mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
ed5a269ff1
Rather than adding methods for dropping these attributes in various places, add a function that returns an AttrBuilder with these attributes, which can then be used with existing methods for dropping attributes. This is with an eye on D104641, which also needs to drop them from returns, not just parameters. Also be more explicit about the semantics of the method in the documentation. Refer to UB rather than Undef, which is what this is actually about.
1129 lines
43 KiB
C++
1129 lines
43 KiB
C++
//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass deletes dead arguments from internal functions. Dead argument
|
|
// elimination removes arguments which are directly dead, as well as arguments
|
|
// only passed into function calls as dead arguments of other functions. This
|
|
// pass also deletes dead return values in a similar way.
|
|
//
|
|
// This pass is often useful as a cleanup pass to run after aggressive
|
|
// interprocedural passes, which add possibly-dead arguments or return values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "deadargelim"
|
|
|
|
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
|
|
STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
|
|
STATISTIC(NumArgumentsReplacedWithUndef,
|
|
"Number of unread args replaced with undef");
|
|
|
|
namespace {
|
|
|
|
/// DAE - The dead argument elimination pass.
|
|
class DAE : public ModulePass {
|
|
protected:
|
|
// DAH uses this to specify a different ID.
|
|
explicit DAE(char &ID) : ModulePass(ID) {}
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
DAE() : ModulePass(ID) {
|
|
initializeDAEPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
if (skipModule(M))
|
|
return false;
|
|
DeadArgumentEliminationPass DAEP(ShouldHackArguments());
|
|
ModuleAnalysisManager DummyMAM;
|
|
PreservedAnalyses PA = DAEP.run(M, DummyMAM);
|
|
return !PA.areAllPreserved();
|
|
}
|
|
|
|
virtual bool ShouldHackArguments() const { return false; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char DAE::ID = 0;
|
|
|
|
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
|
|
|
|
namespace {
|
|
|
|
/// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
|
|
/// deletes arguments to functions which are external. This is only for use
|
|
/// by bugpoint.
|
|
struct DAH : public DAE {
|
|
static char ID;
|
|
|
|
DAH() : DAE(ID) {}
|
|
|
|
bool ShouldHackArguments() const override { return true; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char DAH::ID = 0;
|
|
|
|
INITIALIZE_PASS(DAH, "deadarghaX0r",
|
|
"Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
|
|
false, false)
|
|
|
|
/// createDeadArgEliminationPass - This pass removes arguments from functions
|
|
/// which are not used by the body of the function.
|
|
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
|
|
|
|
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
|
|
|
|
/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
|
|
/// llvm.vastart is never called, the varargs list is dead for the function.
|
|
bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
|
|
assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
|
|
if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
|
|
|
|
// Ensure that the function is only directly called.
|
|
if (Fn.hasAddressTaken())
|
|
return false;
|
|
|
|
// Don't touch naked functions. The assembly might be using an argument, or
|
|
// otherwise rely on the frame layout in a way that this analysis will not
|
|
// see.
|
|
if (Fn.hasFnAttribute(Attribute::Naked)) {
|
|
return false;
|
|
}
|
|
|
|
// Okay, we know we can transform this function if safe. Scan its body
|
|
// looking for calls marked musttail or calls to llvm.vastart.
|
|
for (BasicBlock &BB : Fn) {
|
|
for (Instruction &I : BB) {
|
|
CallInst *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI)
|
|
continue;
|
|
if (CI->isMustTailCall())
|
|
return false;
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
|
|
if (II->getIntrinsicID() == Intrinsic::vastart)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we get here, there are no calls to llvm.vastart in the function body,
|
|
// remove the "..." and adjust all the calls.
|
|
|
|
// Start by computing a new prototype for the function, which is the same as
|
|
// the old function, but doesn't have isVarArg set.
|
|
FunctionType *FTy = Fn.getFunctionType();
|
|
|
|
std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
|
|
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
|
|
Params, false);
|
|
unsigned NumArgs = Params.size();
|
|
|
|
// Create the new function body and insert it into the module...
|
|
Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
|
|
NF->copyAttributesFrom(&Fn);
|
|
NF->setComdat(Fn.getComdat());
|
|
Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
|
|
NF->takeName(&Fn);
|
|
|
|
// Loop over all of the callers of the function, transforming the call sites
|
|
// to pass in a smaller number of arguments into the new function.
|
|
//
|
|
std::vector<Value *> Args;
|
|
for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
|
|
CallBase *CB = dyn_cast<CallBase>(*I++);
|
|
if (!CB)
|
|
continue;
|
|
|
|
// Pass all the same arguments.
|
|
Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
|
|
|
|
// Drop any attributes that were on the vararg arguments.
