mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
200286e570
1ce82015f6d0 added a fix to restrict phi optimizations after phi translations. But the current use of performedPhiTranslation only checked whether phi translation happened for the first iterator and missed cases where phi translations happens at subsequent iterators/upwards defs. This patch changes upward_defs_iteartor to take a pointer to a bool, so we can easily ensure the final value includes all visited defs, while still being able to conveniently use it with make_range & co.
2481 lines
91 KiB
C++
2481 lines
91 KiB
C++
//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the MemorySSA class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memoryssa"
|
|
|
|
INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
|
|
true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
|
|
true)
|
|
|
|
INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
|
|
"Memory SSA Printer", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
|
|
"Memory SSA Printer", false, false)
|
|
|
|
static cl::opt<unsigned> MaxCheckLimit(
|
|
"memssa-check-limit", cl::Hidden, cl::init(100),
|
|
cl::desc("The maximum number of stores/phis MemorySSA"
|
|
"will consider trying to walk past (default = 100)"));
|
|
|
|
// Always verify MemorySSA if expensive checking is enabled.
|
|
#ifdef EXPENSIVE_CHECKS
|
|
bool llvm::VerifyMemorySSA = true;
|
|
#else
|
|
bool llvm::VerifyMemorySSA = false;
|
|
#endif
|
|
/// Enables memory ssa as a dependency for loop passes in legacy pass manager.
|
|
cl::opt<bool> llvm::EnableMSSALoopDependency(
|
|
"enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable MemorySSA dependency for loop pass manager"));
|
|
|
|
static cl::opt<bool, true>
|
|
VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
|
|
cl::Hidden, cl::desc("Enable verification of MemorySSA."));
|
|
|
|
namespace llvm {
|
|
|
|
/// An assembly annotator class to print Memory SSA information in
|
|
/// comments.
|
|
class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
|
|
friend class MemorySSA;
|
|
|
|
const MemorySSA *MSSA;
|
|
|
|
public:
|
|
MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
|
|
|
|
void emitBasicBlockStartAnnot(const BasicBlock *BB,
|
|
formatted_raw_ostream &OS) override {
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
|
|
OS << "; " << *MA << "\n";
|
|
}
|
|
|
|
void emitInstructionAnnot(const Instruction *I,
|
|
formatted_raw_ostream &OS) override {
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
|
|
OS << "; " << *MA << "\n";
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
/// Our current alias analysis API differentiates heavily between calls and
|
|
/// non-calls, and functions called on one usually assert on the other.
|
|
/// This class encapsulates the distinction to simplify other code that wants
|
|
/// "Memory affecting instructions and related data" to use as a key.
|
|
/// For example, this class is used as a densemap key in the use optimizer.
|
|
class MemoryLocOrCall {
|
|
public:
|
|
bool IsCall = false;
|
|
|
|
MemoryLocOrCall(MemoryUseOrDef *MUD)
|
|
: MemoryLocOrCall(MUD->getMemoryInst()) {}
|
|
MemoryLocOrCall(const MemoryUseOrDef *MUD)
|
|
: MemoryLocOrCall(MUD->getMemoryInst()) {}
|
|
|
|
MemoryLocOrCall(Instruction *Inst) {
|
|
if (auto *C = dyn_cast<CallBase>(Inst)) {
|
|
IsCall = true;
|
|
Call = C;
|
|
} else {
|
|
IsCall = false;
|
|
// There is no such thing as a memorylocation for a fence inst, and it is
|
|
// unique in that regard.
|
|
if (!isa<FenceInst>(Inst))
|
|
Loc = MemoryLocation::get(Inst);
|
|
}
|
|
}
|
|
|
|
explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
|
|
|
|
const CallBase *getCall() const {
|
|
assert(IsCall);
|
|
return Call;
|
|
}
|
|
|
|
MemoryLocation getLoc() const {
|
|
assert(!IsCall);
|
|
return Loc;
|
|
}
|
|
|
|
bool operator==(const MemoryLocOrCall &Other) const {
|
|
if (IsCall != Other.IsCall)
|
|
return false;
|
|
|
|
if (!IsCall)
|
|
return Loc == Other.Loc;
|
|
|
|
if (Call->getCalledOperand() != Other.Call->getCalledOperand())
|
|
return false;
|
|
|
|
return Call->arg_size() == Other.Call->arg_size() &&
|
|
std::equal(Call->arg_begin(), Call->arg_end(),
|
|
Other.Call->arg_begin());
|
|
}
|
|
|
|
private:
|
|
union {
|
|
const CallBase *Call;
|
|
MemoryLocation Loc;
|
|
};
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
|
|
template <> struct DenseMapInfo<MemoryLocOrCall> {
|
|
static inline MemoryLocOrCall getEmptyKey() {
|
|
return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
|
|
}
|
|
|
|
static inline MemoryLocOrCall getTombstoneKey() {
|
|
return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
|
|
}
|
|
|
|
static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
|
|
if (!MLOC.IsCall)
|
|
return hash_combine(
|
|
MLOC.IsCall,
|
|
DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
|
|
|
|
hash_code hash =
|
|
hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
|
|
MLOC.getCall()->getCalledOperand()));
|
|
|
|
for (const Value *Arg : MLOC.getCall()->args())
|
|
hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
|
|
return hash;
|
|
}
|
|
|
|
static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
/// This does one-way checks to see if Use could theoretically be hoisted above
|
|
/// MayClobber. This will not check the other way around.
|
|
///
|
|
/// This assumes that, for the purposes of MemorySSA, Use comes directly after
|
|
/// MayClobber, with no potentially clobbering operations in between them.
|
|
/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
|
|
static bool areLoadsReorderable(const LoadInst *Use,
|
|
const LoadInst *MayClobber) {
|
|
bool VolatileUse = Use->isVolatile();
|
|
bool VolatileClobber = MayClobber->isVolatile();
|
|
// Volatile operations may never be reordered with other volatile operations.
|
|
if (VolatileUse && VolatileClobber)
|
|
return false;
|
|
// Otherwise, volatile doesn't matter here. From the language reference:
|
|
// 'optimizers may change the order of volatile operations relative to
|
|
// non-volatile operations.'"
|
|
|
|
// If a load is seq_cst, it cannot be moved above other loads. If its ordering
|
|
// is weaker, it can be moved above other loads. We just need to be sure that
|
|
// MayClobber isn't an acquire load, because loads can't be moved above
|
|
// acquire loads.
|
|
//
|
|
// Note that this explicitly *does* allow the free reordering of monotonic (or
|
|
// weaker) loads of the same address.
|
|
bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
|
|
bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
|
|
AtomicOrdering::Acquire);
|
|
return !(SeqCstUse || MayClobberIsAcquire);
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct ClobberAlias {
|
|
bool IsClobber;
|
|
Optional<AliasResult> AR;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
|
|
// ignored if IsClobber = false.
|
|
template <typename AliasAnalysisType>
|
|
static ClobberAlias
|
|
instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
|
|
const Instruction *UseInst, AliasAnalysisType &AA) {
|
|
Instruction *DefInst = MD->getMemoryInst();
|
|
assert(DefInst && "Defining instruction not actually an instruction");
|
|
const auto *UseCall = dyn_cast<CallBase>(UseInst);
|
|
Optional<AliasResult> AR;
|
|
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
|
|
// These intrinsics will show up as affecting memory, but they are just
|
|
// markers, mostly.
|
|
//
|
|
// FIXME: We probably don't actually want MemorySSA to model these at all
|
|
// (including creating MemoryAccesses for them): we just end up inventing
|
|
// clobbers where they don't really exist at all. Please see D43269 for
|
|
// context.
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::lifetime_start:
|
|
if (UseCall)
|
|
return {false, NoAlias};
|
|
AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
|
|
return {AR != NoAlias, AR};
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::assume:
|
|
return {false, NoAlias};
|
|
case Intrinsic::dbg_addr:
|
|
case Intrinsic::dbg_declare:
|
|
case Intrinsic::dbg_label:
|
|
case Intrinsic::dbg_value:
|
|
llvm_unreachable("debuginfo shouldn't have associated defs!");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (UseCall) {
|
|
ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
|
|
AR = isMustSet(I) ? MustAlias : MayAlias;
|
|
return {isModOrRefSet(I), AR};
|
|
}
|
|
|
|
if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
|
|
if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
|
|
return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
|
|
|
|
ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
|
|
AR = isMustSet(I) ? MustAlias : MayAlias;
|
|
return {isModSet(I), AR};
|
|
}
|
|
|
|
template <typename AliasAnalysisType>
|
|
static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
|
|
const MemoryUseOrDef *MU,
|
|
const MemoryLocOrCall &UseMLOC,
|
|
AliasAnalysisType &AA) {
|
|
// FIXME: This is a temporary hack to allow a single instructionClobbersQuery
|
|
// to exist while MemoryLocOrCall is pushed through places.
|
|
if (UseMLOC.IsCall)
|
|
return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
|
|
AA);
|
|
return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
|
|
AA);
|
|
}
|
|
|
|
// Return true when MD may alias MU, return false otherwise.
|
|
bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
|
|
AliasAnalysis &AA) {
|
|
return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct UpwardsMemoryQuery {
|
|
// True if our original query started off as a call
|
|
bool IsCall = false;
|
|
// The pointer location we started the query with. This will be empty if
|
|
// IsCall is true.
|
|
MemoryLocation StartingLoc;
|
|
// This is the instruction we were querying about.
|
|
const Instruction *Inst = nullptr;
|
|
// The MemoryAccess we actually got called with, used to test local domination
|
|
const MemoryAccess *OriginalAccess = nullptr;
|
|
Optional<AliasResult> AR = MayAlias;
|
|
bool SkipSelfAccess = false;
|
|
|
|
UpwardsMemoryQuery() = default;
|
|
|
|
UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
|
|
: IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
|
|
if (!IsCall)
|
|
StartingLoc = MemoryLocation::get(Inst);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
|
|
BatchAAResults &AA) {
|
|
Instruction *Inst = MD->getMemoryInst();
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::lifetime_end:
|
|
return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename AliasAnalysisType>
|
|
static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
|
|
const Instruction *I) {
|
|
// If the memory can't be changed, then loads of the memory can't be
|
|
// clobbered.
|
|
return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
|
|
AA.pointsToConstantMemory(MemoryLocation(
|
|
cast<LoadInst>(I)->getPointerOperand())));
|
|
}
|
|
|
|
/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
|
|
/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
|
|
///
|
|
/// This is meant to be as simple and self-contained as possible. Because it
|
|
/// uses no cache, etc., it can be relatively expensive.
|
|
///
|
|
/// \param Start The MemoryAccess that we want to walk from.
|
|
/// \param ClobberAt A clobber for Start.
|
|
/// \param StartLoc The MemoryLocation for Start.
|
|
/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
|
|
/// \param Query The UpwardsMemoryQuery we used for our search.
|
|
/// \param AA The AliasAnalysis we used for our search.
