1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/IR/Constants.cpp
Peter Collingbourne fbb7ea5270 IR: Introduce inrange attribute on getelementptr indices.
If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange.

This can be used, e.g. for alias analysis or to split globals at element
boundaries where beneficial.

As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102472.html

Differential Revision: https://reviews.llvm.org/D22793

llvm-svn: 286514
2016-11-10 22:34:55 +00:00

2916 lines
105 KiB
C++

//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constants.h"
#include "ConstantFold.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Class
//===----------------------------------------------------------------------===//
void Constant::anchor() { }
void ConstantData::anchor() {}
bool Constant::isNegativeZeroValue() const {
// Floating point values have an explicit -0.0 value.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero() && CFP->isNegative();
// Equivalent for a vector of -0.0's.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
return true;
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
return true;
// We've already handled true FP case; any other FP vectors can't represent -0.0.
if (getType()->isFPOrFPVectorTy())
return false;
// Otherwise, just use +0.0.
return isNullValue();
}
// Return true iff this constant is positive zero (floating point), negative
// zero (floating point), or a null value.
bool Constant::isZeroValue() const {
// Floating point values have an explicit -0.0 value.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero();
// Equivalent for a vector of -0.0's.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
if (SplatCFP && SplatCFP->isZero())
return true;
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
if (SplatCFP && SplatCFP->isZero())
return true;
// Otherwise, just use +0.0.
return isNullValue();
}
bool Constant::isNullValue() const {
// 0 is null.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isZero();
// +0.0 is null.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero() && !CFP->isNegative();
// constant zero is zero for aggregates, cpnull is null for pointers, none for
// tokens.
return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
isa<ConstantTokenNone>(this);
}
bool Constant::isAllOnesValue() const {
// Check for -1 integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isMinusOne();
// Check for FP which are bitcasted from -1 integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
// Check for constant vectors which are splats of -1 values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isAllOnesValue();
// Check for constant vectors which are splats of -1 values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isAllOnesValue();
return false;
}
bool Constant::isOneValue() const {
// Check for 1 integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isOne();
// Check for FP which are bitcasted from 1 integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt() == 1;
// Check for constant vectors which are splats of 1 values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isOneValue();
// Check for constant vectors which are splats of 1 values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isOneValue();
return false;
}
bool Constant::isMinSignedValue() const {
// Check for INT_MIN integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isMinValue(/*isSigned=*/true);
// Check for FP which are bitcasted from INT_MIN integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
// Check for constant vectors which are splats of INT_MIN values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isMinSignedValue();
// Check for constant vectors which are splats of INT_MIN values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isMinSignedValue();
return false;
}
bool Constant::isNotMinSignedValue() const {
// Check for INT_MIN integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return !CI->isMinValue(/*isSigned=*/true);
// Check for FP which are bitcasted from INT_MIN integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
// Check for constant vectors which are splats of INT_MIN values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isNotMinSignedValue();
// Check for constant vectors which are splats of INT_MIN values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isNotMinSignedValue();
// It *may* contain INT_MIN, we can't tell.
return false;
}
/// Constructor to create a '0' constant of arbitrary type.
Constant *Constant::getNullValue(Type *Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::HalfTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEhalf));
case Type::FloatTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEsingle));
case Type::DoubleTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEdouble));
case Type::X86_FP80TyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::x87DoubleExtended));
case Type::FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEquad));
case Type::PPC_FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat(APFloat::PPCDoubleDouble,
APInt::getNullValue(128)));
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
return ConstantAggregateZero::get(Ty);
case Type::TokenTyID:
return ConstantTokenNone::get(Ty->getContext());
default:
// Function, Label, or Opaque type?
llvm_unreachable("Cannot create a null constant of that type!");
}
}
Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
Type *ScalarTy = Ty->getScalarType();
// Create the base integer constant.
Constant *C = ConstantInt::get(Ty->getContext(), V);
// Convert an integer to a pointer, if necessary.
if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
C = ConstantExpr::getIntToPtr(C, PTy);
// Broadcast a scalar to a vector, if necessary.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
C = ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
Constant *Constant::getAllOnesValue(Type *Ty) {
if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
return ConstantInt::get(Ty->getContext(),
APInt::getAllOnesValue(ITy->getBitWidth()));
if (Ty->isFloatingPointTy()) {
APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
!Ty->isPPC_FP128Ty());
return ConstantFP::get(Ty->getContext(), FL);
}
VectorType *VTy = cast<VectorType>(Ty);
return ConstantVector::getSplat(VTy->getNumElements(),
getAllOnesValue(VTy->getElementType()));
}
Constant *Constant::getAggregateElement(unsigned Elt) const {
if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
if (const UndefValue *UV = dyn_cast<UndefValue>(this))
return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
: nullptr;
return nullptr;
}
Constant *Constant::getAggregateElement(Constant *Elt) const {
assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
return getAggregateElement(CI->getZExtValue());
return nullptr;
}
void Constant::destroyConstant() {
/// First call destroyConstantImpl on the subclass. This gives the subclass
/// a chance to remove the constant from any maps/pools it's contained in.
switch (getValueID()) {
default:
llvm_unreachable("Not a constant!");
#define HANDLE_CONSTANT(Name) \
case Value::Name##Val: \
cast<Name>(this)->destroyConstantImpl(); \
break;
#include "llvm/IR/Value.def"
}
// When a Constant is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependent on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// Constants) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = user_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V)) {
dbgs() << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: " << *V
<< "\n\n";
}
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
cast<Constant>(V)->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || user_back() != V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
delete this;
}
static bool canTrapImpl(const Constant *C,
SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
// The only thing that could possibly trap are constant exprs.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE)
return false;
// ConstantExpr traps if any operands can trap.
