must be a power of 2.
EXPECT_FALSE(invokeParser("_ZGVsN2l2a0_sin"));
EXPECT_TRUE(invokeParser("_ZGVsN2l2a1_sin"));
EXPECT_FALSE(invokeParser("_ZGVsN2l2a3_sin"));
EXPECT_FALSE(invokeParser("_ZGVsN2l2a6_sin"));
}
TEST_F(VFABIParserTest, ParseUniform) {
EXPECT_TRUE(invokeParser("_ZGVnN2u_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_FALSE(IsMasked());
EXPECT_EQ(ISA, VFISAKind::AdvancedSIMD);
EXPECT_FALSE(IsScalable);
EXPECT_EQ(Parameters.size(), (unsigned)1);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::OMP_Uniform, 0}));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "_ZGVnN2u_sin");
// Uniform doesn't expect extra data.
EXPECT_FALSE(invokeParser("_ZGVnN2u0_sin"));
}
TEST_F(VFABIParserTest, ISAIndependentMangling) {
// This test makes sure that the mangling of the parameters in
// independent on the <isa> token.
const SmallVector<VFParameter, 8> ExpectedParams = {
VFParameter({0, VFParamKind::Vector, 0}),
VFParameter({1, VFParamKind::OMP_LinearPos, 2}),
VFParameter({2, VFParamKind::OMP_LinearValPos, 27}),
VFParameter({3, VFParamKind::OMP_LinearUValPos, 4}),
VFParameter({4, VFParamKind::OMP_LinearRefPos, 5}),
VFParameter({5, VFParamKind::OMP_Linear, 1}),
VFParameter({6, VFParamKind::OMP_LinearVal, 10}),
VFParameter({7, VFParamKind::OMP_LinearUVal, 100}),
VFParameter({8, VFParamKind::OMP_LinearRef, 1000}),
VFParameter({9, VFParamKind::OMP_Uniform, 0}),
};
#define __COMMON_CHECKS \
do { \
EXPECT_EQ(VF, (unsigned)2); \
EXPECT_FALSE(IsMasked()); \
EXPECT_FALSE(IsScalable); \
EXPECT_EQ(Parameters.size(), (unsigned)10); \
EXPECT_EQ(Parameters, ExpectedParams); \
EXPECT_EQ(ScalarName, "sin"); \
} while (0)
// Advanced SIMD: <isa> = "n"
EXPECT_TRUE(invokeParser("_ZGVnN2vls2Ls27Us4Rs5l1L10U100R1000u_sin"));
EXPECT_EQ(ISA, VFISAKind::AdvancedSIMD);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "_ZGVnN2vls2Ls27Us4Rs5l1L10U100R1000u_sin");
// SVE: <isa> = "s"
EXPECT_TRUE(invokeParser("_ZGVsN2vls2Ls27Us4Rs5l1L10U100R1000u_sin"));
EXPECT_EQ(ISA, VFISAKind::SVE);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "_ZGVsN2vls2Ls27Us4Rs5l1L10U100R1000u_sin");
// SSE: <isa> = "b"
EXPECT_TRUE(invokeParser("_ZGVbN2vls2Ls27Us4Rs5l1L10U100R1000u_sin"));
EXPECT_EQ(ISA, VFISAKind::SSE);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "_ZGVbN2vls2Ls27Us4Rs5l1L10U100R1000u_sin");
// AVX: <isa> = "c"
EXPECT_TRUE(invokeParser("_ZGVcN2vls2Ls27Us4Rs5l1L10U100R1000u_sin"));
EXPECT_EQ(ISA, VFISAKind::AVX);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "_ZGVcN2vls2Ls27Us4Rs5l1L10U100R1000u_sin");
// AVX2: <isa> = "d"
EXPECT_TRUE(invokeParser("_ZGVdN2vls2Ls27Us4Rs5l1L10U100R1000u_sin"));
EXPECT_EQ(ISA, VFISAKind::AVX2);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "_ZGVdN2vls2Ls27Us4Rs5l1L10U100R1000u_sin");
// AVX512: <isa> = "e"
EXPECT_TRUE(invokeParser("_ZGVeN2vls2Ls27Us4Rs5l1L10U100R1000u_sin"));
EXPECT_EQ(ISA, VFISAKind::AVX512);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "_ZGVeN2vls2Ls27Us4Rs5l1L10U100R1000u_sin");
// LLVM: <isa> = "_LLVM_" internal vector function.