|
|
AttributeList PAL = CB->getAttributes();
|
|
if (!PAL.isEmpty()) {
|
|
SmallVector<AttributeSet, 8> ArgAttrs;
|
|
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
|
|
ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
|
|
PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
|
|
PAL.getRetAttributes(), ArgAttrs);
|
|
}
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
CB->getOperandBundlesAsDefs(OpBundles);
|
|
|
|
CallBase *NewCB = nullptr;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
|
|
NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
|
|
Args, OpBundles, "", CB);
|
|
} else {
|
|
NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
|
|
cast<CallInst>(NewCB)->setTailCallKind(
|
|
cast<CallInst>(CB)->getTailCallKind());
|
|
}
|
|
NewCB->setCallingConv(CB->getCallingConv());
|
|
NewCB->setAttributes(PAL);
|
|
NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
|
|
|
|
Args.clear();
|
|
|
|
if (!CB->use_empty())
|
|
CB->replaceAllUsesWith(NewCB);
|
|
|
|
NewCB->takeName(CB);
|
|
|
|
// Finally, remove the old call from the program, reducing the use-count of
|
|
// F.
|
|
CB->eraseFromParent();
|
|
}
|
|
|
|
// Since we have now created the new function, splice the body of the old
|
|
// function right into the new function, leaving the old rotting hulk of the
|
|
// function empty.
|
|
NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
|
|
|
|
// Loop over the argument list, transferring uses of the old arguments over to
|
|
// the new arguments, also transferring over the names as well. While we're at
|
|
// it, remove the dead arguments from the DeadArguments list.
|
|
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
|
|
I2 = NF->arg_begin(); I != E; ++I, ++I2) {
|
|
// Move the name and users over to the new version.
|
|
I->replaceAllUsesWith(&*I2);
|
|
I2->takeName(&*I);
|
|
}
|
|
|
|
// Clone metadatas from the old function, including debug info descriptor.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
|
|
Fn.getAllMetadata(MDs);
|
|
for (auto MD : MDs)
|
|
NF->addMetadata(MD.first, *MD.second);
|
|
|
|
// Fix up any BlockAddresses that refer to the function.
|
|
Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
|
|
// Delete the bitcast that we just created, so that NF does not
|
|
// appear to be address-taken.
|
|
NF->removeDeadConstantUsers();
|
|
// Finally, nuke the old function.
|
|
Fn.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
|
|
/// arguments that are unused, and changes the caller parameters to be undefined
|
|
/// instead.
|
|
bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
|
|
// We cannot change the arguments if this TU does not define the function or
|
|
// if the linker may choose a function body from another TU, even if the
|
|
// nominal linkage indicates that other copies of the function have the same
|
|
// semantics. In the below example, the dead load from %p may not have been
|
|
// eliminated from the linker-chosen copy of f, so replacing %p with undef
|
|
// in callers may introduce undefined behavior.
|
|
//
|
|
// define linkonce_odr void @f(i32* %p) {
|
|
// %v = load i32 %p
|
|
// ret void
|
|
// }
|
|
if (!Fn.hasExactDefinition())
|
|
return false;
|
|
|
|
// Functions with local linkage should already have been handled, except the
|
|
// fragile (variadic) ones which we can improve here.
|
|
if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
|
|
return false;
|
|
|
|
// Don't touch naked functions. The assembly might be using an argument, or
|
|
// otherwise rely on the frame layout in a way that this analysis will not
|
|
// see.
|
|
if (Fn.hasFnAttribute(Attribute::Naked))
|
|
return false;
|
|
|
|
if (Fn.use_empty())
|
|
return false;
|
|
|
|
SmallVector<unsigned, 8> UnusedArgs;
|
|
bool Changed = false;
|
|
|
|
AttrBuilder UBImplyingAttributes = AttributeFuncs::getUBImplyingAttributes();
|
|
for (Argument &Arg : Fn.args()) {
|
|
if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
|
|
!Arg.hasPassPointeeByValueCopyAttr()) {
|
|
if (Arg.isUsedByMetadata()) {
|
|
Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
|
|
Changed = true;
|
|
}
|
|
UnusedArgs.push_back(Arg.getArgNo());
|
|
Fn.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
|
|
}
|
|
}
|
|
|
|
if (UnusedArgs.empty())
|
|
return false;
|
|
|
|
for (Use &U : Fn.uses()) {
|
|
CallBase *CB = dyn_cast<CallBase>(U.getUser());
|
|
if (!CB || !CB->isCallee(&U))
|
|
continue;
|
|
|
|
// Now go through all unused args and replace them with "undef".
|
|
for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
|
|
unsigned ArgNo = UnusedArgs[I];
|
|
|
|
Value *Arg = CB->getArgOperand(ArgNo);
|
|
CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType()));
|
|
CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
|
|
|
|
++NumArgumentsReplacedWithUndef;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Convenience function that returns the number of return values. It returns 0
|
|
/// for void functions and 1 for functions not returning a struct. It returns
|
|
/// the number of struct elements for functions returning a struct.
|
|
static unsigned NumRetVals(const Function *F) {
|
|
Type *RetTy = F->getReturnType();
|
|
if (RetTy->isVoidTy())
|
|
return 0;
|
|
else if (StructType *STy = dyn_cast<StructType>(RetTy))
|
|
return STy->getNumElements();
|
|
else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
|
|
return ATy->getNumElements();
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/// Returns the sub-type a function will return at a given Idx. Should
|
|
/// correspond to the result type of an ExtractValue instruction executed with
|
|
/// just that one Idx (i.e. only top-level structure is considered).