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
return true;
}
}
// Otherwise, only specific operations can trap.
switch (CE->getOpcode()) {
default:
return false;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
// Div and rem can trap if the RHS is not known to be non-zero.
if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
return true;
return false;
}
}
bool Constant::canTrap() const {
SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
return canTrapImpl(this, NonTrappingOps);
}
/// Check if C contains a GlobalValue for which Predicate is true.
static bool
ConstHasGlobalValuePredicate(const Constant *C,
bool (*Predicate)(const GlobalValue *)) {
SmallPtrSet<const Constant *, 8> Visited;
SmallVector<const Constant *, 8> WorkList;
WorkList.push_back(C);
Visited.insert(C);
while (!WorkList.empty()) {
const Constant *WorkItem = WorkList.pop_back_val();
if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
if (Predicate(GV))
return true;
for (const Value *Op : WorkItem->operands()) {
const Constant *ConstOp = dyn_cast<Constant>(Op);
if (!ConstOp)
continue;
if (Visited.insert(ConstOp).second)
WorkList.push_back(ConstOp);
}
}
return false;
}
bool Constant::isThreadDependent() const {
auto DLLImportPredicate = [](const GlobalValue *GV) {
return GV->isThreadLocal();
};
return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
}
bool Constant::isDLLImportDependent() const {
auto DLLImportPredicate = [](const GlobalValue *GV) {
return GV->hasDLLImportStorageClass();
};
return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
}
bool Constant::isConstantUsed() const {
for (const User *U : users()) {
const Constant *UC = dyn_cast<Constant>(U);
if (!UC || isa<GlobalValue>(UC))
return true;
if (UC->isConstantUsed())
return true;
}
return false;
}
bool Constant::needsRelocation() const {
if (isa<GlobalValue>(this))
return true; // Global reference.
if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
return BA->getFunction()->needsRelocation();
// While raw uses of blockaddress need to be relocated, differences between
// two of them don't when they are for labels in the same function. This is a
// common idiom when creating a table for the indirect goto extension, so we
// handle it efficiently here.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
if (CE->getOpcode() == Instruction::Sub) {
ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
RHS->getOpcode() == Instruction::PtrToInt &&
isa<BlockAddress>(LHS->getOperand(0)) &&
isa<BlockAddress>(RHS->getOperand(0)) &&
cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
cast<BlockAddress>(RHS->getOperand(0))->getFunction())
return false;
}
bool Result = false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result |= cast<Constant>(getOperand(i))->needsRelocation();
return Result;
}
/// If the specified constantexpr is dead, remove it. This involves recursively
/// eliminating any dead users of the constantexpr.
static bool removeDeadUsersOfConstant(const Constant *C) {
if (isa<GlobalValue>(C)) return false; // Cannot remove this
while (!C->use_empty()) {
const Constant *User = dyn_cast<Constant>(C->user_back());
if (!User) return false; // Non-constant usage;
if (!removeDeadUsersOfConstant(User))
return false; // Constant wasn't dead
}
const_cast<Constant*>(C)->destroyConstant();
return true;
}
void Constant::removeDeadConstantUsers() const {
Value::const_user_iterator I = user_begin(), E = user_end();
Value::const_user_iterator LastNonDeadUser = E;
while (I != E) {
const Constant *User = dyn_cast<Constant>(*I);
if (!User) {
LastNonDeadUser = I;
++I;
continue;
}
if (!removeDeadUsersOfConstant(User)) {
// If the constant wasn't dead, remember that this was the last live use
// and move on to the next constant.
LastNonDeadUser = I;
++I;
continue;
}
// If the constant was dead, then the iterator is invalidated.
if (LastNonDeadUser == E) {
I = user_begin();
if (I == E) break;
} else {
I = LastNonDeadUser;
++I;
}
}
}
//===----------------------------------------------------------------------===//
// ConstantInt
//===----------------------------------------------------------------------===//
void ConstantInt::anchor() { }
ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
: ConstantData(Ty, ConstantIntVal), Val(V) {
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheTrueVal)
pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
return pImpl->TheTrueVal;
}
ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheFalseVal)
pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
return pImpl->TheFalseVal;
}
Constant *ConstantInt::getTrue(Type *Ty) {
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy) {
assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
return ConstantInt::getTrue(Ty->getContext());
}
assert(VTy->getElementType()->isIntegerTy(1) &&
"True must be vector of i1 or i1.");
return ConstantVector::getSplat(VTy->getNumElements(),
ConstantInt::getTrue(Ty->getContext()));
}
Constant *ConstantInt::getFalse(Type *Ty) {
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy) {
assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
return ConstantInt::getFalse(Ty->getContext());
}
assert(VTy->getElementType()->isIntegerTy(1) &&
"False must be vector of i1 or i1.");
return ConstantVector::getSplat(VTy->getNumElements(),
ConstantInt::getFalse(Ty->getContext()));
}
// Get a ConstantInt from an APInt.
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
// get an existing value or the insertion position
LLVMContextImpl *pImpl = Context.pImpl;
std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
if (!Slot) {
// Get the corresponding integer type for the bit width of the value.
IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
Slot.reset(new ConstantInt(ITy, V));
}
assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
return Slot.get();
}
Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
}
ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::get(Type *Ty, const APInt& V) {
ConstantInt *C = get(Ty->getContext(), V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantInt type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
}
/// Remove the constant from the constant table.
void ConstantInt::destroyConstantImpl() {
llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
}
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
if (Ty->isHalfTy())
return &APFloat::IEEEhalf;
if (Ty->isFloatTy())
return &APFloat::IEEEsingle;
if (Ty->isDoubleTy())
return &APFloat::IEEEdouble;
if (Ty->isX86_FP80Ty())
return &APFloat::x87DoubleExtended;
else if (Ty->isFP128Ty())
return &APFloat::IEEEquad;
assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
return &APFloat::PPCDoubleDouble;
}
void ConstantFP::anchor() { }
Constant *ConstantFP::get(Type *Ty, double V) {
LLVMContext &Context = Ty->getContext();
APFloat FV(V);
bool ignored;
FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
APFloat::rmNearestTiesToEven, &ignored);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
Constant *ConstantFP::get(Type *Ty, StringRef Str) {
LLVMContext &Context = Ty->getContext();
APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
Constant *C = get(Ty->getContext(), NaN);
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
Constant *ConstantFP::getNegativeZero(Type *Ty) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
Constant *C = get(Ty->getContext(), NegZero);
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
if (Ty->isFPOrFPVectorTy())
return getNegativeZero(Ty);
return Constant::getNullValue(Ty);
}
// ConstantFP accessors.
