1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 22:42:46 +02:00
llvm-mirror/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
Eli Bendersky 801d9e8ff6 It doesn't make sense to move symbol relocations to section relocations when
relocations are resolved.  It's much more reasonable to do this decision when
relocations are just being added - we have all the information at that point.

Also a bit of renaming and extra comments to clarify extensions.

llvm-svn: 155819
2012-04-30 12:15:58 +00:00

492 lines
17 KiB
C++

//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dyld"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldMachO.h"
#include "llvm/Support/Path.h"
using namespace llvm;
using namespace llvm::object;
// Empty out-of-line virtual destructor as the key function.
RTDyldMemoryManager::~RTDyldMemoryManager() {}
RuntimeDyldImpl::~RuntimeDyldImpl() {}
namespace llvm {
namespace {
// Helper for extensive error checking in debug builds.
error_code Check(error_code Err) {
if (Err) {
report_fatal_error(Err.message());
}
return Err;
}
} // end anonymous namespace
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
// First, resolve relocations associated with external symbols.
resolveExternalSymbols();
// Just iterate over the sections we have and resolve all the relocations
// in them. Gross overkill, but it gets the job done.
for (int i = 0, e = Sections.size(); i != e; ++i) {
reassignSectionAddress(i, Sections[i].LoadAddress);
}
}
void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress,
uint64_t TargetAddress) {
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
if (Sections[i].Address == LocalAddress) {
reassignSectionAddress(i, TargetAddress);
return;
}
}
llvm_unreachable("Attempting to remap address of unknown section!");
}
// Subclasses can implement this method to create specialized image instances.
// The caller owns the the pointer that is returned.
ObjectImage *RuntimeDyldImpl::createObjectImage(const MemoryBuffer *InputBuffer) {
ObjectFile *ObjFile = ObjectFile::createObjectFile(const_cast<MemoryBuffer*>
(InputBuffer));
ObjectImage *Obj = new ObjectImage(ObjFile);
return Obj;
}
bool RuntimeDyldImpl::loadObject(const MemoryBuffer *InputBuffer) {
OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
if (!obj)
report_fatal_error("Unable to create object image from memory buffer!");
Arch = (Triple::ArchType)obj->getArch();
LocalSymbolMap LocalSymbols; // Functions and data symbols from the
// object file.
ObjSectionToIDMap LocalSections; // Used sections from the object file
CommonSymbolMap CommonSymbols; // Common symbols requiring allocation
uint64_t CommonSize = 0;
error_code err;
// Parse symbols
DEBUG(dbgs() << "Parse symbols:\n");
for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
i != e; i.increment(err)) {
Check(err);
object::SymbolRef::Type SymType;
StringRef Name;
Check(i->getType(SymType));
Check(i->getName(Name));
uint32_t flags;
Check(i->getFlags(flags));
bool isCommon = flags & SymbolRef::SF_Common;
if (isCommon) {
// Add the common symbols to a list. We'll allocate them all below.
uint64_t Size = 0;
Check(i->getSize(Size));
CommonSize += Size;
CommonSymbols[*i] = Size;
} else {
if (SymType == object::SymbolRef::ST_Function ||
SymType == object::SymbolRef::ST_Data) {
uint64_t FileOffset;
StringRef SectionData;
section_iterator si = obj->end_sections();
Check(i->getFileOffset(FileOffset));
Check(i->getSection(si));
if (si == obj->end_sections()) continue;
Check(si->getContents(SectionData));
const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
(uintptr_t)FileOffset;
uintptr_t SectOffset = (uintptr_t)(SymPtr -
(const uint8_t*)SectionData.begin());
unsigned SectionID =
findOrEmitSection(*obj,
*si,
SymType == object::SymbolRef::ST_Function,
LocalSections);
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
<< " flags: " << flags
<< " SID: " << SectionID
<< " Offset: " << format("%p", SectOffset));
bool isGlobal = flags & SymbolRef::SF_Global;
if (isGlobal)
SymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
}
}
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
}
// Allocate common symbols
if (CommonSize != 0)
emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
// Parse and process relocations
DEBUG(dbgs() << "Parse relocations:\n");
for (section_iterator si = obj->begin_sections(),
se = obj->end_sections(); si != se; si.increment(err)) {
Check(err);
bool isFirstRelocation = true;
unsigned SectionID = 0;
StubMap Stubs;
for (relocation_iterator i = si->begin_relocations(),
e = si->end_relocations(); i != e; i.increment(err)) {
Check(err);
// If it's the first relocation in this section, find its SectionID
if (isFirstRelocation) {
SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
isFirstRelocation = false;
}
ObjRelocationInfo RI;
RI.SectionID = SectionID;
Check(i->getAdditionalInfo(RI.AdditionalInfo));
Check(i->getOffset(RI.Offset));
Check(i->getSymbol(RI.Symbol));
Check(i->getType(RI.Type));
DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
<< " Offset: " << format("%p", (uintptr_t)RI.Offset)
<< " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
<< "\n");
processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
}
}
handleObjectLoaded(obj.take());
return false;
}
unsigned RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
const CommonSymbolMap &Map,
uint64_t TotalSize,
LocalSymbolMap &LocalSymbols) {
// Allocate memory for the section
unsigned SectionID = Sections.size();
uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
SectionID);
if (!Addr)
report_fatal_error("Unable to allocate memory for common symbols!");
uint64_t Offset = 0;
Sections.push_back(SectionEntry(Addr, TotalSize, TotalSize, 0));
memset(Addr, 0, TotalSize);
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << TotalSize
<< "\n");
// Assign the address of each symbol
for (CommonSymbolMap::const_iterator it = Map.begin(), itEnd = Map.end();
it != itEnd; it++) {
uint64_t Size = it->second;
StringRef Name;
it->first.getName(Name);
Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
LocalSymbols[Name.data()] = SymbolLoc(SectionID, Offset);
Offset += Size;
Addr += Size;
}
return SectionID;
}
unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
const SectionRef &Section,
bool IsCode) {
unsigned StubBufSize = 0,
StubSize = getMaxStubSize();
error_code err;
if (StubSize > 0) {
for (relocation_iterator i = Section.begin_relocations(),
e = Section.end_relocations(); i != e; i.increment(err), Check(err))
StubBufSize += StubSize;
}
StringRef data;
uint64_t Alignment64;
Check(Section.getContents(data));
Check(Section.getAlignment(Alignment64));
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
bool IsRequired;
bool IsVirtual;
bool IsZeroInit;
uint64_t DataSize;
Check(Section.isRequiredForExecution(IsRequired));
Check(Section.isVirtual(IsVirtual));
Check(Section.isZeroInit(IsZeroInit));
Check(Section.getSize(DataSize));
unsigned Allocate;
unsigned SectionID = Sections.size();
uint8_t *Addr;
const char *pData = 0;
// Some sections, such as debug info, don't need to be loaded for execution.
// Leave those where they are.
if (IsRequired) {
Allocate = DataSize + StubBufSize;
Addr = IsCode
? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
: MemMgr->allocateDataSection(Allocate, Alignment, SectionID);
if (!Addr)
report_fatal_error("Unable to allocate section memory!");
// Virtual sections have no data in the object image, so leave pData = 0
if (!IsVirtual)
pData = data.data();
// Zero-initialize or copy the data from the image
if (IsZeroInit || IsVirtual)
memset(Addr, 0, DataSize);
else
memcpy(Addr, pData, DataSize);
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " obj addr: " << format("%p", pData)
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate
<< "\n");
Obj.updateSectionAddress(Section, (uint64_t)Addr);
}
else {
// Even if we didn't load the section, we need to record an entry for it
// to handle later processing (and by 'handle' I mean don't do anything
// with these sections).
Allocate = 0;
Addr = 0;
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " obj addr: " << format("%p", data.data())
<< " new addr: 0"
<< " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate
<< "\n");
}
Sections.push_back(SectionEntry(Addr, Allocate, DataSize,(uintptr_t)pData));
return SectionID;
}
unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
const SectionRef &Section,
bool IsCode,
ObjSectionToIDMap &LocalSections) {
unsigned SectionID = 0;
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
if (i != LocalSections.end())
SectionID = i->second;
else {
SectionID = emitSection(Obj, Section, IsCode);
LocalSections[Section] = SectionID;
}
return SectionID;
}
void RuntimeDyldImpl::addRelocation(const RelocationValueRef &Value,
unsigned SectionID, uintptr_t Offset,
uint32_t RelType) {
DEBUG(dbgs() << "addRelocation SymNamePtr: " << format("%p", Value.SymbolName)
<< " SID: " << Value.SectionID
<< " Addend: " << format("%p", Value.Addend)
<< " Offset: " << format("%p", Offset)
<< " RelType: " << format("%x", RelType)
<< "\n");
if (Value.SymbolName == 0) {
Relocations[Value.SectionID].push_back(RelocationEntry(
SectionID,
Offset,
RelType,
Value.Addend));
} else {
// Relocation by symbol. If the symbol is found in the global symbol table,
// create an appropriate section relocation. Otherwise, add it to
// ExternalSymbolRelocations.