|
|
static Type *getRetComponentType(const Function *F, unsigned Idx) {
|
|
Type *RetTy = F->getReturnType();
|
|
assert(!RetTy->isVoidTy() && "void type has no subtype");
|
|
|
|
if (StructType *STy = dyn_cast<StructType>(RetTy))
|
|
return STy->getElementType(Idx);
|
|
else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
|
|
return ATy->getElementType();
|
|
else
|
|
return RetTy;
|
|
}
|
|
|
|
/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
|
|
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
|
|
/// liveness of Use.
|
|
DeadArgumentEliminationPass::Liveness
|
|
DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
|
|
UseVector &MaybeLiveUses) {
|
|
// We're live if our use or its Function is already marked as live.
|
|
if (IsLive(Use))
|
|
return Live;
|
|
|
|
// We're maybe live otherwise, but remember that we must become live if
|
|
// Use becomes live.
|
|
MaybeLiveUses.push_back(Use);
|
|
return MaybeLive;
|
|
}
|
|
|
|
/// SurveyUse - This looks at a single use of an argument or return value
|
|
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
|
|
/// if it causes the used value to become MaybeLive.
|
|
///
|
|
/// RetValNum is the return value number to use when this use is used in a
|
|
/// return instruction. This is used in the recursion, you should always leave
|
|
/// it at 0.
|
|
DeadArgumentEliminationPass::Liveness
|
|
DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
|
|
unsigned RetValNum) {
|
|
const User *V = U->getUser();
|
|
if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
|
|
// The value is returned from a function. It's only live when the
|
|
// function's return value is live. We use RetValNum here, for the case
|
|
// that U is really a use of an insertvalue instruction that uses the
|
|
// original Use.
|
|
const Function *F = RI->getParent()->getParent();
|
|
if (RetValNum != -1U) {
|
|
RetOrArg Use = CreateRet(F, RetValNum);
|
|
// We might be live, depending on the liveness of Use.
|
|
return MarkIfNotLive(Use, MaybeLiveUses);
|
|
} else {
|
|
DeadArgumentEliminationPass::Liveness Result = MaybeLive;
|
|
for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) {
|
|
RetOrArg Use = CreateRet(F, Ri);
|
|
// We might be live, depending on the liveness of Use. If any
|
|
// sub-value is live, then the entire value is considered live. This
|
|
// is a conservative choice, and better tracking is possible.
|
|
DeadArgumentEliminationPass::Liveness SubResult =
|
|
MarkIfNotLive(Use, MaybeLiveUses);
|
|
if (Result != Live)
|
|
Result = SubResult;
|
|
}
|
|
return Result;
|
|
}
|
|
}
|
|
if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
|
|
if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
|
|
&& IV->hasIndices())
|
|
// The use we are examining is inserted into an aggregate. Our liveness
|
|
// depends on all uses of that aggregate, but if it is used as a return
|
|
// value, only index at which we were inserted counts.
|
|
RetValNum = *IV->idx_begin();
|
|
|
|
// Note that if we are used as the aggregate operand to the insertvalue,
|
|
// we don't change RetValNum, but do survey all our uses.
|
|
|
|
Liveness Result = MaybeLive;
|
|
for (const Use &UU : IV->uses()) {
|
|
Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
|
|
if (Result == Live)
|
|
break;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
if (const auto *CB = dyn_cast<CallBase>(V)) {
|
|
const Function *F = CB->getCalledFunction();
|
|
if (F) {
|
|
// Used in a direct call.
|
|
|
|
// The function argument is live if it is used as a bundle operand.
|
|
if (CB->isBundleOperand(U))
|
|
return Live;
|
|
|
|
// Find the argument number. We know for sure that this use is an
|
|
// argument, since if it was the function argument this would be an
|
|
// indirect call and the we know can't be looking at a value of the
|
|
// label type (for the invoke instruction).
|
|
unsigned ArgNo = CB->getArgOperandNo(U);
|
|
|
|
if (ArgNo >= F->getFunctionType()->getNumParams())
|
|
// The value is passed in through a vararg! Must be live.
|
|
return Live;
|
|
|
|
assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
|
|
"Argument is not where we expected it");
|
|
|
|
// Value passed to a normal call. It's only live when the corresponding
|
|
// argument to the called function turns out live.
|
|
RetOrArg Use = CreateArg(F, ArgNo);
|
|
return MarkIfNotLive(Use, MaybeLiveUses);
|
|
}
|
|
}
|
|
// Used in any other way? Value must be live.
|
|
return Live;
|
|
}
|
|
|
|
/// SurveyUses - This looks at all the uses of the given value
|
|
/// Returns the Liveness deduced from the uses of this value.
|
|
///
|
|
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
|
|
/// the result is Live, MaybeLiveUses might be modified but its content should
|
|
/// be ignored (since it might not be complete).