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
LLVMContextImpl* pImpl = Context.pImpl;
std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
if (!Slot) {
Type *Ty;
if (&V.getSemantics() == &APFloat::IEEEhalf)
Ty = Type::getHalfTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEsingle)
Ty = Type::getFloatTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEdouble)
Ty = Type::getDoubleTy(Context);
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
Ty = Type::getX86_FP80Ty(Context);
else if (&V.getSemantics() == &APFloat::IEEEquad)
Ty = Type::getFP128Ty(Context);
else {
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
"Unknown FP format");
Ty = Type::getPPC_FP128Ty(Context);
}
Slot.reset(new ConstantFP(Ty, V));
}
return Slot.get();
}
Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getNumElements(), C);
return C;
}
ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
: ConstantData(Ty, ConstantFPVal), Val(V) {
assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
"FP type Mismatch");
}
bool ConstantFP::isExactlyValue(const APFloat &V) const {
return Val.bitwiseIsEqual(V);
}
/// Remove the constant from the constant table.
void ConstantFP::destroyConstantImpl() {
llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
}
//===----------------------------------------------------------------------===//
// ConstantAggregateZero Implementation
//===----------------------------------------------------------------------===//
Constant *ConstantAggregateZero::getSequentialElement() const {
return Constant::getNullValue(getType()->getSequentialElementType());
}
Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
return Constant::getNullValue(getType()->getStructElementType(Elt));
}
Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
unsigned ConstantAggregateZero::getNumElements() const {
Type *Ty = getType();
if (auto *AT = dyn_cast<ArrayType>(Ty))
return AT->getNumElements();
if (auto *VT = dyn_cast<VectorType>(Ty))
return VT->getNumElements();
return Ty->getStructNumElements();
}
//===----------------------------------------------------------------------===//
// UndefValue Implementation
//===----------------------------------------------------------------------===//
UndefValue *UndefValue::getSequentialElement() const {
return UndefValue::get(getType()->getSequentialElementType());
}
UndefValue *UndefValue::getStructElement(unsigned Elt) const {
return UndefValue::get(getType()->getStructElementType(Elt));
}
UndefValue *UndefValue::getElementValue(Constant *C) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
UndefValue *UndefValue::getElementValue(unsigned Idx) const {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
unsigned UndefValue::getNumElements() const {
Type *Ty = getType();
if (auto *AT = dyn_cast<ArrayType>(Ty))
return AT->getNumElements();
if (auto *VT = dyn_cast<VectorType>(Ty))
return VT->getNumElements();
return Ty->getStructNumElements();
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
template <typename ItTy, typename EltTy>
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
for (; Start != End; ++Start)
if (*Start != Elt)
return false;
return true;
}
template <typename SequentialTy, typename ElementTy>
static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
assert(!V.empty() && "Cannot get empty int sequence.");
SmallVector<ElementTy, 16> Elts;
for (Constant *C : V)
if (auto *CI = dyn_cast<ConstantInt>(C))
Elts.push_back(CI->getZExtValue());
else
return nullptr;
return SequentialTy::get(V[0]->getContext(), Elts);
}
template <typename SequentialTy, typename ElementTy>
static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
assert(!V.empty() && "Cannot get empty FP sequence.");
SmallVector<ElementTy, 16> Elts;
for (Constant *C : V)
if (auto *CFP = dyn_cast<ConstantFP>(C))
Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
else
return nullptr;
return SequentialTy::getFP(V[0]->getContext(), Elts);
}
template <typename SequenceTy>
static Constant *getSequenceIfElementsMatch(Constant *C,
ArrayRef<Constant *> V) {
// We speculatively build the elements here even if it turns out that there is
// a constantexpr or something else weird, since it is so uncommon for that to
// happen.
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getType()->isIntegerTy(8))
return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
else if (CI->getType()->isIntegerTy(16))
return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
else if (CI->getType()->isIntegerTy(32))
return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
else if (CI->getType()->isIntegerTy(64))
return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isHalfTy())
return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
else if (CFP->getType()->isFloatTy())
return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
else if (CFP->getType()->isDoubleTy())
return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
}
return nullptr;
}
ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
ArrayRef<Constant *> V)
: Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
V.size()) {
std::copy(V.begin(), V.end(), op_begin());
// Check that types match, unless this is an opaque struct.
if (auto *ST = dyn_cast<StructType>(T))
if (ST->isOpaque())
return;
for (unsigned I = 0, E = V.size(); I != E; ++I)
assert(V[I]->getType() == T->getTypeAtIndex(I) &&
"Initializer for composite element doesn't match!");
}
ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
: ConstantAggregate(T, ConstantArrayVal, V) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer for constant array");
}
Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
if (Constant *C = getImpl(Ty, V))
return C;
return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
}
Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
// Empty arrays are canonicalized to ConstantAggregateZero.
if (V.empty())
return ConstantAggregateZero::get(Ty);
for (unsigned i = 0, e = V.size(); i != e; ++i) {
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
// If this is an all-zero array, return a ConstantAggregateZero object. If
// all undef, return an UndefValue, if "all simple", then return a
// ConstantDataArray.
Constant *C = V[0];
if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
return UndefValue::get(Ty);
if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
return ConstantAggregateZero::get(Ty);
// Check to see if all of the elements are ConstantFP or ConstantInt and if
// the element type is compatible with ConstantDataVector. If so, use it.
if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
// Otherwise, we really do want to create a ConstantArray.
return nullptr;
}
StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
ArrayRef<Constant*> V,
bool Packed) {
unsigned VecSize = V.size();
SmallVector<Type*, 16> EltTypes(VecSize);
for (unsigned i = 0; i != VecSize; ++i)
EltTypes[i] = V[i]->getType();
return StructType::get(Context, EltTypes, Packed);
}
StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
bool Packed) {
assert(!V.empty() &&
"ConstantStruct::getTypeForElements cannot be called on empty list");
return getTypeForElements(V[0]->getContext(), V, Packed);
}
ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
: ConstantAggregate(T, ConstantStructVal, V) {
assert((T->isOpaque() || V.size() == T->getNumElements()) &&
"Invalid initializer for constant struct");
}
// ConstantStruct accessors.
Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
"Incorrect # elements specified to ConstantStruct::get");
// Create a ConstantAggregateZero value if all elements are zeros.
bool isZero = true;
bool isUndef = false;
if (!V.empty()) {
isUndef = isa<UndefValue>(V[0]);
isZero = V[0]->isNullValue();
if (isUndef || isZero) {
for (unsigned i = 0, e = V.size(); i != e; ++i) {
if (!V[i]->isNullValue())
isZero = false;
if (!isa<UndefValue>(V[i]))
isUndef = false;
}
}
}
if (isZero)
return ConstantAggregateZero::get(ST);
if (isUndef)
return UndefValue::get(ST);
return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
}
Constant *ConstantStruct::get(StructType *T, ...) {
va_list ap;
SmallVector<Constant*, 8> Values;
va_start(ap, T);
while (Constant *Val = va_arg(ap, llvm::Constant*))
Values.push_back(Val);
va_end(ap);
return get(T, Values);
}
ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
: ConstantAggregate(T, ConstantVectorVal, V) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer for constant vector");
}
// ConstantVector accessors.