|
|
/// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
|
|
|
|
template <typename AliasAnalysisType>
|
|
LLVM_ATTRIBUTE_UNUSED static void
|
|
checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
|
|
const MemoryLocation &StartLoc, const MemorySSA &MSSA,
|
|
const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
|
|
bool AllowImpreciseClobber = false) {
|
|
assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
|
|
|
|
if (MSSA.isLiveOnEntryDef(Start)) {
|
|
assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
|
|
"liveOnEntry must clobber itself");
|
|
return;
|
|
}
|
|
|
|
bool FoundClobber = false;
|
|
DenseSet<ConstMemoryAccessPair> VisitedPhis;
|
|
SmallVector<ConstMemoryAccessPair, 8> Worklist;
|
|
Worklist.emplace_back(Start, StartLoc);
|
|
// Walk all paths from Start to ClobberAt, while looking for clobbers. If one
|
|
// is found, complain.
|
|
while (!Worklist.empty()) {
|
|
auto MAP = Worklist.pop_back_val();
|
|
// All we care about is that nothing from Start to ClobberAt clobbers Start.
|
|
// We learn nothing from revisiting nodes.
|
|
if (!VisitedPhis.insert(MAP).second)
|
|
continue;
|
|
|
|
for (const auto *MA : def_chain(MAP.first)) {
|
|
if (MA == ClobberAt) {
|
|
if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
|
|
// instructionClobbersQuery isn't essentially free, so don't use `|=`,
|
|
// since it won't let us short-circuit.
|
|
//
|
|
// Also, note that this can't be hoisted out of the `Worklist` loop,
|
|
// since MD may only act as a clobber for 1 of N MemoryLocations.
|
|
FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
|
|
if (!FoundClobber) {
|
|
ClobberAlias CA =
|
|
instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
|
|
if (CA.IsClobber) {
|
|
FoundClobber = true;
|
|
// Not used: CA.AR;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// We should never hit liveOnEntry, unless it's the clobber.
|
|
assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
|
|
|
|
if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
|
|
// If Start is a Def, skip self.
|
|
if (MD == Start)
|
|
continue;
|
|
|
|
assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
|
|
.IsClobber &&
|
|
"Found clobber before reaching ClobberAt!");
|
|
continue;
|
|
}
|
|
|
|
if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
|
|
(void)MU;
|
|
assert (MU == Start &&
|
|
"Can only find use in def chain if Start is a use");
|
|
continue;
|
|
}
|
|
|
|
assert(isa<MemoryPhi>(MA));
|
|
Worklist.append(
|
|
upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second},
|
|
MSSA.getDomTree()),
|
|
upward_defs_end());
|
|
}
|
|
}
|
|
|
|
// If the verify is done following an optimization, it's possible that
|
|
// ClobberAt was a conservative clobbering, that we can now infer is not a
|
|
// true clobbering access. Don't fail the verify if that's the case.
|
|
// We do have accesses that claim they're optimized, but could be optimized
|
|
// further. Updating all these can be expensive, so allow it for now (FIXME).
|
|
if (AllowImpreciseClobber)
|
|
return;
|
|
|
|
// If ClobberAt is a MemoryPhi, we can assume something above it acted as a
|
|
// clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
|
|
assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
|
|
"ClobberAt never acted as a clobber");
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
|
|
/// in one class.
|
|
template <class AliasAnalysisType> class ClobberWalker {
|
|
/// Save a few bytes by using unsigned instead of size_t.
|
|
using ListIndex = unsigned;
|
|
|
|
/// Represents a span of contiguous MemoryDefs, potentially ending in a
|
|
/// MemoryPhi.
|
|
struct DefPath {
|
|
MemoryLocation Loc;
|
|
// Note that, because we always walk in reverse, Last will always dominate
|
|
// First. Also note that First and Last are inclusive.
|
|
MemoryAccess *First;
|
|
MemoryAccess *Last;
|
|
Optional<ListIndex> Previous;
|
|
|
|
DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
|
|
Optional<ListIndex> Previous)
|
|
: Loc(Loc), First(First), Last(Last), Previous(Previous) {}
|
|
|
|
DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
|
|
Optional<ListIndex> Previous)
|
|
: DefPath(Loc, Init, Init, Previous) {}
|
|
};
|
|
|
|
const MemorySSA &MSSA;
|
|
AliasAnalysisType &AA;
|
|
DominatorTree &DT;
|
|
UpwardsMemoryQuery *Query;
|
|
unsigned *UpwardWalkLimit;
|
|
|
|
// Phi optimization bookkeeping:
|
|
// List of DefPath to process during the current phi optimization walk.
|
|
SmallVector<DefPath, 32> Paths;
|
|
// List of visited <Access, Location> pairs; we can skip paths already
|
|
// visited with the same memory location.
|
|
DenseSet<ConstMemoryAccessPair> VisitedPhis;
|
|
// Record if phi translation has been performed during the current phi
|
|
// optimization walk, as merging alias results after phi translation can
|
|
// yield incorrect results. Context in PR46156.
|
|
bool PerformedPhiTranslation = false;
|
|
|
|
/// Find the nearest def or phi that `From` can legally be optimized to.
|
|
const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
|
|
assert(From->getNumOperands() && "Phi with no operands?");
|
|
|
|
BasicBlock *BB = From->getBlock();
|
|
MemoryAccess *Result = MSSA.getLiveOnEntryDef();
|
|
DomTreeNode *Node = DT.getNode(BB);
|
|
while ((Node = Node->getIDom())) {
|
|
auto *Defs = MSSA.getBlockDefs(Node->getBlock());
|
|
if (Defs)
|
|
return &*Defs->rbegin();
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// Result of calling walkToPhiOrClobber.
|
|
struct UpwardsWalkResult {
|
|
/// The "Result" of the walk. Either a clobber, the last thing we walked, or
|
|
/// both. Include alias info when clobber found.
|
|
MemoryAccess *Result;
|
|
bool IsKnownClobber;
|
|
Optional<AliasResult> AR;
|
|
};
|
|
|
|
/// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
|
|
/// This will update Desc.Last as it walks. It will (optionally) also stop at
|
|
/// StopAt.
|
|
///
|
|
/// This does not test for whether StopAt is a clobber
|
|
UpwardsWalkResult
|
|
walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
|
|
const MemoryAccess *SkipStopAt = nullptr) const {
|
|
assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
|
|
assert(UpwardWalkLimit && "Need a valid walk limit");
|
|
bool LimitAlreadyReached = false;
|
|
// (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
|
|
// it to 1. This will not do any alias() calls. It either returns in the
|
|
// first iteration in the loop below, or is set back to 0 if all def chains
|
|
// are free of MemoryDefs.
|
|
if (!*UpwardWalkLimit) {
|
|
*UpwardWalkLimit = 1;
|
|
LimitAlreadyReached = true;
|
|
}
|
|
|
|
for (MemoryAccess *Current : def_chain(Desc.Last)) {
|
|
Desc.Last = Current;
|
|
if (Current == StopAt || Current == SkipStopAt)
|
|
return {Current, false, MayAlias};
|
|
|
|
if (auto *MD = dyn_cast<MemoryDef>(Current)) {
|
|
if (MSSA.isLiveOnEntryDef(MD))
|
|
return {MD, true, MustAlias};
|
|
|
|
if (!--*UpwardWalkLimit)
|
|
return {Current, true, MayAlias};
|
|
|
|
ClobberAlias CA =
|
|
instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
|
|
if (CA.IsClobber)
|
|
return {MD, true, CA.AR};
|
|
}
|
|
}
|
|
|
|
if (LimitAlreadyReached)
|
|
*UpwardWalkLimit = 0;
|
|
|
|
assert(isa<MemoryPhi>(Desc.Last) &&
|
|
"Ended at a non-clobber that's not a phi?");
|
|
return {Desc.Last, false, MayAlias};
|
|
}
|
|
|
|
void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
|
|
ListIndex PriorNode) {
|
|
auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT,
|
|
&PerformedPhiTranslation);
|
|
auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
|
|
for (const MemoryAccessPair &P : UpwardDefs) {
|
|
PausedSearches.push_back(Paths.size());
|
|
Paths.emplace_back(P.second, P.first, PriorNode);
|
|
}
|
|
}
|
|
|
|
/// Represents a search that terminated after finding a clobber. This clobber
|
|
/// may or may not be present in the path of defs from LastNode..SearchStart,
|
|
/// since it may have been retrieved from cache.
|
|
struct TerminatedPath {
|
|
MemoryAccess *Clobber;
|
|
ListIndex LastNode;
|
|
};
|
|
|
|
/// Get an access that keeps us from optimizing to the given phi.
|
|
///
|
|
/// PausedSearches is an array of indices into the Paths array. Its incoming
|
|
/// value is the indices of searches that stopped at the last phi optimization
|
|
/// target. It's left in an unspecified state.
|
|
///
|
|
/// If this returns None, NewPaused is a vector of searches that terminated
|
|
/// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
|
|
Optional<TerminatedPath>
|
|
getBlockingAccess(const MemoryAccess *StopWhere,
|
|
SmallVectorImpl<ListIndex> &PausedSearches,
|
|
SmallVectorImpl<ListIndex> &NewPaused,
|
|
SmallVectorImpl<TerminatedPath> &Terminated) {
|
|
assert(!PausedSearches.empty() && "No searches to continue?");
|
|
|
|
// BFS vs DFS really doesn't make a difference here, so just do a DFS with
|
|
// PausedSearches as our stack.
|
|
while (!PausedSearches.empty()) {
|
|
ListIndex PathIndex = PausedSearches.pop_back_val();
|
|
DefPath &Node = Paths[PathIndex];
|
|
|
|
// If we've already visited this path with this MemoryLocation, we don't
|
|
// need to do so again.
|
|
//
|
|
// NOTE: That we just drop these paths on the ground makes caching
|
|
// behavior sporadic. e.g. given a diamond:
|
|
// A
|
|
// B C
|
|
// D
|
|
//
|
|
// ...If we walk D, B, A, C, we'll only cache the result of phi
|
|
// optimization for A, B, and D; C will be skipped because it dies here.
|
|
// This arguably isn't the worst thing ever, since:
|
|
// - We generally query things in a top-down order, so if we got below D
|
|
// without needing cache entries for {C, MemLoc}, then chances are
|
|
// that those cache entries would end up ultimately unused.
|
|
// - We still cache things for A, so C only needs to walk up a bit.
|
|
// If this behavior becomes problematic, we can fix without a ton of extra
|
|
// work.
|
|
if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) {
|
|
if (PerformedPhiTranslation) {
|
|
// If visiting this path performed Phi translation, don't continue,
|
|
// since it may not be correct to merge results from two paths if one
|
|
// relies on the phi translation.
|
|
TerminatedPath Term{Node.Last, PathIndex};
|
|
return Term;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const MemoryAccess *SkipStopWhere = nullptr;
|
|
if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
|
|
assert(isa<MemoryDef>(Query->OriginalAccess));
|
|
SkipStopWhere = Query->OriginalAccess;
|
|
}
|
|
|
|
UpwardsWalkResult Res = walkToPhiOrClobber(Node,
|
|
/*StopAt=*/StopWhere,
|
|
/*SkipStopAt=*/SkipStopWhere);
|
|
if (Res.IsKnownClobber) {
|
|
assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
|
|
|
|
// If this wasn't a cache hit, we hit a clobber when walking. That's a
|
|
// failure.