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Value.SymbolName);
if (Loc == SymbolTable.end()) {
ExternalSymbolRelocations[Value.SymbolName].push_back(RE);
} else {
RE.Addend += Loc->second.second;
Relocations[Loc->second.first].push_back(RE);
}
}
}
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
// TODO: There is only ARM far stub now. We should add the Thumb stub,
// and stubs for branches Thumb - ARM and ARM - Thumb.
if (Arch == Triple::arm) {
uint32_t *StubAddr = (uint32_t*)Addr;
*StubAddr = 0xe51ff004; // ldr pc,<label>
return (uint8_t*)++StubAddr;
}
else
return Addr;
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Re-apply any
// relocations referencing this section with the given address.
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
Sections[SectionID].LoadAddress = Addr;
DEBUG(dbgs() << "Resolving relocations Section #" << SectionID
<< "\t" << format("%p", (uint8_t *)Addr)
<< "\n");
resolveRelocationList(Relocations[SectionID], Addr);
}
void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
uint64_t Value) {
// Ignore relocations for sections that were not loaded
if (Sections[RE.SectionID].Address != 0) {
uint8_t *Target = Sections[RE.SectionID].Address + RE.Offset;
DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
<< " RelType: " << RE.RelType
<< " Addend: " << RE.Addend
<< "\n");
resolveRelocation(Target, Sections[RE.SectionID].LoadAddress + RE.Offset,
Value, RE.RelType, RE.Addend);
}
}
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
uint64_t Value) {
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
resolveRelocationEntry(Relocs[i], Value);
}
}
void RuntimeDyldImpl::resolveExternalSymbols() {
StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
e = ExternalSymbolRelocations.end();
for (; i != e; i++) {
StringRef Name = i->first();
RelocationList &Relocs = i->second;
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
if (Loc == SymbolTable.end()) {
// This is an external symbol, try to get it address from
// MemoryManager.
uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
true);
DEBUG(dbgs() << "Resolving relocations Name: " << Name
<< "\t" << format("%p", Addr)
<< "\n");
resolveRelocationList(Relocs, (uintptr_t)Addr);
} else {
report_fatal_error("Expected external symbol");
}
}
}
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
Dyld = 0;
MM = mm;
}
RuntimeDyld::~RuntimeDyld() {
delete Dyld;
}
bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
if (!Dyld) {
sys::LLVMFileType type = sys::IdentifyFileType(
InputBuffer->getBufferStart(),
static_cast<unsigned>(InputBuffer->getBufferSize()));
switch (type) {
case sys::ELF_Relocatable_FileType:
case sys::ELF_Executable_FileType:
case sys::ELF_SharedObject_FileType:
case sys::ELF_Core_FileType:
Dyld = new RuntimeDyldELF(MM);
break;
case sys::Mach_O_Object_FileType:
case sys::Mach_O_Executable_FileType:
case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
case sys::Mach_O_Core_FileType:
case sys::Mach_O_PreloadExecutable_FileType:
case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
case sys::Mach_O_DynamicLinker_FileType:
case sys::Mach_O_Bundle_FileType:
case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
case sys::Mach_O_DSYMCompanion_FileType:
Dyld = new RuntimeDyldMachO(MM);
break;
case sys::Unknown_FileType:
case sys::Bitcode_FileType:
case sys::Archive_FileType:
case sys::COFF_FileType:
report_fatal_error("Incompatible object format!");
}
} else {
if (!Dyld->isCompatibleFormat(InputBuffer))
report_fatal_error("Incompatible object format!");
}
return Dyld->loadObject(InputBuffer);
}
void *RuntimeDyld::getSymbolAddress(StringRef Name) {
return Dyld->getSymbolAddress(Name);
}
void RuntimeDyld::resolveRelocations() {
Dyld->resolveRelocations();
}
void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
Dyld->reassignSectionAddress(SectionID, Addr);
}
void RuntimeDyld::mapSectionAddress(void *LocalAddress,
uint64_t TargetAddress) {
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
}
StringRef RuntimeDyld::getErrorString() {
return Dyld->getErrorString();
}
} // end namespace llvm