Constant *ConstantVector::get(ArrayRef<Constant*> V) {
if (Constant *C = getImpl(V))
return C;
VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
}
Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
assert(!V.empty() && "Vectors can't be empty");
VectorType *T = VectorType::get(V.front()->getType(), V.size());
// If this is an all-undef or all-zero vector, return a
// ConstantAggregateZero or UndefValue.
Constant *C = V[0];
bool isZero = C->isNullValue();
bool isUndef = isa<UndefValue>(C);
if (isZero || isUndef) {
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
isZero = isUndef = false;
break;
}
}
if (isZero)
return ConstantAggregateZero::get(T);
if (isUndef)
return UndefValue::get(T);
// Check to see if all of the elements are ConstantFP or ConstantInt and if
// the element type is compatible with ConstantDataVector. If so, use it.
if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
// Otherwise, the element type isn't compatible with ConstantDataVector, or
// the operand list constants a ConstantExpr or something else strange.
return nullptr;
}
Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
// If this splat is compatible with ConstantDataVector, use it instead of
// ConstantVector.
if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
ConstantDataSequential::isElementTypeCompatible(V->getType()))
return ConstantDataVector::getSplat(NumElts, V);
SmallVector<Constant*, 32> Elts(NumElts, V);
return get(Elts);
}
ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheNoneToken)
pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
return pImpl->TheNoneToken.get();
}
/// Remove the constant from the constant table.
void ConstantTokenNone::destroyConstantImpl() {
llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
}
// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
return Instruction::isCast(getOpcode());
}
bool ConstantExpr::isCompare() const {
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}
bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
if (getOpcode() != Instruction::GetElementPtr) return false;
gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
User::const_op_iterator OI = std::next(this->op_begin());
// Skip the first index, as it has no static limit.
++GEPI;
++OI;
// The remaining indices must be compile-time known integers within the
// bounds of the corresponding notional static array types.
for (; GEPI != E; ++GEPI, ++OI) {
ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
if (!CI) return false;
if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
if (CI->getValue().getActiveBits() > 64 ||
CI->getZExtValue() >= ATy->getNumElements())
return false;
}
// All the indices checked out.
return true;
}
bool ConstantExpr::hasIndices() const {
return getOpcode() == Instruction::ExtractValue ||
getOpcode() == Instruction::InsertValue;
}
ArrayRef<unsigned> ConstantExpr::getIndices() const {
if (const ExtractValueConstantExpr *EVCE =
dyn_cast<ExtractValueConstantExpr>(this))
return EVCE->Indices;
return cast<InsertValueConstantExpr>(this)->Indices;
}
unsigned ConstantExpr::getPredicate() const {
return cast<CompareConstantExpr>(this)->predicate;
}
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
if (getOperand(OpNo) == Op)
return const_cast<ConstantExpr*>(this);
SmallVector<Constant*, 8> NewOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
NewOps.push_back(i == OpNo ? Op : getOperand(i));
return getWithOperands(NewOps);
}
Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
bool OnlyIfReduced, Type *SrcTy) const {
assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
// If no operands changed return self.
if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
return const_cast<ConstantExpr*>(this);
Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
OnlyIfReducedTy);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
case Instruction::InsertValue:
return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
OnlyIfReducedTy);
case Instruction::ExtractValue:
return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
OnlyIfReducedTy);
case Instruction::GetElementPtr: {
auto *GEPO = cast<GEPOperator>(this);
assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
return ConstantExpr::getGetElementPtr(
SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
}
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
OnlyIfReducedTy);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
OnlyIfReducedTy);
}
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
if (Ty->isIntegerTy(1))
return Val == 0 || Val == 1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
uint64_t Max = (1ll << NumBits) - 1;
return Val <= Max;
}
bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
unsigned NumBits = Ty->getIntegerBitWidth();
if (Ty->isIntegerTy(1))
return Val == 0 || Val == 1 || Val == -1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
int64_t Min = -(1ll << (NumBits-1));
int64_t Max = (1ll << (NumBits-1)) - 1;
return (Val >= Min && Val <= Max);
}
bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as floating point!
// FIXME rounding mode needs to be more flexible
case Type::HalfTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEhalf)
return true;
Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::FloatTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEsingle)
return true;
Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::DoubleTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble)
return true;
Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::X86_FP80TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::x87DoubleExtended;
case Type::FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::IEEEquad;
case Type::PPC_FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf ||
&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::PPCDoubleDouble;
}
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
"Cannot create an aggregate zero of non-aggregate type!");
std::unique_ptr<ConstantAggregateZero> &Entry =
Ty->getContext().pImpl->CAZConstants[Ty];
if (!Entry)
Entry.reset(new ConstantAggregateZero(Ty));
return Entry.get();
}
/// Remove the constant from the constant table.
void ConstantAggregateZero::destroyConstantImpl() {
getContext().pImpl->CAZConstants.erase(getType());
}
/// Remove the constant from the constant table.
void ConstantArray::destroyConstantImpl() {
getType()->getContext().pImpl->ArrayConstants.remove(this);
}
//---- ConstantStruct::get() implementation...
//
/// Remove the constant from the constant table.
void ConstantStruct::destroyConstantImpl() {
getType()->getContext().pImpl->StructConstants.remove(this);
}
/// Remove the constant from the constant table.
void ConstantVector::destroyConstantImpl() {
getType()->getContext().pImpl->VectorConstants.remove(this);
}
Constant *Constant::getSplatValue() const {
assert(this->getType()->isVectorTy() && "Only valid for vectors!");
if (isa<ConstantAggregateZero>(this))
return getNullValue(this->getType()->getVectorElementType());
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
return CV->getSplatValue();
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
return CV->getSplatValue();
return nullptr;
}
Constant *ConstantVector::getSplatValue() const {
// Check out first element.
Constant *Elt = getOperand(0);
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
if (getOperand(I) != Elt)
return nullptr;
return Elt;
}
const APInt &Constant::getUniqueInteger() const {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->getValue();
assert(this->getSplatValue() && "Doesn't contain a unique integer!");
const Constant *C = this->getAggregateElement(0U);
assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
return cast<ConstantInt>(C)->getValue();
}
//---- ConstantPointerNull::get() implementation.
