1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
llvm-mirror/include/llvm/Analysis/MemoryLocation.h
George Burgess IV 37a10a0055 Replace most users of UnknownSize with LocationSize::unknown(); NFC
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).

This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.

llvm-svn: 344186
2018-10-10 21:28:44 +00:00

306 lines
11 KiB
C++

//===- MemoryLocation.h - Memory location descriptions ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides utility analysis objects describing memory locations.
/// These are used both by the Alias Analysis infrastructure and more
/// specialized memory analysis layers.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MEMORYLOCATION_H
#define LLVM_ANALYSIS_MEMORYLOCATION_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Metadata.h"
namespace llvm {
class LoadInst;
class StoreInst;
class MemTransferInst;
class MemIntrinsic;
class AtomicMemTransferInst;
class AtomicMemIntrinsic;
class AnyMemTransferInst;
class AnyMemIntrinsic;
class TargetLibraryInfo;
// Represents the size of a MemoryLocation. Logically, it's an
// Optional<uint63_t> that also carries a bit to represent whether the integer
// it contains, N, is 'precise'. Precise, in this context, means that we know
// that the area of storage referenced by the given MemoryLocation must be
// precisely N bytes. An imprecise value is formed as the union of two or more
// precise values, and can conservatively represent all of the values unioned
// into it. Importantly, imprecise values are an *upper-bound* on the size of a
// MemoryLocation.
//
// Concretely, a precise MemoryLocation is (%p, 4) in
// store i32 0, i32* %p
//
// Since we know that %p must be at least 4 bytes large at this point.
// Otherwise, we have UB. An example of an imprecise MemoryLocation is (%p, 4)
// at the memcpy in
//
// %n = select i1 %foo, i64 1, i64 4
// call void @llvm.memcpy.p0i8.p0i8.i64(i8* %p, i8* %baz, i64 %n, i32 1,
// i1 false)
//
// ...Since we'll copy *up to* 4 bytes into %p, but we can't guarantee that
// we'll ever actually do so.
//
// If asked to represent a pathologically large value, this will degrade to
// None.
class LocationSize {
enum : uint64_t {
Unknown = ~uint64_t(0),
ImpreciseBit = uint64_t(1) << 63,
MapEmpty = Unknown - 1,
MapTombstone = Unknown - 2,
// The maximum value we can represent without falling back to 'unknown'.
MaxValue = (MapTombstone - 1) & ~ImpreciseBit,
};
uint64_t Value;
// Hack to support implicit construction. This should disappear when the
// public LocationSize ctor goes away.
enum DirectConstruction { Direct };
constexpr LocationSize(uint64_t Raw, DirectConstruction): Value(Raw) {}
static_assert(Unknown & ImpreciseBit, "Unknown is imprecise by definition.");
public:
// FIXME: Migrate all users to construct via either `precise` or `upperBound`,
// to make it more obvious at the callsite the kind of size that they're
// providing.
//
// Since the overwhelming majority of users of this provide precise values,
// this assumes the provided value is precise.
constexpr LocationSize(uint64_t Raw)
: Value(Raw > MaxValue ? Unknown : Raw) {}
static LocationSize precise(uint64_t Value) { return LocationSize(Value); }
static LocationSize upperBound(uint64_t Value) {
// You can't go lower than 0, so give a precise result.
if (LLVM_UNLIKELY(Value == 0))
return precise(0);
if (LLVM_UNLIKELY(Value > MaxValue))
return unknown();
return LocationSize(Value | ImpreciseBit, Direct);
}
constexpr static LocationSize unknown() {
return LocationSize(Unknown, Direct);
}
// Sentinel values, generally used for maps.
constexpr static LocationSize mapTombstone() {
return LocationSize(MapTombstone, Direct);
}
constexpr static LocationSize mapEmpty() {
return LocationSize(MapEmpty, Direct);
}
// Returns a LocationSize that can correctly represent either `*this` or
// `Other`.
LocationSize unionWith(LocationSize Other) const {
if (Other == *this)
return *this;
if (!hasValue() || !Other.hasValue())
return unknown();
return upperBound(std::max(getValue(), Other.getValue()));
}
bool hasValue() const { return Value != Unknown; }
uint64_t getValue() const {
assert(hasValue() && "Getting value from an unknown LocationSize!");
return Value & ~ImpreciseBit;
}
// Returns whether or not this value is precise. Note that if a value is
// precise, it's guaranteed to not be `unknown()`.
bool isPrecise() const {
return (Value & ImpreciseBit) == 0;
}
bool operator==(const LocationSize &Other) const {
return Value == Other.Value;
}
bool operator!=(const LocationSize &Other) const {
return !(*this == Other);
}
// Ordering operators are not provided, since it's unclear if there's only one
// reasonable way to compare:
// - values that don't exist against values that do, and
// - precise values to imprecise values
void print(raw_ostream &OS) const;
// Returns an opaque value that represents this LocationSize. Cannot be
// reliably converted back into a LocationSize.
uint64_t toRaw() const { return Value; }
};