|
|
TerminatedPath Term{Res.Result, PathIndex};
|
|
if (!MSSA.dominates(Res.Result, StopWhere))
|
|
return Term;
|
|
|
|
// Otherwise, it's a valid thing to potentially optimize to.
|
|
Terminated.push_back(Term);
|
|
continue;
|
|
}
|
|
|
|
if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
|
|
// We've hit our target. Save this path off for if we want to continue
|
|
// walking. If we are in the mode of skipping the OriginalAccess, and
|
|
// we've reached back to the OriginalAccess, do not save path, we've
|
|
// just looped back to self.
|
|
if (Res.Result != SkipStopWhere)
|
|
NewPaused.push_back(PathIndex);
|
|
continue;
|
|
}
|
|
|
|
assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
|
|
addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
template <typename T, typename Walker>
|
|
struct generic_def_path_iterator
|
|
: public iterator_facade_base<generic_def_path_iterator<T, Walker>,
|
|
std::forward_iterator_tag, T *> {
|
|
generic_def_path_iterator() {}
|
|
generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
|
|
|
|
T &operator*() const { return curNode(); }
|
|
|
|
generic_def_path_iterator &operator++() {
|
|
N = curNode().Previous;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const generic_def_path_iterator &O) const {
|
|
if (N.hasValue() != O.N.hasValue())
|
|
return false;
|
|
return !N.hasValue() || *N == *O.N;
|
|
}
|
|
|
|
private:
|
|
T &curNode() const { return W->Paths[*N]; }
|
|
|
|
Walker *W = nullptr;
|
|
Optional<ListIndex> N = None;
|
|
};
|
|
|
|
using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
|
|
using const_def_path_iterator =
|
|
generic_def_path_iterator<const DefPath, const ClobberWalker>;
|
|
|
|
iterator_range<def_path_iterator> def_path(ListIndex From) {
|
|
return make_range(def_path_iterator(this, From), def_path_iterator());
|
|
}
|
|
|
|
iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
|
|
return make_range(const_def_path_iterator(this, From),
|
|
const_def_path_iterator());
|
|
}
|
|
|
|
struct OptznResult {
|
|
/// The path that contains our result.
|
|
TerminatedPath PrimaryClobber;
|
|
/// The paths that we can legally cache back from, but that aren't
|
|
/// necessarily the result of the Phi optimization.
|
|
SmallVector<TerminatedPath, 4> OtherClobbers;
|
|
};
|
|
|
|
ListIndex defPathIndex(const DefPath &N) const {
|
|
// The assert looks nicer if we don't need to do &N
|
|
const DefPath *NP = &N;
|
|
assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
|
|
"Out of bounds DefPath!");
|
|
return NP - &Paths.front();
|
|
}
|
|
|
|
/// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
|
|
/// that act as legal clobbers. Note that this won't return *all* clobbers.
|
|
///
|
|
/// Phi optimization algorithm tl;dr:
|
|
/// - Find the earliest def/phi, A, we can optimize to
|
|
/// - Find if all paths from the starting memory access ultimately reach A
|
|
/// - If not, optimization isn't possible.
|
|
/// - Otherwise, walk from A to another clobber or phi, A'.
|
|
/// - If A' is a def, we're done.
|
|
/// - If A' is a phi, try to optimize it.
|
|
///
|
|
/// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
|
|
/// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
|
|
OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
|
|
const MemoryLocation &Loc) {
|
|
assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation &&
|
|
"Reset the optimization state.");
|
|
|
|
Paths.emplace_back(Loc, Start, Phi, None);
|
|
// Stores how many "valid" optimization nodes we had prior to calling
|
|
// addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
|
|
auto PriorPathsSize = Paths.size();
|
|
|
|
SmallVector<ListIndex, 16> PausedSearches;
|
|
SmallVector<ListIndex, 8> NewPaused;
|
|
SmallVector<TerminatedPath, 4> TerminatedPaths;
|
|
|
|
addSearches(Phi, PausedSearches, 0);
|
|
|
|
// Moves the TerminatedPath with the "most dominated" Clobber to the end of
|
|
// Paths.
|
|
auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
|
|
assert(!Paths.empty() && "Need a path to move");
|
|
auto Dom = Paths.begin();
|
|
for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
|
|
if (!MSSA.dominates(I->Clobber, Dom->Clobber))
|
|
Dom = I;
|
|
auto Last = Paths.end() - 1;
|
|
if (Last != Dom)
|
|
std::iter_swap(Last, Dom);
|
|
};
|
|
|
|
MemoryPhi *Current = Phi;
|
|
while (true) {
|
|
assert(!MSSA.isLiveOnEntryDef(Current) &&
|
|
"liveOnEntry wasn't treated as a clobber?");
|
|
|
|
const auto *Target = getWalkTarget(Current);
|
|
// If a TerminatedPath doesn't dominate Target, then it wasn't a legal
|
|
// optimization for the prior phi.
|
|
assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
|
|
return MSSA.dominates(P.Clobber, Target);
|
|
}));
|
|
|
|
// FIXME: This is broken, because the Blocker may be reported to be
|
|
// liveOnEntry, and we'll happily wait for that to disappear (read: never)
|
|
// For the moment, this is fine, since we do nothing with blocker info.
|
|
if (Optional<TerminatedPath> Blocker = getBlockingAccess(
|
|
Target, PausedSearches, NewPaused, TerminatedPaths)) {
|
|
|
|
// Find the node we started at. We can't search based on N->Last, since
|
|
// we may have gone around a loop with a different MemoryLocation.
|
|
auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
|
|
return defPathIndex(N) < PriorPathsSize;
|
|
});
|
|
assert(Iter != def_path_iterator());
|
|
|
|
DefPath &CurNode = *Iter;
|
|
assert(CurNode.Last == Current);
|
|
|
|
// Two things:
|
|
// A. We can't reliably cache all of NewPaused back. Consider a case
|
|
// where we have two paths in NewPaused; one of which can't optimize
|
|
// above this phi, whereas the other can. If we cache the second path
|
|
// back, we'll end up with suboptimal cache entries. We can handle
|
|
// cases like this a bit better when we either try to find all
|
|
// clobbers that block phi optimization, or when our cache starts
|
|
// supporting unfinished searches.
|
|
// B. We can't reliably cache TerminatedPaths back here without doing
|
|
// extra checks; consider a case like:
|
|
// T
|
|
// / \
|
|
// D C
|
|
// \ /
|
|
// S
|
|
// Where T is our target, C is a node with a clobber on it, D is a
|
|
// diamond (with a clobber *only* on the left or right node, N), and
|
|
// S is our start. Say we walk to D, through the node opposite N
|
|
// (read: ignoring the clobber), and see a cache entry in the top
|
|
// node of D. That cache entry gets put into TerminatedPaths. We then
|
|
// walk up to C (N is later in our worklist), find the clobber, and
|
|
// quit. If we append TerminatedPaths to OtherClobbers, we'll cache
|
|
// the bottom part of D to the cached clobber, ignoring the clobber
|
|
// in N. Again, this problem goes away if we start tracking all
|
|
// blockers for a given phi optimization.
|
|
TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
|
|
return {Result, {}};
|
|
}
|
|
|
|
// If there's nothing left to search, then all paths led to valid clobbers
|
|
// that we got from our cache; pick the nearest to the start, and allow
|
|
// the rest to be cached back.
|
|
if (NewPaused.empty()) {
|
|
MoveDominatedPathToEnd(TerminatedPaths);
|
|
TerminatedPath Result = TerminatedPaths.pop_back_val();
|
|
return {Result, std::move(TerminatedPaths)};
|
|
}
|
|
|
|
MemoryAccess *DefChainEnd = nullptr;
|
|
SmallVector<TerminatedPath, 4> Clobbers;
|
|
for (ListIndex Paused : NewPaused) {
|
|
UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
|
|
if (WR.IsKnownClobber)
|
|
Clobbers.push_back({WR.Result, Paused});
|
|
else
|
|
// Micro-opt: If we hit the end of the chain, save it.
|
|
DefChainEnd = WR.Result;
|
|
}
|
|
|
|
if (!TerminatedPaths.empty()) {
|
|
// If we couldn't find the dominating phi/liveOnEntry in the above loop,
|
|
// do it now.
|
|
if (!DefChainEnd)
|
|
for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
|
|
DefChainEnd = MA;
|
|
assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
|
|
|
|
// If any of the terminated paths don't dominate the phi we'll try to
|
|
// optimize, we need to figure out what they are and quit.
|
|
const BasicBlock *ChainBB = DefChainEnd->getBlock();
|
|
for (const TerminatedPath &TP : TerminatedPaths) {
|
|
// Because we know that DefChainEnd is as "high" as we can go, we
|
|
// don't need local dominance checks; BB dominance is sufficient.
|
|
if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
|
|
Clobbers.push_back(TP);
|
|
}
|
|
}
|
|
|
|
// If we have clobbers in the def chain, find the one closest to Current
|
|
// and quit.
|
|
if (!Clobbers.empty()) {
|
|
MoveDominatedPathToEnd(Clobbers);
|
|
TerminatedPath Result = Clobbers.pop_back_val();
|
|
return {Result, std::move(Clobbers)};
|
|
}
|
|
|
|
assert(all_of(NewPaused,
|
|
[&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
|
|
|
|
// Because liveOnEntry is a clobber, this must be a phi.
|
|
auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
|
|
|
|
PriorPathsSize = Paths.size();
|
|
PausedSearches.clear();
|
|
for (ListIndex I : NewPaused)
|
|
addSearches(DefChainPhi, PausedSearches, I);
|
|
NewPaused.clear();
|
|
|
|
Current = DefChainPhi;
|
|
}
|
|
}
|
|
|
|
void verifyOptResult(const OptznResult &R) const {
|
|
assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
|
|
return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
|
|
}));
|
|
}
|
|
|
|
void resetPhiOptznState() {
|
|
Paths.clear();
|
|
VisitedPhis.clear();
|
|
PerformedPhiTranslation = false;
|
|
}
|
|
|
|
public:
|
|
ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
|
|
: MSSA(MSSA), AA(AA), DT(DT) {}
|
|
|
|
AliasAnalysisType *getAA() { return &AA; }
|
|
/// Finds the nearest clobber for the given query, optimizing phis if
|
|
/// possible.
|
|
MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
|
|
unsigned &UpWalkLimit) {
|
|
Query = &Q;
|
|
UpwardWalkLimit = &UpWalkLimit;
|
|
// Starting limit must be > 0.