//
ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
std::unique_ptr<ConstantPointerNull> &Entry =
Ty->getContext().pImpl->CPNConstants[Ty];
if (!Entry)
Entry.reset(new ConstantPointerNull(Ty));
return Entry.get();
}
/// Remove the constant from the constant table.
void ConstantPointerNull::destroyConstantImpl() {
getContext().pImpl->CPNConstants.erase(getType());
}
UndefValue *UndefValue::get(Type *Ty) {
std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
if (!Entry)
Entry.reset(new UndefValue(Ty));
return Entry.get();
}
/// Remove the constant from the constant table.
void UndefValue::destroyConstantImpl() {
// Free the constant and any dangling references to it.
getContext().pImpl->UVConstants.erase(getType());
}
BlockAddress *BlockAddress::get(BasicBlock *BB) {
assert(BB->getParent() && "Block must have a parent");
return get(BB->getParent(), BB);
}
BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
BlockAddress *&BA =
F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
if (!BA)
BA = new BlockAddress(F, BB);
assert(BA->getFunction() == F && "Basic block moved between functions");
return BA;
}
BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
&Op<0>(), 2) {
setOperand(0, F);
setOperand(1, BB);
BB->AdjustBlockAddressRefCount(1);
}
BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
if (!BB->hasAddressTaken())
return nullptr;
const Function *F = BB->getParent();
assert(F && "Block must have a parent");
BlockAddress *BA =
F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
assert(BA && "Refcount and block address map disagree!");
return BA;
}
/// Remove the constant from the constant table.
void BlockAddress::destroyConstantImpl() {
getFunction()->getType()->getContext().pImpl
->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
getBasicBlock()->AdjustBlockAddressRefCount(-1);
}
Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
// This could be replacing either the Basic Block or the Function. In either
// case, we have to remove the map entry.
Function *NewF = getFunction();
BasicBlock *NewBB = getBasicBlock();
if (From == NewF)
NewF = cast<Function>(To->stripPointerCasts());
else {
assert(From == NewBB && "From does not match any operand");
NewBB = cast<BasicBlock>(To);
}
// See if the 'new' entry already exists, if not, just update this in place
// and return early.
BlockAddress *&NewBA =
getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
if (NewBA)
return NewBA;
getBasicBlock()->AdjustBlockAddressRefCount(-1);
// Remove the old entry, this can't cause the map to rehash (just a
// tombstone will get added).
getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
getBasicBlock()));
NewBA = this;
setOperand(0, NewF);
setOperand(1, NewBB);
getBasicBlock()->AdjustBlockAddressRefCount(1);
// If we just want to keep the existing value, then return null.
// Callers know that this means we shouldn't delete this value.
return nullptr;
}
//---- ConstantExpr::get() implementations.
//
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
bool OnlyIfReduced = false) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
return FC;
if (OnlyIfReduced)
return nullptr;
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness.
ConstantExprKeyType Key(opc, C);
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
bool OnlyIfReduced) {
Instruction::CastOps opc = Instruction::CastOps(oc);
assert(Instruction::isCast(opc) && "opcode out of range");
assert(C && Ty && "Null arguments to getCast");
assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
switch (opc) {
default:
llvm_unreachable("Invalid cast opcode");
case Instruction::Trunc:
return getTrunc(C, Ty, OnlyIfReduced);
case Instruction::ZExt:
return getZExt(C, Ty, OnlyIfReduced);
case Instruction::SExt:
return getSExt(C, Ty, OnlyIfReduced);
case Instruction::FPTrunc:
return getFPTrunc(C, Ty, OnlyIfReduced);
case Instruction::FPExt:
return getFPExtend(C, Ty, OnlyIfReduced);
case Instruction::UIToFP:
return getUIToFP(C, Ty, OnlyIfReduced);
case Instruction::SIToFP:
return getSIToFP(C, Ty, OnlyIfReduced);
case Instruction::FPToUI:
return getFPToUI(C, Ty, OnlyIfReduced);
case Instruction::FPToSI:
return getFPToSI(C, Ty, OnlyIfReduced);
case Instruction::PtrToInt:
return getPtrToInt(C, Ty, OnlyIfReduced);
case Instruction::IntToPtr:
return getIntToPtr(C, Ty, OnlyIfReduced);
case Instruction::BitCast:
return getBitCast(C, Ty, OnlyIfReduced);
case Instruction::AddrSpaceCast:
return getAddrSpaceCast(C, Ty, OnlyIfReduced);
}
}
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getZExt(C, Ty);
}
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getSExt(C, Ty);
}
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getTrunc(C, Ty);
}
Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
"Invalid cast");
if (Ty->isIntOrIntVectorTy())
return getPtrToInt(S, Ty);
unsigned SrcAS = S->getType()->getPointerAddressSpace();
if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
return getAddrSpaceCast(S, Ty);
return getBitCast(S, Ty);
}
Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
Type *Ty) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
return getAddrSpaceCast(S, Ty);
return getBitCast(S, Ty);
}
Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
assert(C->getType()->isIntOrIntVectorTy() &&
Ty->isIntOrIntVectorTy() && "Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
if (SrcBits == DstBits)
return C; // Avoid a useless cast
Instruction::CastOps opcode =
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"SrcTy must be larger than DestTy for Trunc!");
return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for SExt!");
return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for ZExt!");
return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"This is an illegal floating point truncation!");
return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"This is an illegal floating point extension!");
return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal uint to floating point cast!");
return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal sint to floating point cast!");
return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to uint cast!");
return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to sint cast!");
return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(C->getType()->getScalarType()->isPointerTy() &&
"PtrToInt source must be pointer or pointer vector");
assert(DstTy->getScalarType()->isIntegerTy() &&
"PtrToInt destination must be integer or integer vector");
assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
if (isa<VectorType>(C->getType()))
assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
"Invalid cast between a different number of vector elements");
return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(C->getType()->getScalarType()->isIntegerTy() &&
"IntToPtr source must be integer or integer vector");
assert(DstTy->getScalarType()->isPointerTy() &&
"IntToPtr destination must be a pointer or pointer vector");
assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
if (isa<VectorType>(C->getType()))
assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
"Invalid cast between a different number of vector elements");
return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
"Invalid constantexpr bitcast!");
// It is common to ask for a bitcast of a value to its own type, handle this
// speedily.
if (C->getType() == DstTy) return C;
return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
"Invalid constantexpr addrspacecast!");
// Canonicalize addrspacecasts between different pointer types by first
// bitcasting the pointer type and then converting the address space.
PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
Type *DstElemTy = DstScalarTy->getElementType();
if (SrcScalarTy->getElementType() != DstElemTy) {
Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
// Handle vectors of pointers.
MidTy = VectorType::get(MidTy, VT->getNumElements());
}
C = getBitCast(C, MidTy);
}
return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags, Type *OnlyIfReducedTy) {
// Check the operands for consistency first.