|
|
DeadArgumentEliminationPass::Liveness
|
|
DeadArgumentEliminationPass::SurveyUses(const Value *V,
|
|
UseVector &MaybeLiveUses) {
|
|
// Assume it's dead (which will only hold if there are no uses at all..).
|
|
Liveness Result = MaybeLive;
|
|
// Check each use.
|
|
for (const Use &U : V->uses()) {
|
|
Result = SurveyUse(&U, MaybeLiveUses);
|
|
if (Result == Live)
|
|
break;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// SurveyFunction - This performs the initial survey of the specified function,
|
|
// checking out whether or not it uses any of its incoming arguments or whether
|
|
// any callers use the return value. This fills in the LiveValues set and Uses
|
|
// map.
|
|
//
|
|
// We consider arguments of non-internal functions to be intrinsically alive as
|
|
// well as arguments to functions which have their "address taken".
|
|
void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
|
|
// Functions with inalloca/preallocated parameters are expecting args in a
|
|
// particular register and memory layout.
|
|
if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
|
|
F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
|
|
MarkLive(F);
|
|
return;
|
|
}
|
|
|
|
// Don't touch naked functions. The assembly might be using an argument, or
|
|
// otherwise rely on the frame layout in a way that this analysis will not
|
|
// see.
|
|
if (F.hasFnAttribute(Attribute::Naked)) {
|
|
MarkLive(F);
|
|
return;
|
|
}
|
|
|
|
unsigned RetCount = NumRetVals(&F);
|
|
|
|
// Assume all return values are dead
|
|
using RetVals = SmallVector<Liveness, 5>;
|
|
|
|
RetVals RetValLiveness(RetCount, MaybeLive);
|
|
|
|
using RetUses = SmallVector<UseVector, 5>;
|
|
|
|
// These vectors map each return value to the uses that make it MaybeLive, so
|
|
// we can add those to the Uses map if the return value really turns out to be
|
|
// MaybeLive. Initialized to a list of RetCount empty lists.
|
|
RetUses MaybeLiveRetUses(RetCount);
|
|
|
|
bool HasMustTailCalls = false;
|
|
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
|
|
if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
|
|
!= F.getFunctionType()->getReturnType()) {
|
|
// We don't support old style multiple return values.
|
|
MarkLive(F);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we have any returns of `musttail` results - the signature can't
|
|
// change
|
|
if (BB->getTerminatingMustTailCall() != nullptr)
|
|
HasMustTailCalls = true;
|
|
}
|
|
|
|
if (HasMustTailCalls) {
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
|
|
<< " has musttail calls\n");
|
|
}
|
|
|
|
if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
|
|
MarkLive(F);
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
|
|
<< F.getName() << "\n");
|
|
// Keep track of the number of live retvals, so we can skip checks once all
|
|
// of them turn out to be live.
|
|
unsigned NumLiveRetVals = 0;
|
|
|
|
bool HasMustTailCallers = false;
|
|
|
|
// Loop all uses of the function.
|
|
for (const Use &U : F.uses()) {
|
|
// If the function is PASSED IN as an argument, its address has been
|
|
// taken.
|
|
const auto *CB = dyn_cast<CallBase>(U.getUser());
|
|
if (!CB || !CB->isCallee(&U)) {
|
|
MarkLive(F);
|
|
return;
|
|
}
|
|
|
|
// The number of arguments for `musttail` call must match the number of
|
|
// arguments of the caller
|
|
if (CB->isMustTailCall())
|
|
HasMustTailCallers = true;
|
|
|
|
// If we end up here, we are looking at a direct call to our function.
|
|
|
|
// Now, check how our return value(s) is/are used in this caller. Don't
|
|
// bother checking return values if all of them are live already.
|
|
if (NumLiveRetVals == RetCount)
|
|
continue;
|
|
|
|
// Check all uses of the return value.
|
|
for (const Use &U : CB->uses()) {
|
|
if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
|
|
// This use uses a part of our return value, survey the uses of
|
|
// that part and store the results for this index only.
|
|
unsigned Idx = *Ext->idx_begin();
|
|
if (RetValLiveness[Idx] != Live) {
|
|
RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
|
|
if (RetValLiveness[Idx] == Live)
|
|
NumLiveRetVals++;
|
|
}
|
|
} else {
|
|
// Used by something else than extractvalue. Survey, but assume that the
|
|
// result applies to all sub-values.
|
|
UseVector MaybeLiveAggregateUses;
|
|
if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
|
|
NumLiveRetVals = RetCount;
|
|
RetValLiveness.assign(RetCount, Live);
|
|
break;
|
|
} else {
|
|
for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
|
|
if (RetValLiveness[Ri] != Live)
|
|
MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
|
|
MaybeLiveAggregateUses.end());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (HasMustTailCallers) {
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
|
|
<< " has musttail callers\n");
|
|
}
|
|
|
|
// Now we've inspected all callers, record the liveness of our return values.
|
|
for (unsigned Ri = 0; Ri != RetCount; ++Ri)
|
|
MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
|
|
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
|
|
<< F.getName() << "\n");
|
|
|
|
// Now, check all of our arguments.