|
|
if (!UpWalkLimit)
|
|
UpWalkLimit++;
|
|
|
|
MemoryAccess *Current = Start;
|
|
// This walker pretends uses don't exist. If we're handed one, silently grab
|
|
// its def. (This has the nice side-effect of ensuring we never cache uses)
|
|
if (auto *MU = dyn_cast<MemoryUse>(Start))
|
|
Current = MU->getDefiningAccess();
|
|
|
|
DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
|
|
// Fast path for the overly-common case (no crazy phi optimization
|
|
// necessary)
|
|
UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
|
|
MemoryAccess *Result;
|
|
if (WalkResult.IsKnownClobber) {
|
|
Result = WalkResult.Result;
|
|
Q.AR = WalkResult.AR;
|
|
} else {
|
|
OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
|
|
Current, Q.StartingLoc);
|
|
verifyOptResult(OptRes);
|
|
resetPhiOptznState();
|
|
Result = OptRes.PrimaryClobber.Clobber;
|
|
}
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
|
|
checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
|
|
#endif
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
struct RenamePassData {
|
|
DomTreeNode *DTN;
|
|
DomTreeNode::const_iterator ChildIt;
|
|
MemoryAccess *IncomingVal;
|
|
|
|
RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
|
|
MemoryAccess *M)
|
|
: DTN(D), ChildIt(It), IncomingVal(M) {}
|
|
|
|
void swap(RenamePassData &RHS) {
|
|
std::swap(DTN, RHS.DTN);
|
|
std::swap(ChildIt, RHS.ChildIt);
|
|
std::swap(IncomingVal, RHS.IncomingVal);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
|
|
template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
|
|
ClobberWalker<AliasAnalysisType> Walker;
|
|
MemorySSA *MSSA;
|
|
|
|
public:
|
|
ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
|
|
: Walker(*M, *A, *D), MSSA(M) {}
|
|
|
|
MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
|
|
const MemoryLocation &,
|
|
unsigned &);
|
|
// Third argument (bool), defines whether the clobber search should skip the
|
|
// original queried access. If true, there will be a follow-up query searching
|
|
// for a clobber access past "self". Note that the Optimized access is not
|
|
// updated if a new clobber is found by this SkipSelf search. If this
|
|
// additional query becomes heavily used we may decide to cache the result.
|
|
// Walker instantiations will decide how to set the SkipSelf bool.
|
|
MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
|
|
};
|
|
|
|
/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
|
|
/// longer does caching on its own, but the name has been retained for the
|
|
/// moment.
|
|
template <class AliasAnalysisType>
|
|
class MemorySSA::CachingWalker final : public MemorySSAWalker {
|
|
ClobberWalkerBase<AliasAnalysisType> *Walker;
|
|
|
|
public:
|
|
CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
|
|
: MemorySSAWalker(M), Walker(W) {}
|
|
~CachingWalker() override = default;
|
|
|
|
using MemorySSAWalker::getClobberingMemoryAccess;
|
|
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
|
|
return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
|
|
}
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
|
|
const MemoryLocation &Loc,
|
|
unsigned &UWL) {
|
|
return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
|
|
}
|
|
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
|
|
unsigned UpwardWalkLimit = MaxCheckLimit;
|
|
return getClobberingMemoryAccess(MA, UpwardWalkLimit);
|
|
}
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
|
|
const MemoryLocation &Loc) override {
|
|
unsigned UpwardWalkLimit = MaxCheckLimit;
|
|
return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
|
|
}
|
|
|
|
void invalidateInfo(MemoryAccess *MA) override {
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
|
|
MUD->resetOptimized();
|
|
}
|
|
};
|
|
|
|
template <class AliasAnalysisType>
|
|
class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
|
|
ClobberWalkerBase<AliasAnalysisType> *Walker;
|
|
|
|
public:
|
|
SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
|
|
: MemorySSAWalker(M), Walker(W) {}
|
|
~SkipSelfWalker() override = default;
|
|
|
|
using MemorySSAWalker::getClobberingMemoryAccess;
|
|
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
|
|
return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
|
|
}
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
|
|
const MemoryLocation &Loc,
|
|
unsigned &UWL) {
|
|
return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
|
|
}
|
|
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
|
|
unsigned UpwardWalkLimit = MaxCheckLimit;
|
|
return getClobberingMemoryAccess(MA, UpwardWalkLimit);
|
|
}
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
|
|
const MemoryLocation &Loc) override {
|
|
unsigned UpwardWalkLimit = MaxCheckLimit;
|
|
return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
|
|
}
|
|
|
|
void invalidateInfo(MemoryAccess *MA) override {
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
|
|
MUD->resetOptimized();
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
|
|
bool RenameAllUses) {
|
|
// Pass through values to our successors
|
|
for (const BasicBlock *S : successors(BB)) {
|
|
auto It = PerBlockAccesses.find(S);
|
|
// Rename the phi nodes in our successor block
|
|
if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
|
|
continue;
|
|
AccessList *Accesses = It->second.get();
|
|
auto *Phi = cast<MemoryPhi>(&Accesses->front());
|
|
if (RenameAllUses) {
|
|
bool ReplacementDone = false;
|
|
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
|
|
if (Phi->getIncomingBlock(I) == BB) {
|
|
Phi->setIncomingValue(I, IncomingVal);
|
|
ReplacementDone = true;
|
|
}
|
|
(void) ReplacementDone;
|
|
assert(ReplacementDone && "Incomplete phi during partial rename");
|
|
} else
|
|
Phi->addIncoming(IncomingVal, BB);
|
|
}
|
|
}
|
|
|
|
/// Rename a single basic block into MemorySSA form.
|
|
/// Uses the standard SSA renaming algorithm.
|
|
/// \returns The new incoming value.
|
|
MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
|
|
bool RenameAllUses) {
|
|
auto It = PerBlockAccesses.find(BB);
|
|
// Skip most processing if the list is empty.
|
|
if (It != PerBlockAccesses.end()) {
|
|
AccessList *Accesses = It->second.get();
|
|
for (MemoryAccess &L : *Accesses) {
|
|
if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
|
|
if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
|
|
MUD->setDefiningAccess(IncomingVal);
|
|
if (isa<MemoryDef>(&L))
|
|
IncomingVal = &L;
|
|
} else {
|
|
IncomingVal = &L;
|
|
}
|
|
}
|
|
}
|
|
return IncomingVal;
|
|
}
|
|
|
|
/// This is the standard SSA renaming algorithm.
|
|
///
|
|
/// We walk the dominator tree in preorder, renaming accesses, and then filling
|
|
/// in phi nodes in our successors.
|
|
void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
|
|
SmallPtrSetImpl<BasicBlock *> &Visited,
|
|
bool SkipVisited, bool RenameAllUses) {
|
|
assert(Root && "Trying to rename accesses in an unreachable block");
|
|
|
|
SmallVector<RenamePassData, 32> WorkStack;
|
|
// Skip everything if we already renamed this block and we are skipping.
|
|
// Note: You can't sink this into the if, because we need it to occur
|
|
// regardless of whether we skip blocks or not.
|
|
bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
|
|
if (SkipVisited && AlreadyVisited)
|
|
return;
|
|
|
|
IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
|
|
renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
|
|
WorkStack.push_back({Root, Root->begin(), IncomingVal});
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNode *Node = WorkStack.back().DTN;
|
|
DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
|
|
IncomingVal = WorkStack.back().IncomingVal;
|
|
|
|
if (ChildIt == Node->end()) {
|
|
WorkStack.pop_back();
|
|
} else {
|
|
DomTreeNode *Child = *ChildIt;
|
|
++WorkStack.back().ChildIt;
|
|
BasicBlock *BB = Child->getBlock();
|
|
// Note: You can't sink this into the if, because we need it to occur
|
|
// regardless of whether we skip blocks or not.
|
|
AlreadyVisited = !Visited.insert(BB).second;
|
|
if (SkipVisited && AlreadyVisited) {
|
|
// We already visited this during our renaming, which can happen when
|
|
// being asked to rename multiple blocks. Figure out the incoming val,
|
|
// which is the last def.
|
|
// Incoming value can only change if there is a block def, and in that
|
|
// case, it's the last block def in the list.
|
|
if (auto *BlockDefs = getWritableBlockDefs(BB))
|
|
IncomingVal = &*BlockDefs->rbegin();
|
|
} else
|
|
IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
|
|
renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
|
|
WorkStack.push_back({Child, Child->begin(), IncomingVal});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This handles unreachable block accesses by deleting phi nodes in
|
|
/// unreachable blocks, and marking all other unreachable MemoryAccess's as
|
|
/// being uses of the live on entry definition.
|
|
void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
|
|
assert(!DT->isReachableFromEntry(BB) &&
|
|
"Reachable block found while handling unreachable blocks");
|
|
|
|
// Make sure phi nodes in our reachable successors end up with a
|
|
// LiveOnEntryDef for our incoming edge, even though our block is forward
|
|
// unreachable. We could just disconnect these blocks from the CFG fully,
|
|
// but we do not right now.
|
|
for (const BasicBlock *S : successors(BB)) {
|
|
if (!DT->isReachableFromEntry(S))
|
|
continue;
|
|
auto It = PerBlockAccesses.find(S);
|
|
// Rename the phi nodes in our successor block
|
|
if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
|
|
continue;
|
|
AccessList *Accesses = It->second.get();
|
|
auto *Phi = cast<MemoryPhi>(&Accesses->front());
|
|
Phi->addIncoming(LiveOnEntryDef.get(), BB);
|
|
}
|
|
|
|
auto It = PerBlockAccesses.find(BB);
|
|
if (It == PerBlockAccesses.end())
|
|
return;
|
|
|
|
auto &Accesses = It->second;
|
|
for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
|
|
auto Next = std::next(AI);
|
|
// If we have a phi, just remove it. We are going to replace all
|
|
// users with live on entry.
|
|
if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
|
|
UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
|
|
else
|
|
Accesses->erase(AI);
|
|
AI = Next;
|
|
}
|
|
}
|
|
|
|
MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
|
|
: AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
|
|
SkipWalker(nullptr), NextID(0) {
|
|
// Build MemorySSA using a batch alias analysis. This reuses the internal
|
|
// state that AA collects during an alias()/getModRefInfo() call. This is
|
|
// safe because there are no CFG changes while building MemorySSA and can
|
|
// significantly reduce the time spent by the compiler in AA, because we will
|
|
// make queries about all the instructions in the Function.
|
|
assert(AA && "No alias analysis?");
|
|
BatchAAResults BatchAA(*AA);
|
|
buildMemorySSA(BatchAA);
|
|
// Intentionally leave AA to nullptr while building so we don't accidently
|
|
// use non-batch AliasAnalysis.
|
|
this->AA = AA;
|
|
// Also create the walker here.
|
|
getWalker();
|
|
}
|
|
|
|
MemorySSA::~MemorySSA() {
|
|
// Drop all our references
|
|
for (const auto &Pair : PerBlockAccesses)
|
|
for (MemoryAccess &MA : *Pair.second)
|
|
MA.dropAllReferences();
|
|
}
|
|
|
|
MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
|
|
auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
|
|
|
|
if (Res.second)
|
|
Res.first->second = std::make_unique<AccessList>();
|
|
return Res.first->second.get();
|
|
}
|
|
|
|
MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
|
|
auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
|
|
|
|
if (Res.second)
|
|
Res.first->second = std::make_unique<DefsList>();
|
|
return Res.first->second.get();
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
/// This class is a batch walker of all MemoryUse's in the program, and points
|
|
/// their defining access at the thing that actually clobbers them. Because it
|
|
/// is a batch walker that touches everything, it does not operate like the
|
|
/// other walkers. This walker is basically performing a top-down SSA renaming
|
|
/// pass, where the version stack is used as the cache. This enables it to be
|
|
/// significantly more time and memory efficient than using the regular walker,
|
|
/// which is walking bottom-up.