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
"Invalid opcode in binary constant expression");
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
#ifndef NDEBUG
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an integer operation on a non-integer type!");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case Instruction::UDiv:
case Instruction::SDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::URem:
case Instruction::SRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a logical operation on a non-integral type!");
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a shift operation on a non-integer type!");
break;
default:
break;
}
#endif
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases.
if (OnlyIfReducedTy == C1->getType())
return nullptr;
Constant *ArgVec[] = { C1, C2 };
ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
LLVMContextImpl *pImpl = C1->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
}
Constant *ConstantExpr::getSizeOf(Type* Ty) {
// sizeof is implemented as: (i64) gep (Ty*)null, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *GEP = getGetElementPtr(
Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getAlignOf(Type* Ty) {
// alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Type *AligningTy =
StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *Indices[2] = { Zero, One };
Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
FieldNo));
}
Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
// offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx[] = {
ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
FieldNo
};
Constant *GEP = getGetElementPtr(
Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
Constant *C2, bool OnlyIfReduced) {
assert(C1->getType() == C2->getType() && "Op types should be identical!");
switch (Predicate) {
default: llvm_unreachable("Invalid CmpInst predicate");
case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
return getFCmp(Predicate, C1, C2, OnlyIfReduced);
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return getICmp(Predicate, C1, C2, OnlyIfReduced);
}
}
Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
Type *OnlyIfReducedTy) {
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
return SC; // Fold common cases
if (OnlyIfReducedTy == V1->getType())
return nullptr;
Constant *ArgVec[] = { C, V1, V2 };
ConstantExprKeyType Key(Instruction::Select, ArgVec);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
}
Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
ArrayRef<Value *> Idxs, bool InBounds,
Optional<unsigned> InRangeIndex,
Type *OnlyIfReducedTy) {
if (!Ty)
Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
else
assert(
Ty ==
cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
if (Constant *FC =
ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
return FC; // Fold a few common cases.
// Get the result type of the getelementptr!
Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
assert(DestTy && "GEP indices invalid!");
unsigned AS = C->getType()->getPointerAddressSpace();
Type *ReqTy = DestTy->getPointerTo(AS);
unsigned NumVecElts = 0;
if (C->getType()->isVectorTy())
NumVecElts = C->getType()->getVectorNumElements();
else for (auto Idx : Idxs)
if (Idx->getType()->isVectorTy())
NumVecElts = Idx->getType()->getVectorNumElements();
if (NumVecElts)
ReqTy = VectorType::get(ReqTy, NumVecElts);
if (OnlyIfReducedTy == ReqTy)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(1 + Idxs.size());
ArgVec.push_back(C);
for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
assert((!Idxs[i]->getType()->isVectorTy() ||
Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
"getelementptr index type missmatch");
Constant *Idx = cast<Constant>(Idxs[i]);
if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
Idx = ConstantVector::getSplat(NumVecElts, Idx);
ArgVec.push_back(Idx);
}
unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
if (InRangeIndex && *InRangeIndex < 63)
SubClassOptionalData |= (*InRangeIndex + 1) << 1;
const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
SubClassOptionalData, None, Ty);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
Constant *RHS, bool OnlyIfReduced) {
assert(LHS->getType() == RHS->getType());
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
if (OnlyIfReduced)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getNumElements());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
Constant *RHS, bool OnlyIfReduced) {
assert(LHS->getType() == RHS->getType());
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
if (OnlyIfReduced)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getNumElements());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
Type *OnlyIfReducedTy) {
assert(Val->getType()->isVectorTy() &&
"Tried to create extractelement operation on non-vector type!");
assert(Idx->getType()->isIntegerTy() &&
"Extractelement index must be an integer type!");
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
return FC; // Fold a few common cases.
Type *ReqTy = Val->getType()->getVectorElementType();
if (OnlyIfReducedTy == ReqTy)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Idx };
const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
Constant *Idx, Type *OnlyIfReducedTy) {
assert(Val->getType()->isVectorTy() &&
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == Val->getType()->getVectorElementType() &&
"Insertelement types must match!");
assert(Idx->getType()->isIntegerTy() &&
"Insertelement index must be i32 type!");
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
return FC; // Fold a few common cases.
if (OnlyIfReducedTy == Val->getType())
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Elt, Idx };
const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
Constant *Mask, Type *OnlyIfReducedTy) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
return FC; // Fold a few common cases.
unsigned NElts = Mask->getType()->getVectorNumElements();
Type *EltTy = V1->getType()->getVectorElementType();
Type *ShufTy = VectorType::get(EltTy, NElts);
if (OnlyIfReducedTy == ShufTy)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { V1, V2, Mask };
const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
}
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
ArrayRef<unsigned> Idxs,
Type *OnlyIfReducedTy) {
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant insertvalue expression");
assert(ExtractValueInst::getIndexedType(Agg->getType(),
Idxs) == Val->getType() &&
"insertvalue indices invalid!");
Type *ReqTy = Val->getType();
if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
return FC;
if (OnlyIfReducedTy == ReqTy)
return nullptr;
Constant *ArgVec[] = { Agg, Val };
const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
Type *OnlyIfReducedTy) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create extractelement operation on non-first-class type!");
Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
(void)ReqTy;
assert(ReqTy && "extractvalue indices invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant extractvalue expression");
if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
return FC;
if (OnlyIfReducedTy == ReqTy)
return nullptr;
Constant *ArgVec[] = { Agg };
const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NEG a nonintegral value!");
return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
C, HasNUW, HasNSW);
}
Constant *ConstantExpr::getFNeg(Constant *C) {
assert(C->getType()->isFPOrFPVectorTy() &&
"Cannot FNEG a non-floating-point value!");
return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
}
Constant *ConstantExpr::getNot(Constant *C) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NOT a nonintegral value!");
return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Add, C1, C2, Flags);
}
Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
return get(Instruction::FAdd, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Sub, C1, C2, Flags);
}
Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
return get(Instruction::FSub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Mul, C1, C2, Flags);
}
Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
return get(Instruction::FMul, C1, C2);
}
Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::UDiv, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::SDiv, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
return get(Instruction::FDiv, C1, C2);
}
Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
return get(Instruction::URem, C1, C2);
}
Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
return get(Instruction::SRem, C1, C2);
}
Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
return get(Instruction::FRem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
return get(Instruction::Xor, C1, C2);
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Shl, C1, C2, Flags);
}
Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::LShr, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::AShr, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
switch (Opcode) {
default:
// Doesn't have an identity.
return nullptr;
case Instruction::Add:
case Instruction::Or:
case Instruction::Xor:
return Constant::getNullValue(Ty);
case Instruction::Mul:
return ConstantInt::get(Ty, 1);
case Instruction::And:
return Constant::getAllOnesValue(Ty);
}
}
Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
switch (Opcode) {
default:
// Doesn't have an absorber.