inline raw_ostream &operator<<(raw_ostream &OS, LocationSize Size) {
Size.print(OS);
return OS;
}
/// Representation for a specific memory location.
///
/// This abstraction can be used to represent a specific location in memory.
/// The goal of the location is to represent enough information to describe
/// abstract aliasing, modification, and reference behaviors of whatever
/// value(s) are stored in memory at the particular location.
///
/// The primary user of this interface is LLVM's Alias Analysis, but other
/// memory analyses such as MemoryDependence can use it as well.
class MemoryLocation {
public:
/// UnknownSize - This is a special value which can be used with the
/// size arguments in alias queries to indicate that the caller does not
/// know the sizes of the potential memory references.
enum : uint64_t { UnknownSize = ~UINT64_C(0) };
/// The address of the start of the location.
const Value *Ptr;
/// The maximum size of the location, in address-units, or
/// UnknownSize if the size is not known.
///
/// Note that an unknown size does not mean the pointer aliases the entire
/// virtual address space, because there are restrictions on stepping out of
/// one object and into another. See
/// http://llvm.org/docs/LangRef.html#pointeraliasing
LocationSize Size;
/// The metadata nodes which describes the aliasing of the location (each
/// member is null if that kind of information is unavailable).
AAMDNodes AATags;
/// Return a location with information about the memory reference by the given
/// instruction.
static MemoryLocation get(const LoadInst *LI);
static MemoryLocation get(const StoreInst *SI);
static MemoryLocation get(const VAArgInst *VI);
static MemoryLocation get(const AtomicCmpXchgInst *CXI);
static MemoryLocation get(const AtomicRMWInst *RMWI);
static MemoryLocation get(const Instruction *Inst) {
return *MemoryLocation::getOrNone(Inst);
}
static Optional<MemoryLocation> getOrNone(const Instruction *Inst) {
switch (Inst->getOpcode()) {
case Instruction::Load:
return get(cast<LoadInst>(Inst));
case Instruction::Store:
return get(cast<StoreInst>(Inst));
case Instruction::VAArg:
return get(cast<VAArgInst>(Inst));
case Instruction::AtomicCmpXchg:
return get(cast<AtomicCmpXchgInst>(Inst));
case Instruction::AtomicRMW:
return get(cast<AtomicRMWInst>(Inst));
default:
return None;
}
}
/// Return a location representing the source of a memory transfer.
static MemoryLocation getForSource(const MemTransferInst *MTI);
static MemoryLocation getForSource(const AtomicMemTransferInst *MTI);
static MemoryLocation getForSource(const AnyMemTransferInst *MTI);
/// Return a location representing the destination of a memory set or
/// transfer.
static MemoryLocation getForDest(const MemIntrinsic *MI);
static MemoryLocation getForDest(const AtomicMemIntrinsic *MI);
static MemoryLocation getForDest(const AnyMemIntrinsic *MI);
/// Return a location representing a particular argument of a call.
static MemoryLocation getForArgument(ImmutableCallSite CS, unsigned ArgIdx,
const TargetLibraryInfo *TLI);
static MemoryLocation getForArgument(ImmutableCallSite CS, unsigned ArgIdx,
const TargetLibraryInfo &TLI) {
return getForArgument(CS, ArgIdx, &TLI);
}
explicit MemoryLocation(const Value *Ptr = nullptr,
LocationSize Size = LocationSize::unknown(),
const AAMDNodes &AATags = AAMDNodes())
: Ptr(Ptr), Size(Size), AATags(AATags) {}
MemoryLocation getWithNewPtr(const Value *NewPtr) const {
MemoryLocation Copy(*this);
Copy.Ptr = NewPtr;
return Copy;
}
MemoryLocation getWithNewSize(LocationSize NewSize) const {
MemoryLocation Copy(*this);
Copy.Size = NewSize;
return Copy;
}
MemoryLocation getWithoutAATags() const {
MemoryLocation Copy(*this);
Copy.AATags = AAMDNodes();
return Copy;
}
bool operator==(const MemoryLocation &Other) const {
return Ptr == Other.Ptr && Size == Other.Size && AATags == Other.AATags;
}
};
// Specialize DenseMapInfo.
template <> struct DenseMapInfo<LocationSize> {
static inline LocationSize getEmptyKey() {
return LocationSize::mapEmpty();
}
static inline LocationSize getTombstoneKey() {
return LocationSize::mapTombstone();
}
static unsigned getHashValue(const LocationSize &Val) {
return DenseMapInfo<uint64_t>::getHashValue(Val.toRaw());
}
static bool isEqual(const LocationSize &LHS, const LocationSize &RHS) {
return LHS == RHS;
}
};
template <> struct DenseMapInfo<MemoryLocation> {
static inline MemoryLocation getEmptyKey() {
return MemoryLocation(DenseMapInfo<const Value *>::getEmptyKey(),
DenseMapInfo<LocationSize>::getEmptyKey());
}
static inline MemoryLocation getTombstoneKey() {
return MemoryLocation(DenseMapInfo<const Value *>::getTombstoneKey(),
DenseMapInfo<LocationSize>::getTombstoneKey());
}
static unsigned getHashValue(const MemoryLocation &Val) {
return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
DenseMapInfo<LocationSize>::getHashValue(Val.Size) ^
DenseMapInfo<AAMDNodes>::getHashValue(Val.AATags);
}
static bool isEqual(const MemoryLocation &LHS, const MemoryLocation &RHS) {
return LHS == RHS;
}
};
}
#endif