|
|
class MemorySSA::OptimizeUses {
|
|
public:
|
|
OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
|
|
BatchAAResults *BAA, DominatorTree *DT)
|
|
: MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
|
|
|
|
void optimizeUses();
|
|
|
|
private:
|
|
/// This represents where a given memorylocation is in the stack.
|
|
struct MemlocStackInfo {
|
|
// This essentially is keeping track of versions of the stack. Whenever
|
|
// the stack changes due to pushes or pops, these versions increase.
|
|
unsigned long StackEpoch;
|
|
unsigned long PopEpoch;
|
|
// This is the lower bound of places on the stack to check. It is equal to
|
|
// the place the last stack walk ended.
|
|
// Note: Correctness depends on this being initialized to 0, which densemap
|
|
// does
|
|
unsigned long LowerBound;
|
|
const BasicBlock *LowerBoundBlock;
|
|
// This is where the last walk for this memory location ended.
|
|
unsigned long LastKill;
|
|
bool LastKillValid;
|
|
Optional<AliasResult> AR;
|
|
};
|
|
|
|
void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
|
|
SmallVectorImpl<MemoryAccess *> &,
|
|
DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
|
|
|
|
MemorySSA *MSSA;
|
|
CachingWalker<BatchAAResults> *Walker;
|
|
BatchAAResults *AA;
|
|
DominatorTree *DT;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
/// Optimize the uses in a given block This is basically the SSA renaming
|
|
/// algorithm, with one caveat: We are able to use a single stack for all
|
|
/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
|
|
/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
|
|
/// going to be some position in that stack of possible ones.
|
|
///
|
|
/// We track the stack positions that each MemoryLocation needs
|
|
/// to check, and last ended at. This is because we only want to check the
|
|
/// things that changed since last time. The same MemoryLocation should
|
|
/// get clobbered by the same store (getModRefInfo does not use invariantness or
|
|
/// things like this, and if they start, we can modify MemoryLocOrCall to
|
|
/// include relevant data)
|
|
void MemorySSA::OptimizeUses::optimizeUsesInBlock(
|
|
const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
|
|
SmallVectorImpl<MemoryAccess *> &VersionStack,
|
|
DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
|
|
|
|
/// If no accesses, nothing to do.
|
|
MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
|
|
if (Accesses == nullptr)
|
|
return;
|
|
|
|
// Pop everything that doesn't dominate the current block off the stack,
|
|
// increment the PopEpoch to account for this.
|
|
while (true) {
|
|
assert(
|
|
!VersionStack.empty() &&
|
|
"Version stack should have liveOnEntry sentinel dominating everything");
|
|
BasicBlock *BackBlock = VersionStack.back()->getBlock();
|
|
if (DT->dominates(BackBlock, BB))
|
|
break;
|
|
while (VersionStack.back()->getBlock() == BackBlock)
|
|
VersionStack.pop_back();
|
|
++PopEpoch;
|
|
}
|
|
|
|
for (MemoryAccess &MA : *Accesses) {
|
|
auto *MU = dyn_cast<MemoryUse>(&MA);
|
|
if (!MU) {
|
|
VersionStack.push_back(&MA);
|
|
++StackEpoch;
|
|
continue;
|
|
}
|
|
|
|
if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
|
|
MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
|
|
continue;
|
|
}
|
|
|
|
MemoryLocOrCall UseMLOC(MU);
|
|
auto &LocInfo = LocStackInfo[UseMLOC];
|
|
// If the pop epoch changed, it means we've removed stuff from top of
|
|
// stack due to changing blocks. We may have to reset the lower bound or
|
|
// last kill info.
|
|
if (LocInfo.PopEpoch != PopEpoch) {
|
|
LocInfo.PopEpoch = PopEpoch;
|
|
LocInfo.StackEpoch = StackEpoch;
|
|
// If the lower bound was in something that no longer dominates us, we
|
|
// have to reset it.
|
|
// We can't simply track stack size, because the stack may have had
|
|
// pushes/pops in the meantime.
|
|
// XXX: This is non-optimal, but only is slower cases with heavily
|
|
// branching dominator trees. To get the optimal number of queries would
|
|
// be to make lowerbound and lastkill a per-loc stack, and pop it until
|
|
// the top of that stack dominates us. This does not seem worth it ATM.
|
|
// A much cheaper optimization would be to always explore the deepest
|
|
// branch of the dominator tree first. This will guarantee this resets on
|
|
// the smallest set of blocks.
|
|
if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
|
|
!DT->dominates(LocInfo.LowerBoundBlock, BB)) {
|
|
// Reset the lower bound of things to check.
|
|
// TODO: Some day we should be able to reset to last kill, rather than
|
|
// 0.
|
|
LocInfo.LowerBound = 0;
|
|
LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
|
|
LocInfo.LastKillValid = false;
|
|
}
|
|
} else if (LocInfo.StackEpoch != StackEpoch) {
|
|
// If all that has changed is the StackEpoch, we only have to check the
|
|
// new things on the stack, because we've checked everything before. In
|
|
// this case, the lower bound of things to check remains the same.
|
|
LocInfo.PopEpoch = PopEpoch;
|
|
LocInfo.StackEpoch = StackEpoch;
|
|
}
|
|
if (!LocInfo.LastKillValid) {
|
|
LocInfo.LastKill = VersionStack.size() - 1;
|
|
LocInfo.LastKillValid = true;
|
|
LocInfo.AR = MayAlias;
|
|
}
|
|
|
|
// At this point, we should have corrected last kill and LowerBound to be
|
|
// in bounds.
|
|
assert(LocInfo.LowerBound < VersionStack.size() &&
|
|
"Lower bound out of range");
|
|
assert(LocInfo.LastKill < VersionStack.size() &&
|
|
"Last kill info out of range");
|
|
// In any case, the new upper bound is the top of the stack.
|
|
unsigned long UpperBound = VersionStack.size() - 1;
|
|
|
|
if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
|
|
LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
|
|
<< *(MU->getMemoryInst()) << ")"
|
|
<< " because there are "
|
|
<< UpperBound - LocInfo.LowerBound
|
|
<< " stores to disambiguate\n");
|
|
// Because we did not walk, LastKill is no longer valid, as this may
|
|
// have been a kill.
|
|
LocInfo.LastKillValid = false;
|
|
continue;
|
|
}
|
|
bool FoundClobberResult = false;
|
|
unsigned UpwardWalkLimit = MaxCheckLimit;
|
|
while (UpperBound > LocInfo.LowerBound) {
|
|
if (isa<MemoryPhi>(VersionStack[UpperBound])) {
|
|
// For phis, use the walker, see where we ended up, go there
|
|
MemoryAccess *Result =
|
|
Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
|
|
// We are guaranteed to find it or something is wrong
|
|
while (VersionStack[UpperBound] != Result) {
|
|
assert(UpperBound != 0);
|
|
--UpperBound;
|
|
}
|
|
FoundClobberResult = true;
|
|
break;
|
|
}
|
|
|
|
MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
|
|
// If the lifetime of the pointer ends at this instruction, it's live on
|
|
// entry.
|
|
if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
|
|
// Reset UpperBound to liveOnEntryDef's place in the stack
|
|
UpperBound = 0;
|
|
FoundClobberResult = true;
|
|
LocInfo.AR = MustAlias;
|
|
break;
|
|
}
|
|
ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
|
|
if (CA.IsClobber) {
|
|
FoundClobberResult = true;
|
|
LocInfo.AR = CA.AR;
|
|
break;
|
|
}
|
|
--UpperBound;
|
|
}
|
|
|
|
// Note: Phis always have AliasResult AR set to MayAlias ATM.
|
|
|
|
// At the end of this loop, UpperBound is either a clobber, or lower bound
|
|
// PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
|
|
if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
|
|
// We were last killed now by where we got to
|
|
if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
|
|
LocInfo.AR = None;
|
|
MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
|
|
LocInfo.LastKill = UpperBound;
|
|
} else {
|
|
// Otherwise, we checked all the new ones, and now we know we can get to
|
|
// LastKill.
|
|
MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
|
|
}
|
|
LocInfo.LowerBound = VersionStack.size() - 1;
|
|
LocInfo.LowerBoundBlock = BB;
|
|
}
|
|
}
|
|
|
|
/// Optimize uses to point to their actual clobbering definitions.
|
|
void MemorySSA::OptimizeUses::optimizeUses() {
|
|
SmallVector<MemoryAccess *, 16> VersionStack;
|
|
DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
|
|
VersionStack.push_back(MSSA->getLiveOnEntryDef());
|
|
|
|
unsigned long StackEpoch = 1;
|
|
unsigned long PopEpoch = 1;
|
|
// We perform a non-recursive top-down dominator tree walk.
|
|
for (const auto *DomNode : depth_first(DT->getRootNode()))
|
|
optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
|
|
LocStackInfo);
|
|
}
|
|
|
|
void MemorySSA::placePHINodes(
|
|
const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
|
|
// Determine where our MemoryPhi's should go
|
|
ForwardIDFCalculator IDFs(*DT);
|
|
IDFs.setDefiningBlocks(DefiningBlocks);
|
|
SmallVector<BasicBlock *, 32> IDFBlocks;
|
|
IDFs.calculate(IDFBlocks);
|
|
|
|
// Now place MemoryPhi nodes.
|
|
for (auto &BB : IDFBlocks)
|
|
createMemoryPhi(BB);
|
|
}
|
|
|
|
void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
|
|
// We create an access to represent "live on entry", for things like
|
|
// arguments or users of globals, where the memory they use is defined before
|
|
// the beginning of the function. We do not actually insert it into the IR.
|
|
// We do not define a live on exit for the immediate uses, and thus our
|
|
// semantics do *not* imply that something with no immediate uses can simply
|
|
// be removed.
|
|
BasicBlock &StartingPoint = F.getEntryBlock();
|
|
LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
|
|
&StartingPoint, NextID++));
|
|
|
|
// We maintain lists of memory accesses per-block, trading memory for time. We
|
|
// could just look up the memory access for every possible instruction in the
|
|
// stream.
|
|
SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
|
|
// Go through each block, figure out where defs occur, and chain together all
|
|
// the accesses.
|
|
for (BasicBlock &B : F) {
|
|
bool InsertIntoDef = false;
|
|
AccessList *Accesses = nullptr;
|
|
DefsList *Defs = nullptr;
|
|
for (Instruction &I : B) {
|
|
MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
|
|
if (!MUD)
|
|
continue;
|
|
|
|
if (!Accesses)
|
|
Accesses = getOrCreateAccessList(&B);
|
|
Accesses->push_back(MUD);
|
|
if (isa<MemoryDef>(MUD)) {
|
|
InsertIntoDef = true;
|
|
if (!Defs)
|
|
Defs = getOrCreateDefsList(&B);
|
|
Defs->push_back(*MUD);
|
|
}
|
|
}
|
|
if (InsertIntoDef)
|
|
DefiningBlocks.insert(&B);
|
|
}
|
|
placePHINodes(DefiningBlocks);
|
|
|
|
// Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
|
|
// filled in with all blocks.