return nullptr;
case Instruction::Or:
return Constant::getAllOnesValue(Ty);
case Instruction::And:
case Instruction::Mul:
return Constant::getNullValue(Ty);
}
}
/// Remove the constant from the constant table.
void ConstantExpr::destroyConstantImpl() {
getType()->getContext().pImpl->ExprConstants.remove(this);
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}
GetElementPtrConstantExpr::GetElementPtrConstantExpr(
Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
: ConstantExpr(DestTy, Instruction::GetElementPtr,
OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
(IdxList.size() + 1),
IdxList.size() + 1),
SrcElementTy(SrcElementTy),
ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
Op<0>() = C;
Use *OperandList = getOperandList();
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
OperandList[i+1] = IdxList[i];
}
Type *GetElementPtrConstantExpr::getSourceElementType() const {
return SrcElementTy;
}
Type *GetElementPtrConstantExpr::getResultElementType() const {
return ResElementTy;
}
//===----------------------------------------------------------------------===//
// ConstantData* implementations
void ConstantDataArray::anchor() {}
void ConstantDataVector::anchor() {}
Type *ConstantDataSequential::getElementType() const {
return getType()->getElementType();
}
StringRef ConstantDataSequential::getRawDataValues() const {
return StringRef(DataElements, getNumElements()*getElementByteSize());
}
bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
if (auto *IT = dyn_cast<IntegerType>(Ty)) {
switch (IT->getBitWidth()) {
case 8:
case 16:
case 32:
case 64:
return true;
default: break;
}
}
return false;
}
unsigned ConstantDataSequential::getNumElements() const {
if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
return AT->getNumElements();
return getType()->getVectorNumElements();
}
uint64_t ConstantDataSequential::getElementByteSize() const {
return getElementType()->getPrimitiveSizeInBits()/8;
}
/// Return the start of the specified element.
const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
assert(Elt < getNumElements() && "Invalid Elt");
return DataElements+Elt*getElementByteSize();
}
/// Return true if the array is empty or all zeros.
static bool isAllZeros(StringRef Arr) {
for (char I : Arr)
if (I != 0)
return false;
return true;
}
/// This is the underlying implementation of all of the
/// ConstantDataSequential::get methods. They all thunk down to here, providing
/// the correct element type. We take the bytes in as a StringRef because
/// we *want* an underlying "char*" to avoid TBAA type punning violations.
Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
assert(isElementTypeCompatible(Ty->getSequentialElementType()));
// If the elements are all zero or there are no elements, return a CAZ, which
// is more dense and canonical.
if (isAllZeros(Elements))
return ConstantAggregateZero::get(Ty);
// Do a lookup to see if we have already formed one of these.
auto &Slot =
*Ty->getContext()
.pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
.first;
// The bucket can point to a linked list of different CDS's that have the same
// body but different types. For example, 0,0,0,1 could be a 4 element array
// of i8, or a 1-element array of i32. They'll both end up in the same
/// StringMap bucket, linked up by their Next pointers. Walk the list.
ConstantDataSequential **Entry = &Slot.second;
for (ConstantDataSequential *Node = *Entry; Node;
Entry = &Node->Next, Node = *Entry)
if (Node->getType() == Ty)
return Node;
// Okay, we didn't get a hit. Create a node of the right class, link it in,
// and return it.
if (isa<ArrayType>(Ty))
return *Entry = new ConstantDataArray(Ty, Slot.first().data());
assert(isa<VectorType>(Ty));
return *Entry = new ConstantDataVector(Ty, Slot.first().data());
}
void ConstantDataSequential::destroyConstantImpl() {
// Remove the constant from the StringMap.
StringMap<ConstantDataSequential*> &CDSConstants =
getType()->getContext().pImpl->CDSConstants;
StringMap<ConstantDataSequential*>::iterator Slot =
CDSConstants.find(getRawDataValues());
assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
ConstantDataSequential **Entry = &Slot->getValue();
// Remove the entry from the hash table.
if (!(*Entry)->Next) {
// If there is only one value in the bucket (common case) it must be this
// entry, and removing the entry should remove the bucket completely.
assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
getContext().pImpl->CDSConstants.erase(Slot);
} else {
// Otherwise, there are multiple entries linked off the bucket, unlink the
// node we care about but keep the bucket around.
for (ConstantDataSequential *Node = *Entry; ;
Entry = &Node->Next, Node = *Entry) {
assert(Node && "Didn't find entry in its uniquing hash table!");
// If we found our entry, unlink it from the list and we're done.
if (Node == this) {
*Entry = Node->Next;
break;
}
}
}
// If we were part of a list, make sure that we don't delete the list that is
// still owned by the uniquing map.
Next = nullptr;
}
/// get() constructors - Return a constant with array type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
}
/// getFP() constructors - Return a constant with array type with an element
/// count and element type of float with precision matching the number of
/// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
/// double for 64bits) Note that this can return a ConstantAggregateZero
/// object.
Constant *ConstantDataArray::getFP(LLVMContext &Context,
ArrayRef<uint16_t> Elts) {
Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
}
Constant *ConstantDataArray::getFP(LLVMContext &Context,
ArrayRef<uint32_t> Elts) {
Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
}
Constant *ConstantDataArray::getFP(LLVMContext &Context,
ArrayRef<uint64_t> Elts) {
Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
}
Constant *ConstantDataArray::getString(LLVMContext &Context,
StringRef Str, bool AddNull) {
if (!AddNull) {
const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
Str.size()));
}
SmallVector<uint8_t, 64> ElementVals;
ElementVals.append(Str.begin(), Str.end());
ElementVals.push_back(0);
return get(Context, ElementVals);
}
/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
}
/// getFP() constructors - Return a constant with vector type with an element
/// count and element type of float with the precision matching the number of
/// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
/// double for 64bits) Note that this can return a ConstantAggregateZero
/// object.
