1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
llvm-mirror/include/llvm/ADT/IntEqClasses.h
2010-12-21 00:48:17 +00:00

89 lines
2.8 KiB
C++

//===-- llvm/ADT/IntEqClasses.h - Equiv. Classes of Integers ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Equivalence classes for small integers. This is a mapping of the integers
// 0 .. N-1 into M equivalence classes numbered 0 .. M-1.
//
// Initially each integer has its own equivalence class. Classes are joined by
// passing a representative member of each class to join().
//
// Once the classes are built, compress() will number them 0 .. M-1 and prevent
// further changes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTEQCLASSES_H
#define LLVM_ADT_INTEQCLASSES_H
#include "llvm/ADT/SmallVector.h"
namespace llvm {
class IntEqClasses {
/// EC - When uncompressed, map each integer to a smaller member of its
/// equivalence class. The class leader is the smallest member and maps to
/// itself.
///
/// When compressed, EC[i] is the equivalence class of i.
SmallVector<unsigned, 8> EC;
/// NumClasses - The number of equivalence classes when compressed, or 0 when
/// uncompressed.
unsigned NumClasses;
public:
/// IntEqClasses - Create an equivalence class mapping for 0 .. N-1.
IntEqClasses(unsigned N = 0) : NumClasses(0) { grow(N); }
/// grow - Increase capacity to hold 0 .. N-1, putting new integers in unique
/// equivalence classes.
/// This requires an uncompressed map.
void grow(unsigned N);
/// clear - Clear all classes so that grow() will assign a unique class to
/// every integer.
void clear() {
EC.clear();
NumClasses = 0;
}
/// join - Join the equivalence classes of a and b. After joining classes,
/// findLeader(a) == findLeader(b).
/// This requires an uncompressed map.
void join(unsigned a, unsigned b);
/// findLeader - Compute the leader of a's equivalence class. This is the
/// smallest member of the class.
/// This requires an uncompressed map.
unsigned findLeader(unsigned a) const;
/// compress - Compress equivalence classes by numbering them 0 .. M.
/// This makes the equivalence class map immutable.
void compress();
/// getNumClasses - Return the number of equivalence classes after compress()
/// was called.
unsigned getNumClasses() const { return NumClasses; }
/// operator[] - Return a's equivalence class number, 0 .. getNumClasses()-1.
/// This requires a compressed map.
unsigned operator[](unsigned a) const {
assert(NumClasses && "operator[] called before compress()");
return EC[a];
}
/// uncompress - Change back to the uncompressed representation that allows
/// editing.
void uncompress();
};
} // End llvm namespace
#endif