|
|
unsigned ArgI = 0;
|
|
UseVector MaybeLiveArgUses;
|
|
for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
|
|
AI != E; ++AI, ++ArgI) {
|
|
Liveness Result;
|
|
if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
|
|
HasMustTailCalls) {
|
|
// Variadic functions will already have a va_arg function expanded inside
|
|
// them, making them potentially very sensitive to ABI changes resulting
|
|
// from removing arguments entirely, so don't. For example AArch64 handles
|
|
// register and stack HFAs very differently, and this is reflected in the
|
|
// IR which has already been generated.
|
|
//
|
|
// `musttail` calls to this function restrict argument removal attempts.
|
|
// The signature of the caller must match the signature of the function.
|
|
//
|
|
// `musttail` calls in this function prevents us from changing its
|
|
// signature
|
|
Result = Live;
|
|
} else {
|
|
// See what the effect of this use is (recording any uses that cause
|
|
// MaybeLive in MaybeLiveArgUses).
|
|
Result = SurveyUses(&*AI, MaybeLiveArgUses);
|
|
}
|
|
|
|
// Mark the result.
|
|
MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses);
|
|
// Clear the vector again for the next iteration.
|
|
MaybeLiveArgUses.clear();
|
|
}
|
|
}
|
|
|
|
/// MarkValue - This function marks the liveness of RA depending on L. If L is
|
|
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
|
|
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
|
|
/// live later on.
|
|
void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
|
|
const UseVector &MaybeLiveUses) {
|
|
switch (L) {
|
|
case Live:
|
|
MarkLive(RA);
|
|
break;
|
|
case MaybeLive:
|
|
assert(!IsLive(RA) && "Use is already live!");
|
|
for (const auto &MaybeLiveUse : MaybeLiveUses) {
|
|
if (IsLive(MaybeLiveUse)) {
|
|
// A use is live, so this value is live.
|
|
MarkLive(RA);
|
|
break;
|
|
} else {
|
|
// Note any uses of this value, so this value can be
|
|
// marked live whenever one of the uses becomes live.
|
|
Uses.insert(std::make_pair(MaybeLiveUse, RA));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// MarkLive - Mark the given Function as alive, meaning that it cannot be
|
|
/// changed in any way. Additionally,
|
|
/// mark any values that are used as this function's parameters or by its return
|
|
/// values (according to Uses) live as well.
|
|
void DeadArgumentEliminationPass::MarkLive(const Function &F) {
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
|
|
<< F.getName() << "\n");
|
|
// Mark the function as live.
|
|
LiveFunctions.insert(&F);
|
|
// Mark all arguments as live.
|
|
for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
|
|
PropagateLiveness(CreateArg(&F, ArgI));
|
|
// Mark all return values as live.
|
|
for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri)
|
|
PropagateLiveness(CreateRet(&F, Ri));
|
|
}
|
|
|
|
/// MarkLive - Mark the given return value or argument as live. Additionally,
|
|
/// mark any values that are used by this value (according to Uses) live as
|
|
/// well.
|
|
void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
|
|
if (IsLive(RA))
|
|
return; // Already marked Live.
|
|
|
|
LiveValues.insert(RA);
|
|
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
|
|
<< RA.getDescription() << " live\n");
|
|
PropagateLiveness(RA);
|
|
}
|
|
|
|
bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) {
|
|
return LiveFunctions.count(RA.F) || LiveValues.count(RA);
|
|
}
|
|
|
|
/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
|
|
/// to any other values it uses (according to Uses).
|
|
void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
|
|
// We don't use upper_bound (or equal_range) here, because our recursive call
|
|
// to ourselves is likely to cause the upper_bound (which is the first value
|
|
// not belonging to RA) to become erased and the iterator invalidated.
|
|
UseMap::iterator Begin = Uses.lower_bound(RA);
|
|
UseMap::iterator E = Uses.end();
|
|
UseMap::iterator I;
|
|
for (I = Begin; I != E && I->first == RA; ++I)
|
|
MarkLive(I->second);
|
|
|
|
// Erase RA from the Uses map (from the lower bound to wherever we ended up
|
|
// after the loop).
|
|
Uses.erase(Begin, I);
|
|
}
|
|
|
|
// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
|
|
// that are not in LiveValues. Transform the function and all of the callees of
|
|
// the function to not have these arguments and return values.
|
|
//
|
|
bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
|
|
// Don't modify fully live functions
|
|
if (LiveFunctions.count(F))
|
|
return false;
|
|
|
|
// Start by computing a new prototype for the function, which is the same as
|
|
// the old function, but has fewer arguments and a different return type.
|
|
FunctionType *FTy = F->getFunctionType();
|
|
std::vector<Type*> Params;
|
|
|
|
// Keep track of if we have a live 'returned' argument
|
|
bool HasLiveReturnedArg = false;
|
|
|
|
// Set up to build a new list of parameter attributes.
|
|
SmallVector<AttributeSet, 8> ArgAttrVec;
|
|
const AttributeList &PAL = F->getAttributes();
|
|
|
|
// Remember which arguments are still alive.