Constant *ConstantDataVector::getFP(LLVMContext &Context,
ArrayRef<uint16_t> Elts) {
Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
}
Constant *ConstantDataVector::getFP(LLVMContext &Context,
ArrayRef<uint32_t> Elts) {
Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
}
Constant *ConstantDataVector::getFP(LLVMContext &Context,
ArrayRef<uint64_t> Elts) {
Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
}
Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
assert(isElementTypeCompatible(V->getType()) &&
"Element type not compatible with ConstantData");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getType()->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (CI->getType()->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (CI->getType()->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType()->isHalfTy()) {
SmallVector<uint16_t, 16> Elts(
NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
return getFP(V->getContext(), Elts);
}
if (CFP->getType()->isFloatTy()) {
SmallVector<uint32_t, 16> Elts(
NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
return getFP(V->getContext(), Elts);
}
if (CFP->getType()->isDoubleTy()) {
SmallVector<uint64_t, 16> Elts(
NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
return getFP(V->getContext(), Elts);
}
}
return ConstantVector::getSplat(NumElts, V);
}
uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
assert(isa<IntegerType>(getElementType()) &&
"Accessor can only be used when element is an integer");
const char *EltPtr = getElementPointer(Elt);
// The data is stored in host byte order, make sure to cast back to the right
// type to load with the right endianness.
switch (getElementType()->getIntegerBitWidth()) {
default: llvm_unreachable("Invalid bitwidth for CDS");
case 8:
return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
case 16:
return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
case 32:
return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
case 64:
return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
}
}
APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
const char *EltPtr = getElementPointer(Elt);
switch (getElementType()->getTypeID()) {
default:
llvm_unreachable("Accessor can only be used when element is float/double!");
case Type::HalfTyID: {
auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
}
case Type::FloatTyID: {
auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
}
case Type::DoubleTyID: {
auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
}
}
}
float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
assert(getElementType()->isFloatTy() &&
"Accessor can only be used when element is a 'float'");
const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
return *const_cast<float *>(EltPtr);
}
double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
assert(getElementType()->isDoubleTy() &&
"Accessor can only be used when element is a 'float'");
const double *EltPtr =
reinterpret_cast<const double *>(getElementPointer(Elt));
return *const_cast<double *>(EltPtr);
}
Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
getElementType()->isDoubleTy())
return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
}
bool ConstantDataSequential::isString() const {
return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
}
bool ConstantDataSequential::isCString() const {
if (!isString())
return false;
StringRef Str = getAsString();
// The last value must be nul.
if (Str.back() != 0) return false;
// Other elements must be non-nul.
return Str.drop_back().find(0) == StringRef::npos;
}
Constant *ConstantDataVector::getSplatValue() const {
const char *Base = getRawDataValues().data();
// Compare elements 1+ to the 0'th element.
unsigned EltSize = getElementByteSize();
for (unsigned i = 1, e = getNumElements(); i != e; ++i)
if (memcmp(Base, Base+i*EltSize, EltSize))
return nullptr;
// If they're all the same, return the 0th one as a representative.
return getElementAsConstant(0);
}
//===----------------------------------------------------------------------===//
// handleOperandChange implementations
/// Update this constant array to change uses of
/// 'From' to be uses of 'To'. This must update the uniquing data structures
/// etc.
///
/// Note that we intentionally replace all uses of From with To here. Consider
/// a large array that uses 'From' 1000 times. By handling this case all here,
/// ConstantArray::handleOperandChange is only invoked once, and that
/// single invocation handles all 1000 uses. Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
///
void Constant::handleOperandChange(Value *From, Value *To) {
Value *Replacement = nullptr;
switch (getValueID()) {
default:
llvm_unreachable("Not a constant!");
#define HANDLE_CONSTANT(Name) \
case Value::Name##Val: \
Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
break;
#include "llvm/IR/Value.def"
}
// If handleOperandChangeImpl returned nullptr, then it handled
// replacing itself and we don't want to delete or replace anything else here.
if (!Replacement)
return;
// I do need to replace this with an existing value.
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
replaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
unsigned NumUpdated = 0;
// Keep track of whether all the values in the array are "ToC".
bool AllSame = true;
Use *OperandList = getOperandList();
unsigned OperandNo = 0;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
OperandNo = (O - OperandList);
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
AllSame &= Val == ToC;
}
if (AllSame && ToC->isNullValue())
return ConstantAggregateZero::get(getType());
if (AllSame && isa<UndefValue>(ToC))
return UndefValue::get(getType());
// Check for any other type of constant-folding.
if (Constant *C = getImpl(getType(), Values))
return C;
// Update to the new value.
return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
Values, this, From, ToC, NumUpdated, OperandNo);
}
Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
Use *OperandList = getOperandList();
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
unsigned NumUpdated = 0;
bool AllSame = true;
unsigned OperandNo = 0;
for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
OperandNo = (O - OperandList);
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
AllSame &= Val == ToC;
}
if (AllSame && ToC->isNullValue())
return ConstantAggregateZero::get(getType());
if (AllSame && isa<UndefValue>(ToC))
return UndefValue::get(getType());
// Update to the new value.
return getContext().pImpl->StructConstants.replaceOperandsInPlace(
Values, this, From, ToC, NumUpdated, OperandNo);
}
Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement array...
unsigned NumUpdated = 0;
unsigned OperandNo = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) {
OperandNo = i;
++NumUpdated;
Val = ToC;
}
Values.push_back(Val);
}
if (Constant *C = getImpl(Values))
return C;
// Update to the new value.
return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
Values, this, From, ToC, NumUpdated, OperandNo);
}
Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
Constant *To = cast<Constant>(ToV);
SmallVector<Constant*, 8> NewOps;
unsigned NumUpdated = 0;
unsigned OperandNo = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Op = getOperand(i);
if (Op == From) {
OperandNo = i;
++NumUpdated;
Op = To;
}
NewOps.push_back(Op);
}
assert(NumUpdated && "I didn't contain From!");
if (Constant *C = getWithOperands(NewOps, getType(), true))
return C;
// Update to the new value.
return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
NewOps, this, From, To, NumUpdated, OperandNo);
}
Instruction *ConstantExpr::getAsInstruction() {
SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
ArrayRef<Value*> Ops(ValueOperands);
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
return CastInst::Create((Instruction::CastOps)getOpcode(),
Ops[0], getType());
case Instruction::Select:
return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ExtractElementInst::Create(Ops[0], Ops[1]);
case Instruction::InsertValue:
return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
case Instruction::ExtractValue:
return ExtractValueInst::Create(Ops[0], getIndices());
case Instruction::ShuffleVector:
return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr: {
const auto *GO = cast<GEPOperator>(this);
if (GO->isInBounds())
return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
Ops[0], Ops.slice(1));
return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
Ops.slice(1));
}
case Instruction::ICmp:
case Instruction::FCmp:
return CmpInst::Create((Instruction::OtherOps)getOpcode(),
(CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
BinaryOperator *BO =
BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
Ops[0], Ops[1]);
if (isa<OverflowingBinaryOperator>(BO)) {
BO->setHasNoUnsignedWrap(SubclassOptionalData &
OverflowingBinaryOperator::NoUnsignedWrap);
BO->setHasNoSignedWrap(SubclassOptionalData &
OverflowingBinaryOperator::NoSignedWrap);
}
if (isa<PossiblyExactOperator>(BO))
BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
return BO;
}
}