|
|
SmallPtrSet<BasicBlock *, 16> Visited;
|
|
renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
|
|
|
|
ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
|
|
CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
|
|
OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
|
|
|
|
// Mark the uses in unreachable blocks as live on entry, so that they go
|
|
// somewhere.
|
|
for (auto &BB : F)
|
|
if (!Visited.count(&BB))
|
|
markUnreachableAsLiveOnEntry(&BB);
|
|
}
|
|
|
|
MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
|
|
|
|
MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
|
|
if (Walker)
|
|
return Walker.get();
|
|
|
|
if (!WalkerBase)
|
|
WalkerBase =
|
|
std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
|
|
|
|
Walker =
|
|
std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
|
|
return Walker.get();
|
|
}
|
|
|
|
MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
|
|
if (SkipWalker)
|
|
return SkipWalker.get();
|
|
|
|
if (!WalkerBase)
|
|
WalkerBase =
|
|
std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
|
|
|
|
SkipWalker =
|
|
std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
|
|
return SkipWalker.get();
|
|
}
|
|
|
|
|
|
// This is a helper function used by the creation routines. It places NewAccess
|
|
// into the access and defs lists for a given basic block, at the given
|
|
// insertion point.
|
|
void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
|
|
const BasicBlock *BB,
|
|
InsertionPlace Point) {
|
|
auto *Accesses = getOrCreateAccessList(BB);
|
|
if (Point == Beginning) {
|
|
// If it's a phi node, it goes first, otherwise, it goes after any phi
|
|
// nodes.
|
|
if (isa<MemoryPhi>(NewAccess)) {
|
|
Accesses->push_front(NewAccess);
|
|
auto *Defs = getOrCreateDefsList(BB);
|
|
Defs->push_front(*NewAccess);
|
|
} else {
|
|
auto AI = find_if_not(
|
|
*Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
|
|
Accesses->insert(AI, NewAccess);
|
|
if (!isa<MemoryUse>(NewAccess)) {
|
|
auto *Defs = getOrCreateDefsList(BB);
|
|
auto DI = find_if_not(
|
|
*Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
|
|
Defs->insert(DI, *NewAccess);
|
|
}
|
|
}
|
|
} else {
|
|
Accesses->push_back(NewAccess);
|
|
if (!isa<MemoryUse>(NewAccess)) {
|
|
auto *Defs = getOrCreateDefsList(BB);
|
|
Defs->push_back(*NewAccess);
|
|
}
|
|
}
|
|
BlockNumberingValid.erase(BB);
|
|
}
|
|
|
|
void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
|
|
AccessList::iterator InsertPt) {
|
|
auto *Accesses = getWritableBlockAccesses(BB);
|
|
bool WasEnd = InsertPt == Accesses->end();
|
|
Accesses->insert(AccessList::iterator(InsertPt), What);
|
|
if (!isa<MemoryUse>(What)) {
|
|
auto *Defs = getOrCreateDefsList(BB);
|
|
// If we got asked to insert at the end, we have an easy job, just shove it
|
|
// at the end. If we got asked to insert before an existing def, we also get
|
|
// an iterator. If we got asked to insert before a use, we have to hunt for
|
|
// the next def.
|
|
if (WasEnd) {
|
|
Defs->push_back(*What);
|
|
} else if (isa<MemoryDef>(InsertPt)) {
|
|
Defs->insert(InsertPt->getDefsIterator(), *What);
|
|
} else {
|
|
while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
|
|
++InsertPt;
|
|
// Either we found a def, or we are inserting at the end
|
|
if (InsertPt == Accesses->end())
|
|
Defs->push_back(*What);
|
|
else
|
|
Defs->insert(InsertPt->getDefsIterator(), *What);
|
|
}
|
|
}
|
|
BlockNumberingValid.erase(BB);
|
|
}
|
|
|
|
void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
|
|
// Keep it in the lookup tables, remove from the lists
|
|
removeFromLists(What, false);
|
|
|
|
// Note that moving should implicitly invalidate the optimized state of a
|
|
// MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
|
|
// MemoryDef.
|
|
if (auto *MD = dyn_cast<MemoryDef>(What))
|
|
MD->resetOptimized();
|
|
What->setBlock(BB);
|
|
}
|
|
|
|
// Move What before Where in the IR. The end result is that What will belong to
|
|
// the right lists and have the right Block set, but will not otherwise be
|
|
// correct. It will not have the right defining access, and if it is a def,
|
|
// things below it will not properly be updated.
|
|
void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
|
|
AccessList::iterator Where) {
|
|
prepareForMoveTo(What, BB);
|
|
insertIntoListsBefore(What, BB, Where);
|
|
}
|
|
|
|
void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
|
|
InsertionPlace Point) {
|
|
if (isa<MemoryPhi>(What)) {
|
|
assert(Point == Beginning &&
|
|
"Can only move a Phi at the beginning of the block");
|
|
// Update lookup table entry
|
|
ValueToMemoryAccess.erase(What->getBlock());
|
|
bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
|
|
(void)Inserted;
|
|
assert(Inserted && "Cannot move a Phi to a block that already has one");
|
|
}
|
|
|
|
prepareForMoveTo(What, BB);
|
|
insertIntoListsForBlock(What, BB, Point);
|
|
}
|
|
|
|
MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
|
|
assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
|
|
MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
|
|
// Phi's always are placed at the front of the block.
|
|
insertIntoListsForBlock(Phi, BB, Beginning);
|
|
ValueToMemoryAccess[BB] = Phi;
|
|
return Phi;
|
|
}
|
|
|
|
MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
|
|
MemoryAccess *Definition,
|
|
const MemoryUseOrDef *Template,
|
|
bool CreationMustSucceed) {
|
|
assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
|
|
MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
|
|
if (CreationMustSucceed)
|
|
assert(NewAccess != nullptr && "Tried to create a memory access for a "
|
|
"non-memory touching instruction");
|
|
if (NewAccess) {
|
|
assert((!Definition || !isa<MemoryUse>(Definition)) &&
|
|
"A use cannot be a defining access");
|
|
NewAccess->setDefiningAccess(Definition);
|
|
}
|
|
return NewAccess;
|
|
}
|
|
|
|
// Return true if the instruction has ordering constraints.
|
|
// Note specifically that this only considers stores and loads
|
|
// because others are still considered ModRef by getModRefInfo.
|
|
static inline bool isOrdered(const Instruction *I) {
|
|
if (auto *SI = dyn_cast<StoreInst>(I)) {
|
|
if (!SI->isUnordered())
|
|
return true;
|
|
} else if (auto *LI = dyn_cast<LoadInst>(I)) {
|
|
if (!LI->isUnordered())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Helper function to create new memory accesses
|
|
template <typename AliasAnalysisType>
|
|
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
|
|
AliasAnalysisType *AAP,
|
|
const MemoryUseOrDef *Template) {
|
|
// The assume intrinsic has a control dependency which we model by claiming
|
|
// that it writes arbitrarily. Debuginfo intrinsics may be considered
|
|
// clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
|
|
// dependencies here.
|
|
// FIXME: Replace this special casing with a more accurate modelling of
|
|
// assume's control dependency.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
if (II->getIntrinsicID() == Intrinsic::assume)
|
|
return nullptr;
|
|
|
|
// Using a nonstandard AA pipelines might leave us with unexpected modref
|
|
// results for I, so add a check to not model instructions that may not read
|
|
// from or write to memory. This is necessary for correctness.
|
|
if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
|
|
return nullptr;
|
|
|
|
bool Def, Use;
|
|
if (Template) {
|
|
Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
|
|
Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
|
|
#if !defined(NDEBUG)
|
|
ModRefInfo ModRef = AAP->getModRefInfo(I, None);
|
|
bool DefCheck, UseCheck;
|
|
DefCheck = isModSet(ModRef) || isOrdered(I);
|
|
UseCheck = isRefSet(ModRef);
|
|
assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
|
|
#endif
|
|
} else {
|
|
// Find out what affect this instruction has on memory.
|
|
ModRefInfo ModRef = AAP->getModRefInfo(I, None);
|
|
// The isOrdered check is used to ensure that volatiles end up as defs
|
|
// (atomics end up as ModRef right now anyway). Until we separate the
|
|
// ordering chain from the memory chain, this enables people to see at least
|
|
// some relative ordering to volatiles. Note that getClobberingMemoryAccess
|
|
// will still give an answer that bypasses other volatile loads. TODO:
|
|
// Separate memory aliasing and ordering into two different chains so that
|
|
// we can precisely represent both "what memory will this read/write/is
|
|
// clobbered by" and "what instructions can I move this past".
|
|
Def = isModSet(ModRef) || isOrdered(I);
|
|
Use = isRefSet(ModRef);
|
|
}
|
|
|
|
// It's possible for an instruction to not modify memory at all. During
|
|
// construction, we ignore them.
|
|
if (!Def && !Use)
|
|
return nullptr;
|
|
|
|
MemoryUseOrDef *MUD;
|
|
if (Def)
|
|
MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
|
|
else
|
|
MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
|
|
ValueToMemoryAccess[I] = MUD;
|
|
return MUD;
|
|
}
|
|
|
|
/// Returns true if \p Replacer dominates \p Replacee .
|
|
bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
|
|
const MemoryAccess *Replacee) const {
|
|
if (isa<MemoryUseOrDef>(Replacee))
|
|
return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
|
|
const auto *MP = cast<MemoryPhi>(Replacee);
|
|
// For a phi node, the use occurs in the predecessor block of the phi node.
|
|
// Since we may occur multiple times in the phi node, we have to check each
|
|
// operand to ensure Replacer dominates each operand where Replacee occurs.
|
|
for (const Use &Arg : MP->operands()) {
|
|
if (Arg.get() != Replacee &&
|
|
!DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Properly remove \p MA from all of MemorySSA's lookup tables.
|
|
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
|
|
assert(MA->use_empty() &&
|
|
"Trying to remove memory access that still has uses");
|
|
BlockNumbering.erase(MA);
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
|
|
MUD->setDefiningAccess(nullptr);
|
|
// Invalidate our walker's cache if necessary
|
|
if (!isa<MemoryUse>(MA))
|
|
getWalker()->invalidateInfo(MA);
|
|
|
|
Value *MemoryInst;
|
|
if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
|
|
MemoryInst = MUD->getMemoryInst();
|
|
else
|
|
MemoryInst = MA->getBlock();
|
|
|
|
auto VMA = ValueToMemoryAccess.find(MemoryInst);
|
|
if (VMA->second == MA)
|
|
ValueToMemoryAccess.erase(VMA);
|
|
}
|
|
|
|
/// Properly remove \p MA from all of MemorySSA's lists.