EXPECT_TRUE(invokeParser(
"_ZGV_LLVM_N2vls2Ls27Us4Rs5l1L10U100R1000u_sin(vectorf)", "vectorf"));
EXPECT_EQ(ISA, VFISAKind::LLVM);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "vectorf");
// Unknown ISA (randomly using "q"). This test will need update if
// some targets decide to use "q" as their ISA token.
EXPECT_TRUE(invokeParser("_ZGVqN2vls2Ls27Us4Rs5l1L10U100R1000u_sin"));
EXPECT_EQ(ISA, VFISAKind::Unknown);
__COMMON_CHECKS;
EXPECT_EQ(VectorName, "_ZGVqN2vls2Ls27Us4Rs5l1L10U100R1000u_sin");
#undef __COMMON_CHECKS
}
TEST_F(VFABIParserTest, MissingScalarName) {
EXPECT_FALSE(invokeParser("_ZGVnN2v_"));
}
TEST_F(VFABIParserTest, MissingVectorName) {
EXPECT_FALSE(invokeParser("_ZGVnN2v_foo()"));
}
TEST_F(VFABIParserTest, MissingVectorNameTermination) {
EXPECT_FALSE(invokeParser("_ZGVnN2v_foo(bar"));
}
TEST_F(VFABIParserTest, ParseMaskingNEON) {
EXPECT_TRUE(invokeParser("_ZGVnM2v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::AdvancedSIMD);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
}
TEST_F(VFABIParserTest, ParseMaskingSVE) {
EXPECT_TRUE(invokeParser("_ZGVsM2v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::SVE);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
}
TEST_F(VFABIParserTest, ParseMaskingSSE) {
EXPECT_TRUE(invokeParser("_ZGVbM2v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::SSE);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
}
TEST_F(VFABIParserTest, ParseMaskingAVX) {
EXPECT_TRUE(invokeParser("_ZGVcM2v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::AVX);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
}
TEST_F(VFABIParserTest, ParseMaskingAVX2) {
EXPECT_TRUE(invokeParser("_ZGVdM2v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::AVX2);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
}
TEST_F(VFABIParserTest, ParseMaskingAVX512) {
EXPECT_TRUE(invokeParser("_ZGVeM2v_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::AVX512);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
}
TEST_F(VFABIParserTest, ParseMaskingLLVM) {
EXPECT_TRUE(invokeParser("_ZGV_LLVM_M2v_sin(custom_vector_sin)",
"custom_vector_sin"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::LLVM);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "custom_vector_sin");
}
TEST_F(VFABIParserTest, ParseScalableMaskingLLVM) {
EXPECT_TRUE(invokeParser(
"_ZGV_LLVM_Mxv_sin(custom_vector_sin)", "custom_vector_sin",
"<vscale x 2 x i32> (<vscale x 2 x i32>, <vscale x 2 x i1>)"));
EXPECT_TRUE(IsMasked());
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::LLVM);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sin");
EXPECT_EQ(VectorName, "custom_vector_sin");
}
TEST_F(VFABIParserTest, ParseScalableMaskingLLVMSincos) {
EXPECT_TRUE(invokeParser("_ZGV_LLVM_Mxvl8l8_sincos(custom_vector_sincos)",
"custom_vector_sincos",
"void(<vscale x 2 x double>, double *, double *)"));
EXPECT_EQ(VF, (unsigned)2);
EXPECT_TRUE(IsMasked());
EXPECT_TRUE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::LLVM);
EXPECT_EQ(Parameters.size(), (unsigned)4);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::OMP_Linear, 8}));
EXPECT_EQ(Parameters[2], VFParameter({2, VFParamKind::OMP_Linear, 8}));
EXPECT_EQ(Parameters[3], VFParameter({3, VFParamKind::GlobalPredicate}));
EXPECT_EQ(ScalarName, "sincos");
EXPECT_EQ(VectorName, "custom_vector_sincos");
}
class VFABIAttrTest : public testing::Test {
protected:
void SetUp() override {
M = parseAssemblyString(IR, Err, Ctx);
// Get the only call instruction in the block, which is the first
// instruction.