|
|
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
|
|
// Construct the new parameter list from non-dead arguments. Also construct
|
|
// a new set of parameter attributes to correspond. Skip the first parameter
|
|
// attribute, since that belongs to the return value.
|
|
unsigned ArgI = 0;
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
|
|
++I, ++ArgI) {
|
|
RetOrArg Arg = CreateArg(F, ArgI);
|
|
if (LiveValues.erase(Arg)) {
|
|
Params.push_back(I->getType());
|
|
ArgAlive[ArgI] = true;
|
|
ArgAttrVec.push_back(PAL.getParamAttributes(ArgI));
|
|
HasLiveReturnedArg |= PAL.hasParamAttribute(ArgI, Attribute::Returned);
|
|
} else {
|
|
++NumArgumentsEliminated;
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
|
|
<< ArgI << " (" << I->getName() << ") from "
|
|
<< F->getName() << "\n");
|
|
}
|
|
}
|
|
|
|
// Find out the new return value.
|
|
Type *RetTy = FTy->getReturnType();
|
|
Type *NRetTy = nullptr;
|
|
unsigned RetCount = NumRetVals(F);
|
|
|
|
// -1 means unused, other numbers are the new index
|
|
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
|
|
std::vector<Type*> RetTypes;
|
|
|
|
// If there is a function with a live 'returned' argument but a dead return
|
|
// value, then there are two possible actions:
|
|
// 1) Eliminate the return value and take off the 'returned' attribute on the
|
|
// argument.
|
|
// 2) Retain the 'returned' attribute and treat the return value (but not the
|
|
// entire function) as live so that it is not eliminated.
|
|
//
|
|
// It's not clear in the general case which option is more profitable because,
|
|
// even in the absence of explicit uses of the return value, code generation
|
|
// is free to use the 'returned' attribute to do things like eliding
|
|
// save/restores of registers across calls. Whether or not this happens is
|
|
// target and ABI-specific as well as depending on the amount of register
|
|
// pressure, so there's no good way for an IR-level pass to figure this out.
|
|
//
|
|
// Fortunately, the only places where 'returned' is currently generated by
|
|
// the FE are places where 'returned' is basically free and almost always a
|
|
// performance win, so the second option can just be used always for now.
|
|
//
|
|
// This should be revisited if 'returned' is ever applied more liberally.
|
|
if (RetTy->isVoidTy() || HasLiveReturnedArg) {
|
|
NRetTy = RetTy;
|
|
} else {
|
|
// Look at each of the original return values individually.
|
|
for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
|
|
RetOrArg Ret = CreateRet(F, Ri);
|
|
if (LiveValues.erase(Ret)) {
|
|
RetTypes.push_back(getRetComponentType(F, Ri));
|
|
NewRetIdxs[Ri] = RetTypes.size() - 1;
|
|
} else {
|
|
++NumRetValsEliminated;
|
|
LLVM_DEBUG(
|
|
dbgs() << "DeadArgumentEliminationPass - Removing return value "
|
|
<< Ri << " from " << F->getName() << "\n");
|
|
}
|
|
}
|
|
if (RetTypes.size() > 1) {
|
|
// More than one return type? Reduce it down to size.
|
|
if (StructType *STy = dyn_cast<StructType>(RetTy)) {
|
|
// Make the new struct packed if we used to return a packed struct
|
|
// already.
|
|
NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
|
|
} else {
|
|
assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
|
|
NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
|
|
}
|
|
} else if (RetTypes.size() == 1)
|
|
// One return type? Just a simple value then, but only if we didn't use to
|
|
// return a struct with that simple value before.
|
|
NRetTy = RetTypes.front();
|
|
else if (RetTypes.empty())
|
|
// No return types? Make it void, but only if we didn't use to return {}.
|
|
NRetTy = Type::getVoidTy(F->getContext());
|
|
}
|
|
|
|
assert(NRetTy && "No new return type found?");
|
|
|
|
// The existing function return attributes.
|
|
AttrBuilder RAttrs(PAL.getRetAttributes());
|
|
|
|
// Remove any incompatible attributes, but only if we removed all return
|
|
// values. Otherwise, ensure that we don't have any conflicting attributes
|
|
// here. Currently, this should not be possible, but special handling might be
|
|
// required when new return value attributes are added.
|
|
if (NRetTy->isVoidTy())
|
|
RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
|
|
else
|
|
assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
|
|
"Return attributes no longer compatible?");
|
|
|
|
AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
|
|
|
|
// Strip allocsize attributes. They might refer to the deleted arguments.
|
|
AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
|
|
F->getContext(), Attribute::AllocSize);
|
|
|
|
// Reconstruct the AttributesList based on the vector we constructed.
|
|
assert(ArgAttrVec.size() == Params.size());
|
|
AttributeList NewPAL =
|
|
AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
|
|
|
|
// Create the new function type based on the recomputed parameters.
|
|
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
|
|
|
|
// No change?