|
|
///
|
|
/// Because of the way the intrusive list and use lists work, it is important to
|
|
/// do removal in the right order.
|
|
/// ShouldDelete defaults to true, and will cause the memory access to also be
|
|
/// deleted, not just removed.
|
|
void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
|
|
BasicBlock *BB = MA->getBlock();
|
|
// The access list owns the reference, so we erase it from the non-owning list
|
|
// first.
|
|
if (!isa<MemoryUse>(MA)) {
|
|
auto DefsIt = PerBlockDefs.find(BB);
|
|
std::unique_ptr<DefsList> &Defs = DefsIt->second;
|
|
Defs->remove(*MA);
|
|
if (Defs->empty())
|
|
PerBlockDefs.erase(DefsIt);
|
|
}
|
|
|
|
// The erase call here will delete it. If we don't want it deleted, we call
|
|
// remove instead.
|
|
auto AccessIt = PerBlockAccesses.find(BB);
|
|
std::unique_ptr<AccessList> &Accesses = AccessIt->second;
|
|
if (ShouldDelete)
|
|
Accesses->erase(MA);
|
|
else
|
|
Accesses->remove(MA);
|
|
|
|
if (Accesses->empty()) {
|
|
PerBlockAccesses.erase(AccessIt);
|
|
BlockNumberingValid.erase(BB);
|
|
}
|
|
}
|
|
|
|
void MemorySSA::print(raw_ostream &OS) const {
|
|
MemorySSAAnnotatedWriter Writer(this);
|
|
F.print(OS, &Writer);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
void MemorySSA::verifyMemorySSA() const {
|
|
verifyOrderingDominationAndDefUses(F);
|
|
verifyDominationNumbers(F);
|
|
verifyPrevDefInPhis(F);
|
|
// Previously, the verification used to also verify that the clobberingAccess
|
|
// cached by MemorySSA is the same as the clobberingAccess found at a later
|
|
// query to AA. This does not hold true in general due to the current fragility
|
|
// of BasicAA which has arbitrary caps on the things it analyzes before giving
|
|
// up. As a result, transformations that are correct, will lead to BasicAA
|
|
// returning different Alias answers before and after that transformation.
|
|
// Invalidating MemorySSA is not an option, as the results in BasicAA can be so
|
|
// random, in the worst case we'd need to rebuild MemorySSA from scratch after
|
|
// every transformation, which defeats the purpose of using it. For such an
|
|
// example, see test4 added in D51960.
|
|
}
|
|
|
|
void MemorySSA::verifyPrevDefInPhis(Function &F) const {
|
|
#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
|
|
for (const BasicBlock &BB : F) {
|
|
if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
|
|
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
|
|
auto *Pred = Phi->getIncomingBlock(I);
|
|
auto *IncAcc = Phi->getIncomingValue(I);
|
|
// If Pred has no unreachable predecessors, get last def looking at
|
|
// IDoms. If, while walkings IDoms, any of these has an unreachable
|
|
// predecessor, then the incoming def can be any access.
|
|
if (auto *DTNode = DT->getNode(Pred)) {
|
|
while (DTNode) {
|
|
if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
|
|
auto *LastAcc = &*(--DefList->end());
|
|
assert(LastAcc == IncAcc &&
|
|
"Incorrect incoming access into phi.");
|
|
break;
|
|
}
|
|
DTNode = DTNode->getIDom();
|
|
}
|
|
} else {
|
|
// If Pred has unreachable predecessors, but has at least a Def, the
|
|
// incoming access can be the last Def in Pred, or it could have been
|
|
// optimized to LoE. After an update, though, the LoE may have been
|
|
// replaced by another access, so IncAcc may be any access.
|
|
// If Pred has unreachable predecessors and no Defs, incoming access
|
|
// should be LoE; However, after an update, it may be any access.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Verify that all of the blocks we believe to have valid domination numbers
|
|
/// actually have valid domination numbers.
|
|
void MemorySSA::verifyDominationNumbers(const Function &F) const {
|
|
#ifndef NDEBUG
|
|
if (BlockNumberingValid.empty())
|
|
return;
|
|
|
|
SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
|
|
for (const BasicBlock &BB : F) {
|
|
if (!ValidBlocks.count(&BB))
|
|
continue;
|
|
|
|
ValidBlocks.erase(&BB);
|
|
|
|
const AccessList *Accesses = getBlockAccesses(&BB);
|
|
// It's correct to say an empty block has valid numbering.
|
|
if (!Accesses)
|
|
continue;
|
|
|
|
// Block numbering starts at 1.
|
|
unsigned long LastNumber = 0;
|
|
for (const MemoryAccess &MA : *Accesses) {
|
|
auto ThisNumberIter = BlockNumbering.find(&MA);
|
|
assert(ThisNumberIter != BlockNumbering.end() &&
|
|
"MemoryAccess has no domination number in a valid block!");
|
|
|
|
unsigned long ThisNumber = ThisNumberIter->second;
|
|
assert(ThisNumber > LastNumber &&
|
|
"Domination numbers should be strictly increasing!");
|
|
LastNumber = ThisNumber;
|
|
}
|
|
}
|
|
|
|
assert(ValidBlocks.empty() &&
|
|
"All valid BasicBlocks should exist in F -- dangling pointers?");
|
|
#endif
|
|
}
|
|
|
|
/// Verify ordering: the order and existence of MemoryAccesses matches the
|
|
/// order and existence of memory affecting instructions.
|
|
/// Verify domination: each definition dominates all of its uses.
|
|
/// Verify def-uses: the immediate use information - walk all the memory
|
|
/// accesses and verifying that, for each use, it appears in the appropriate
|
|
/// def's use list
|
|
void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const {
|
|
#if !defined(NDEBUG)
|
|
// Walk all the blocks, comparing what the lookups think and what the access
|
|
// lists think, as well as the order in the blocks vs the order in the access
|
|
// lists.
|
|
SmallVector<MemoryAccess *, 32> ActualAccesses;
|
|
SmallVector<MemoryAccess *, 32> ActualDefs;
|
|
for (BasicBlock &B : F) {
|
|
const AccessList *AL = getBlockAccesses(&B);
|
|
const auto *DL = getBlockDefs(&B);
|
|
MemoryPhi *Phi = getMemoryAccess(&B);
|
|
if (Phi) {
|
|
// Verify ordering.
|
|
ActualAccesses.push_back(Phi);
|
|
ActualDefs.push_back(Phi);
|
|
// Verify domination
|
|
for (const Use &U : Phi->uses())
|
|
assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
|
|
#if defined(EXPENSIVE_CHECKS)
|
|
// Verify def-uses.
|
|
assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
|
|
pred_begin(&B), pred_end(&B))) &&
|
|
"Incomplete MemoryPhi Node");
|
|
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
|
|
verifyUseInDefs(Phi->getIncomingValue(I), Phi);
|
|
assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
|
|
pred_end(&B) &&
|
|
"Incoming phi block not a block predecessor");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (Instruction &I : B) {
|
|
MemoryUseOrDef *MA = getMemoryAccess(&I);
|
|
assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
|
|
"We have memory affecting instructions "
|
|
"in this block but they are not in the "
|
|
"access list or defs list");
|
|
if (MA) {
|
|
// Verify ordering.
|
|
ActualAccesses.push_back(MA);
|
|
if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
|
|
// Verify ordering.
|
|
ActualDefs.push_back(MA);
|
|
// Verify domination.
|
|
for (const Use &U : MD->uses())
|
|
assert(dominates(MD, U) &&
|
|
"Memory Def does not dominate it's uses");
|
|
}
|
|
#if defined(EXPENSIVE_CHECKS)
|
|
// Verify def-uses.
|
|
verifyUseInDefs(MA->getDefiningAccess(), MA);
|
|
#endif
|
|
}
|
|
}
|
|
// Either we hit the assert, really have no accesses, or we have both
|
|
// accesses and an access list. Same with defs.
|
|
if (!AL && !DL)
|
|
continue;
|
|
// Verify ordering.
|
|
assert(AL->size() == ActualAccesses.size() &&
|
|
"We don't have the same number of accesses in the block as on the "
|
|
"access list");
|
|
assert((DL || ActualDefs.size() == 0) &&
|
|
"Either we should have a defs list, or we should have no defs");
|
|
assert((!DL || DL->size() == ActualDefs.size()) &&
|
|
"We don't have the same number of defs in the block as on the "
|
|
"def list");
|
|
auto ALI = AL->begin();
|
|
auto AAI = ActualAccesses.begin();
|
|
while (ALI != AL->end() && AAI != ActualAccesses.end()) {
|
|
assert(&*ALI == *AAI && "Not the same accesses in the same order");
|
|
++ALI;
|
|
++AAI;
|
|
}
|
|
ActualAccesses.clear();
|
|
if (DL) {
|
|
auto DLI = DL->begin();
|
|
auto ADI = ActualDefs.begin();
|
|
while (DLI != DL->end() && ADI != ActualDefs.end()) {
|
|
assert(&*DLI == *ADI && "Not the same defs in the same order");
|
|
++DLI;
|
|
++ADI;
|
|
}
|
|
}
|
|
ActualDefs.clear();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Verify the def-use lists in MemorySSA, by verifying that \p Use
|
|
/// appears in the use list of \p Def.
|
|
void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
|
|
#ifndef NDEBUG
|
|
// The live on entry use may cause us to get a NULL def here
|
|
if (!Def)
|
|
assert(isLiveOnEntryDef(Use) &&
|
|
"Null def but use not point to live on entry def");
|
|
else
|
|
assert(is_contained(Def->users(), Use) &&
|
|
"Did not find use in def's use list");
|
|
#endif
|
|
}
|
|
|
|
/// Perform a local numbering on blocks so that instruction ordering can be
|
|
/// determined in constant time.
|
|
/// TODO: We currently just number in order. If we numbered by N, we could
|
|
/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
|
|
/// log2(N) sequences of mixed before and after) without needing to invalidate
|
|
/// the numbering.
|
|
void MemorySSA::renumberBlock(const BasicBlock *B) const {
|
|
// The pre-increment ensures the numbers really start at 1.
|
|
unsigned long CurrentNumber = 0;
|
|
const AccessList *AL = getBlockAccesses(B);
|
|
assert(AL != nullptr && "Asking to renumber an empty block");
|
|
for (const auto &I : *AL)
|
|
BlockNumbering[&I] = ++CurrentNumber;
|
|
BlockNumberingValid.insert(B);
|
|
}
|
|
|
|
/// Determine, for two memory accesses in the same block,
|
|
/// whether \p Dominator dominates \p Dominatee.
|
|
/// \returns True if \p Dominator dominates \p Dominatee.
|
|
bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
|
|
const MemoryAccess *Dominatee) const {
|
|
const BasicBlock *DominatorBlock = Dominator->getBlock();
|
|
|
|
assert((DominatorBlock == Dominatee->getBlock()) &&
|
|
"Asking for local domination when accesses are in different blocks!");
|
|
// A node dominates itself.
|
|
if (Dominatee == Dominator)
|
|
return true;
|
|
|
|
// When Dominatee is defined on function entry, it is not dominated by another
|
|
// memory access.