CI = dyn_cast<CallInst>(&*(instructions(M->getFunction("f")).begin()));
}
const char *IR = "define i32 @f(i32 %a) {\n"
" %1 = call i32 @g(i32 %a) #0\n"
" ret i32 %1\n"
"}\n"
"declare i32 @g(i32)\n"
"declare <2 x i32> @custom_vg(<2 x i32>)"
"declare <4 x i32> @_ZGVnN4v_g(<4 x i32>)"
"declare <8 x i32> @_ZGVnN8v_g(<8 x i32>)"
"attributes #0 = { "
"\"vector-function-abi-variant\"=\""
"_ZGVnN2v_g(custom_vg),_ZGVnN4v_g\" }";
LLVMContext Ctx;
SMDiagnostic Err;
std::unique_ptr<Module> M;
CallInst *CI;
SmallVector<std::string, 8> Mappings;
};
TEST_F(VFABIAttrTest, Read) {
VFABI::getVectorVariantNames(*CI, Mappings);
SmallVector<std::string, 8> Exp;
Exp.push_back("_ZGVnN2v_g(custom_vg)");
Exp.push_back("_ZGVnN4v_g");
EXPECT_EQ(Mappings, Exp);
}
TEST_F(VFABIParserTest, LLVM_InternalISA) {
EXPECT_FALSE(invokeParser("_ZGV_LLVM_N2v_sin"));
EXPECT_TRUE(invokeParser("_ZGV_LLVM_N2v_sin_(vector_name)", "vector_name"));
EXPECT_EQ(ISA, VFISAKind::LLVM);
}
TEST_F(VFABIParserTest, IntrinsicsInLLVMIsa) {
EXPECT_TRUE(invokeParser("_ZGV_LLVM_N4vv_llvm.pow.f32(__svml_powf4)",
"__svml_powf4"));
EXPECT_EQ(VF, (unsigned)4);
EXPECT_FALSE(IsMasked());
EXPECT_FALSE(IsScalable);
EXPECT_EQ(ISA, VFISAKind::LLVM);
EXPECT_EQ(Parameters.size(), (unsigned)2);
EXPECT_EQ(Parameters[0], VFParameter({0, VFParamKind::Vector}));
EXPECT_EQ(Parameters[1], VFParameter({1, VFParamKind::Vector}));
EXPECT_EQ(ScalarName, "llvm.pow.f32");
}
TEST_F(VFABIParserTest, ParseScalableRequiresDeclaration) {
const char *MangledName = "_ZGVsMxv_sin(custom_vg)";
// The parser succeds only when the correct function definition of
// `custom_vg` is added to the module.
EXPECT_FALSE(invokeParser(MangledName));
EXPECT_TRUE(invokeParser(
MangledName, "custom_vg",
"<vscale x 4 x double>(<vscale x 4 x double>, <vscale x 4 x i1>)"));
}
TEST_F(VFABIParserTest, ZeroIsInvalidVLEN) {
EXPECT_FALSE(invokeParser("_ZGVeM0v_sin"));
EXPECT_FALSE(invokeParser("_ZGVeN0v_sin"));
EXPECT_FALSE(invokeParser("_ZGVsM0v_sin"));
EXPECT_FALSE(invokeParser("_ZGVsN0v_sin"));
}
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("VectorFunctionABITests", errs());
return Mod;
}
TEST(VFABIGetMappingsTest, IndirectCallInst) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(C, R"IR(
define void @call(void () * %f) {
entry:
call void %f()
ret void
}
)IR");
auto F = dyn_cast_or_null<Function>(M->getNamedValue("call"));
ASSERT_TRUE(F);
auto CI = dyn_cast<CallInst>(&F->front().front());
ASSERT_TRUE(CI);
ASSERT_TRUE(CI->isIndirectCall());
auto Mappings = VFDatabase::getMappings(*CI);
EXPECT_EQ(Mappings.size(), (unsigned)0);
}