|
|
if (NFTy == FTy)
|
|
return false;
|
|
|
|
// Create the new function body and insert it into the module...
|
|
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
|
|
NF->copyAttributesFrom(F);
|
|
NF->setComdat(F->getComdat());
|
|
NF->setAttributes(NewPAL);
|
|
// Insert the new function before the old function, so we won't be processing
|
|
// it again.
|
|
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
|
|
NF->takeName(F);
|
|
|
|
// Loop over all of the callers of the function, transforming the call sites
|
|
// to pass in a smaller number of arguments into the new function.
|
|
std::vector<Value*> Args;
|
|
while (!F->use_empty()) {
|
|
CallBase &CB = cast<CallBase>(*F->user_back());
|
|
|
|
ArgAttrVec.clear();
|
|
const AttributeList &CallPAL = CB.getAttributes();
|
|
|
|
// Adjust the call return attributes in case the function was changed to
|
|
// return void.
|
|
AttrBuilder RAttrs(CallPAL.getRetAttributes());
|
|
RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
|
|
AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
|
|
|
|
// Declare these outside of the loops, so we can reuse them for the second
|
|
// loop, which loops the varargs.
|
|
auto I = CB.arg_begin();
|
|
unsigned Pi = 0;
|
|
// Loop over those operands, corresponding to the normal arguments to the
|
|
// original function, and add those that are still alive.
|
|
for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
|
|
if (ArgAlive[Pi]) {
|
|
Args.push_back(*I);
|
|
// Get original parameter attributes, but skip return attributes.
|
|
AttributeSet Attrs = CallPAL.getParamAttributes(Pi);
|
|
if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
|
|
// If the return type has changed, then get rid of 'returned' on the
|
|
// call site. The alternative is to make all 'returned' attributes on
|
|
// call sites keep the return value alive just like 'returned'
|
|
// attributes on function declaration but it's less clearly a win and
|
|
// this is not an expected case anyway
|
|
ArgAttrVec.push_back(AttributeSet::get(
|
|
F->getContext(),
|
|
AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
|
|
} else {
|
|
// Otherwise, use the original attributes.
|
|
ArgAttrVec.push_back(Attrs);
|
|
}
|
|
}
|
|
|
|
// Push any varargs arguments on the list. Don't forget their attributes.
|
|
for (auto E = CB.arg_end(); I != E; ++I, ++Pi) {
|
|
Args.push_back(*I);
|
|
ArgAttrVec.push_back(CallPAL.getParamAttributes(Pi));
|
|
}
|
|
|
|
// Reconstruct the AttributesList based on the vector we constructed.
|
|
assert(ArgAttrVec.size() == Args.size());
|
|
|
|
// Again, be sure to remove any allocsize attributes, since their indices
|
|
// may now be incorrect.
|
|
AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
|
|
F->getContext(), Attribute::AllocSize);
|
|
|
|
AttributeList NewCallPAL = AttributeList::get(
|
|
F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
CB.getOperandBundlesAsDefs(OpBundles);
|
|
|
|
CallBase *NewCB = nullptr;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
|
|
NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
|
|
Args, OpBundles, "", CB.getParent());
|
|
} else {
|
|
NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
|
|
cast<CallInst>(NewCB)->setTailCallKind(
|
|
cast<CallInst>(&CB)->getTailCallKind());
|
|
}
|
|
NewCB->setCallingConv(CB.getCallingConv());
|
|
NewCB->setAttributes(NewCallPAL);
|
|
NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
|
|
Args.clear();
|
|
ArgAttrVec.clear();
|
|
|
|
if (!CB.use_empty() || CB.isUsedByMetadata()) {
|
|
if (NewCB->getType() == CB.getType()) {
|
|
// Return type not changed? Just replace users then.
|
|
CB.replaceAllUsesWith(NewCB);
|
|
NewCB->takeName(&CB);
|
|
} else if (NewCB->getType()->isVoidTy()) {
|
|
// If the return value is dead, replace any uses of it with undef
|
|
// (any non-debug value uses will get removed later on).
|
|
if (!CB.getType()->isX86_MMXTy())
|
|
CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
|
|
} else {
|
|
assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
|
|
"Return type changed, but not into a void. The old return type"
|
|
" must have been a struct or an array!");
|
|
Instruction *InsertPt = &CB;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
|
|
BasicBlock *NewEdge =
|
|
SplitEdge(NewCB->getParent(), II->getNormalDest());
|
|
InsertPt = &*NewEdge->getFirstInsertionPt();
|
|
}
|
|
|
|
// We used to return a struct or array. Instead of doing smart stuff
|
|
// with all the uses, we will just rebuild it using extract/insertvalue
|
|
// chaining and let instcombine clean that up.