|
|
if (isLiveOnEntryDef(Dominatee))
|
|
return false;
|
|
|
|
// When Dominator is defined on function entry, it dominates the other memory
|
|
// access.
|
|
if (isLiveOnEntryDef(Dominator))
|
|
return true;
|
|
|
|
if (!BlockNumberingValid.count(DominatorBlock))
|
|
renumberBlock(DominatorBlock);
|
|
|
|
unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
|
|
// All numbers start with 1
|
|
assert(DominatorNum != 0 && "Block was not numbered properly");
|
|
unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
|
|
assert(DominateeNum != 0 && "Block was not numbered properly");
|
|
return DominatorNum < DominateeNum;
|
|
}
|
|
|
|
bool MemorySSA::dominates(const MemoryAccess *Dominator,
|
|
const MemoryAccess *Dominatee) const {
|
|
if (Dominator == Dominatee)
|
|
return true;
|
|
|
|
if (isLiveOnEntryDef(Dominatee))
|
|
return false;
|
|
|
|
if (Dominator->getBlock() != Dominatee->getBlock())
|
|
return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
|
|
return locallyDominates(Dominator, Dominatee);
|
|
}
|
|
|
|
bool MemorySSA::dominates(const MemoryAccess *Dominator,
|
|
const Use &Dominatee) const {
|
|
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
|
|
BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
|
|
// The def must dominate the incoming block of the phi.
|
|
if (UseBB != Dominator->getBlock())
|
|
return DT->dominates(Dominator->getBlock(), UseBB);
|
|
// If the UseBB and the DefBB are the same, compare locally.
|
|
return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
|
|
}
|
|
// If it's not a PHI node use, the normal dominates can already handle it.
|
|
return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
|
|
}
|
|
|
|
const static char LiveOnEntryStr[] = "liveOnEntry";
|
|
|
|
void MemoryAccess::print(raw_ostream &OS) const {
|
|
switch (getValueID()) {
|
|
case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
|
|
case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
|
|
case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
|
|
}
|
|
llvm_unreachable("invalid value id");
|
|
}
|
|
|
|
void MemoryDef::print(raw_ostream &OS) const {
|
|
MemoryAccess *UO = getDefiningAccess();
|
|
|
|
auto printID = [&OS](MemoryAccess *A) {
|
|
if (A && A->getID())
|
|
OS << A->getID();
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
};
|
|
|
|
OS << getID() << " = MemoryDef(";
|
|
printID(UO);
|
|
OS << ")";
|
|
|
|
if (isOptimized()) {
|
|
OS << "->";
|
|
printID(getOptimized());
|
|
|
|
if (Optional<AliasResult> AR = getOptimizedAccessType())
|
|
OS << " " << *AR;
|
|
}
|
|
}
|
|
|
|
void MemoryPhi::print(raw_ostream &OS) const {
|
|
bool First = true;
|
|
OS << getID() << " = MemoryPhi(";
|
|
for (const auto &Op : operands()) {
|
|
BasicBlock *BB = getIncomingBlock(Op);
|
|
MemoryAccess *MA = cast<MemoryAccess>(Op);
|
|
if (!First)
|
|
OS << ',';
|
|
else
|
|
First = false;
|
|
|
|
OS << '{';
|
|
if (BB->hasName())
|
|
OS << BB->getName();
|
|
else
|
|
BB->printAsOperand(OS, false);
|
|
OS << ',';
|
|
if (unsigned ID = MA->getID())
|
|
OS << ID;
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << '}';
|
|
}
|
|
OS << ')';
|
|
}
|
|
|
|
void MemoryUse::print(raw_ostream &OS) const {
|
|
MemoryAccess *UO = getDefiningAccess();
|
|
OS << "MemoryUse(";
|
|
if (UO && UO->getID())
|
|
OS << UO->getID();
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << ')';
|
|
|
|
if (Optional<AliasResult> AR = getOptimizedAccessType())
|
|
OS << " " << *AR;
|
|
}
|
|
|
|
void MemoryAccess::dump() const {
|
|
// Cannot completely remove virtual function even in release mode.
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
print(dbgs());
|
|
dbgs() << "\n";
|
|
#endif
|
|
}
|
|
|
|
char MemorySSAPrinterLegacyPass::ID = 0;
|
|
|
|
MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
|
|
initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
}
|
|
|
|
bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
|
|
auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
|
|
MSSA.print(dbgs());
|
|
if (VerifyMemorySSA)
|
|
MSSA.verifyMemorySSA();
|
|
return false;
|
|
}
|
|
|
|
AnalysisKey MemorySSAAnalysis::Key;
|
|
|
|
MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &AA = AM.getResult<AAManager>(F);
|
|
return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
|
|
}
|
|
|
|
bool MemorySSAAnalysis::Result::invalidate(
|
|
Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv) {
|
|
auto PAC = PA.getChecker<MemorySSAAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
|
|
Inv.invalidate<AAManager>(F, PA) ||
|
|
Inv.invalidate<DominatorTreeAnalysis>(F, PA);
|
|
}
|
|
|
|
PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
OS << "MemorySSA for function: " << F.getName() << "\n";
|
|
AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
char MemorySSAWrapperPass::ID = 0;
|
|
|
|
MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
|
|
initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
|
|
|
|
void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
|
|
AU.addRequiredTransitive<AAResultsWrapperPass>();
|
|
}
|
|
|
|
bool MemorySSAWrapperPass::runOnFunction(Function &F) {
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
MSSA.reset(new MemorySSA(F, &AA, &DT));
|
|
return false;
|
|
}
|
|
|
|
void MemorySSAWrapperPass::verifyAnalysis() const {
|
|
if (VerifyMemorySSA)
|
|
MSSA->verifyMemorySSA();
|
|
}
|
|
|
|
void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
|
|
MSSA->print(OS);
|
|
}
|
|
|
|
MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
|
|
|
|
/// Walk the use-def chains starting at \p StartingAccess and find
|
|
/// the MemoryAccess that actually clobbers Loc.
|
|
///
|
|
/// \returns our clobbering memory access
|
|
template <typename AliasAnalysisType>
|
|
MemoryAccess *
|
|
MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
|
|
MemoryAccess *StartingAccess, const MemoryLocation &Loc,
|
|
unsigned &UpwardWalkLimit) {
|
|
if (isa<MemoryPhi>(StartingAccess))
|
|
return StartingAccess;
|
|
|
|
auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
|
|
if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
|
|
return StartingUseOrDef;
|
|
|
|
Instruction *I = StartingUseOrDef->getMemoryInst();
|
|
|
|
// Conservatively, fences are always clobbers, so don't perform the walk if we
|
|
// hit a fence.
|
|
if (!isa<CallBase>(I) && I->isFenceLike())
|
|
return StartingUseOrDef;
|
|
|
|
UpwardsMemoryQuery Q;
|
|
Q.OriginalAccess = StartingUseOrDef;
|
|
Q.StartingLoc = Loc;
|
|
Q.Inst = I;
|
|
Q.IsCall = false;
|
|
|
|
// Unlike the other function, do not walk to the def of a def, because we are
|
|
// handed something we already believe is the clobbering access.
|
|
// We never set SkipSelf to true in Q in this method.
|
|
MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
|
|
? StartingUseOrDef->getDefiningAccess()
|
|
: StartingUseOrDef;
|
|
|
|
MemoryAccess *Clobber =
|
|
Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
|
|
LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
|
|
LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
|
|
LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
|
|
LLVM_DEBUG(dbgs() << *Clobber << "\n");
|
|
return Clobber;
|
|
}
|
|
|
|
template <typename AliasAnalysisType>
|
|
MemoryAccess *
|
|
MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
|
|
MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
|
|
auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
|
|
// If this is a MemoryPhi, we can't do anything.
|
|
if (!StartingAccess)
|
|
return MA;
|
|
|
|
bool IsOptimized = false;
|
|
|
|
// If this is an already optimized use or def, return the optimized result.
|
|
// Note: Currently, we store the optimized def result in a separate field,
|
|
// since we can't use the defining access.
|
|
if (StartingAccess->isOptimized()) {
|
|
if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
|
|
return StartingAccess->getOptimized();
|
|
IsOptimized = true;
|
|
}
|
|
|
|
const Instruction *I = StartingAccess->getMemoryInst();
|
|
// We can't sanely do anything with a fence, since they conservatively clobber
|
|
// all memory, and have no locations to get pointers from to try to
|
|
// disambiguate.
|
|
if (!isa<CallBase>(I) && I->isFenceLike())
|
|
return StartingAccess;
|
|
|
|
UpwardsMemoryQuery Q(I, StartingAccess);
|
|
|
|
if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
|
|
MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
|
|
StartingAccess->setOptimized(LiveOnEntry);
|
|
StartingAccess->setOptimizedAccessType(None);
|
|
return LiveOnEntry;
|
|
}
|
|
|
|
MemoryAccess *OptimizedAccess;
|
|
if (!IsOptimized) {
|
|
// Start with the thing we already think clobbers this location
|
|
MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
|
|
|
|
// At this point, DefiningAccess may be the live on entry def.
|
|
// If it is, we will not get a better result.
|
|
if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
|
|
StartingAccess->setOptimized(DefiningAccess);
|
|
StartingAccess->setOptimizedAccessType(None);
|
|
return DefiningAccess;
|
|
}
|
|
|
|
OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
|
|
StartingAccess->setOptimized(OptimizedAccess);
|
|
if (MSSA->isLiveOnEntryDef(OptimizedAccess))
|
|
StartingAccess->setOptimizedAccessType(None);
|
|
else if (Q.AR == MustAlias)
|
|
StartingAccess->setOptimizedAccessType(MustAlias);
|
|
} else
|
|
OptimizedAccess = StartingAccess->getOptimized();
|
|
|
|
LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
|
|
LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
|
|
LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
|
|
LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
|
|
|
|
MemoryAccess *Result;
|
|
if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
|
|
isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
|
|
assert(isa<MemoryDef>(Q.OriginalAccess));
|
|
Q.SkipSelfAccess = true;
|
|
Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
|
|
} else
|
|
Result = OptimizedAccess;
|
|
|
|
LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
|
|
LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
|
|
|
|
return Result;
|
|
}
|
|
|
|
MemoryAccess *
|
|
DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
|
|
if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
|
|
return Use->getDefiningAccess();
|
|
return MA;
|
|
}
|
|
|
|
MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
|
|
MemoryAccess *StartingAccess, const MemoryLocation &) {
|
|
if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
|
|
return Use->getDefiningAccess();
|
|
return StartingAccess;
|
|
}
|
|
|
|
void MemoryPhi::deleteMe(DerivedUser *Self) {
|
|
delete static_cast<MemoryPhi *>(Self);
|
|
}
|
|
|
|
void MemoryDef::deleteMe(DerivedUser *Self) {
|
|
delete static_cast<MemoryDef *>(Self);
|
|
}
|
|
|
|
void MemoryUse::deleteMe(DerivedUser *Self) {
|
|
delete static_cast<MemoryUse *>(Self);
|
|
}
|