|
|
//
|
|
// Start out building up our return value from undef
|
|
Value *RetVal = UndefValue::get(RetTy);
|
|
for (unsigned Ri = 0; Ri != RetCount; ++Ri)
|
|
if (NewRetIdxs[Ri] != -1) {
|
|
Value *V;
|
|
IRBuilder<NoFolder> IRB(InsertPt);
|
|
if (RetTypes.size() > 1)
|
|
// We are still returning a struct, so extract the value from our
|
|
// return value
|
|
V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
|
|
else
|
|
// We are now returning a single element, so just insert that
|
|
V = NewCB;
|
|
// Insert the value at the old position
|
|
RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
|
|
}
|
|
// Now, replace all uses of the old call instruction with the return
|
|
// struct we built
|
|
CB.replaceAllUsesWith(RetVal);
|
|
NewCB->takeName(&CB);
|
|
}
|
|
}
|
|
|
|
// Finally, remove the old call from the program, reducing the use-count of
|
|
// F.
|
|
CB.eraseFromParent();
|
|
}
|
|
|
|
// Since we have now created the new function, splice the body of the old
|
|
// function right into the new function, leaving the old rotting hulk of the
|
|
// function empty.
|
|
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
|
|
|
|
// Loop over the argument list, transferring uses of the old arguments over to
|
|
// the new arguments, also transferring over the names as well.
|
|
ArgI = 0;
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
|
|
I2 = NF->arg_begin();
|
|
I != E; ++I, ++ArgI)
|
|
if (ArgAlive[ArgI]) {
|
|
// If this is a live argument, move the name and users over to the new
|
|
// version.
|
|
I->replaceAllUsesWith(&*I2);
|
|
I2->takeName(&*I);
|
|
++I2;
|
|
} else {
|
|
// If this argument is dead, replace any uses of it with undef
|
|
// (any non-debug value uses will get removed later on).
|
|
if (!I->getType()->isX86_MMXTy())
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
}
|
|
|
|
// If we change the return value of the function we must rewrite any return
|
|
// instructions. Check this now.
|
|
if (F->getReturnType() != NF->getReturnType())
|
|
for (BasicBlock &BB : *NF)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
|
|
IRBuilder<NoFolder> IRB(RI);
|
|
Value *RetVal = nullptr;
|
|
|
|
if (!NFTy->getReturnType()->isVoidTy()) {
|
|
assert(RetTy->isStructTy() || RetTy->isArrayTy());
|
|
// The original return value was a struct or array, insert
|
|
// extractvalue/insertvalue chains to extract only the values we need
|
|
// to return and insert them into our new result.
|
|
// This does generate messy code, but we'll let it to instcombine to
|
|
// clean that up.
|
|
Value *OldRet = RI->getOperand(0);
|
|
// Start out building up our return value from undef
|
|
RetVal = UndefValue::get(NRetTy);
|
|
for (unsigned RetI = 0; RetI != RetCount; ++RetI)
|
|
if (NewRetIdxs[RetI] != -1) {
|
|
Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
|
|
|
|
if (RetTypes.size() > 1) {
|
|
// We're still returning a struct, so reinsert the value into
|
|
// our new return value at the new index
|
|
|
|
RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
|
|
"newret");
|
|
} else {
|
|
// We are now only returning a simple value, so just return the
|
|
// extracted value.
|
|
RetVal = EV;
|
|
}
|
|
}
|
|
}
|
|
// Replace the return instruction with one returning the new return
|
|
// value (possibly 0 if we became void).
|
|
auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
|
|
NewRet->setDebugLoc(RI->getDebugLoc());
|
|
BB.getInstList().erase(RI);
|
|
}
|
|
|
|
// Clone metadatas from the old function, including debug info descriptor.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
|
|
F->getAllMetadata(MDs);
|
|
for (auto MD : MDs)
|
|
NF->addMetadata(MD.first, *MD.second);
|
|
|
|
// Now that the old function is dead, delete it.
|
|
F->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
|
|
ModuleAnalysisManager &) {
|
|
bool Changed = false;
|
|
|
|
// First pass: Do a simple check to see if any functions can have their "..."
|
|
// removed. We can do this if they never call va_start. This loop cannot be
|
|
// fused with the next loop, because deleting a function invalidates
|
|
// information computed while surveying other functions.
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
|
|
Function &F = *I++;
|
|
if (F.getFunctionType()->isVarArg())
|
|
Changed |= DeleteDeadVarargs(F);
|
|
}
|
|
|
|
// Second phase:loop through the module, determining which arguments are live.
|
|
// We assume all arguments are dead unless proven otherwise (allowing us to
|
|
// determine that dead arguments passed into recursive functions are dead).
|
|
//
|
|
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
|
|
for (auto &F : M)
|
|
SurveyFunction(F);
|
|
|
|
// Now, remove all dead arguments and return values from each function in
|
|
// turn.
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
|
|
// Increment now, because the function will probably get removed (ie.
|
|
// replaced by a new one).
|
|
Function *F = &*I++;
|
|
Changed |= RemoveDeadStuffFromFunction(F);
|
|
}
|
|
|
|
// Finally, look for any unused parameters in functions with non-local
|
|
// linkage and replace the passed in parameters with undef.
|
|
for (auto &F : M)
|
|
Changed |= RemoveDeadArgumentsFromCallers(F);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
return PreservedAnalyses::none();
|
|
}
|