1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/test/CodeGen/AArch64/arm64-fp128.ll
Tim Northover 3bb84c9bcc ARM & AArch64: make use of common cmpxchg idioms after expansion
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.

When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.

This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.

I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.

rdar://problem/16227836

llvm-svn: 209883
2014-05-30 10:09:59 +00:00

274 lines
6.3 KiB
LLVM

; RUN: llc -mtriple=arm64-linux-gnu -verify-machineinstrs -mcpu=cyclone -aarch64-atomic-cfg-tidy=0 < %s | FileCheck %s
@lhs = global fp128 zeroinitializer, align 16
@rhs = global fp128 zeroinitializer, align 16
define fp128 @test_add() {
; CHECK-LABEL: test_add:
%lhs = load fp128* @lhs, align 16
%rhs = load fp128* @rhs, align 16
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:lhs]
; CHECK: ldr q1, [{{x[0-9]+}}, :lo12:rhs]
%val = fadd fp128 %lhs, %rhs
; CHECK: bl __addtf3
ret fp128 %val
}
define fp128 @test_sub() {
; CHECK-LABEL: test_sub:
%lhs = load fp128* @lhs, align 16
%rhs = load fp128* @rhs, align 16
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:lhs]
; CHECK: ldr q1, [{{x[0-9]+}}, :lo12:rhs]
%val = fsub fp128 %lhs, %rhs
; CHECK: bl __subtf3
ret fp128 %val
}
define fp128 @test_mul() {
; CHECK-LABEL: test_mul:
%lhs = load fp128* @lhs, align 16
%rhs = load fp128* @rhs, align 16
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:lhs]
; CHECK: ldr q1, [{{x[0-9]+}}, :lo12:rhs]
%val = fmul fp128 %lhs, %rhs
; CHECK: bl __multf3
ret fp128 %val
}
define fp128 @test_div() {
; CHECK-LABEL: test_div:
%lhs = load fp128* @lhs, align 16
%rhs = load fp128* @rhs, align 16
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:lhs]
; CHECK: ldr q1, [{{x[0-9]+}}, :lo12:rhs]
%val = fdiv fp128 %lhs, %rhs
; CHECK: bl __divtf3
ret fp128 %val
}
@var32 = global i32 0
@var64 = global i64 0
define void @test_fptosi() {
; CHECK-LABEL: test_fptosi:
%val = load fp128* @lhs, align 16
%val32 = fptosi fp128 %val to i32
store i32 %val32, i32* @var32
; CHECK: bl __fixtfsi
%val64 = fptosi fp128 %val to i64
store i64 %val64, i64* @var64
; CHECK: bl __fixtfdi
ret void
}
define void @test_fptoui() {
; CHECK-LABEL: test_fptoui:
%val = load fp128* @lhs, align 16
%val32 = fptoui fp128 %val to i32
store i32 %val32, i32* @var32
; CHECK: bl __fixunstfsi
%val64 = fptoui fp128 %val to i64
store i64 %val64, i64* @var64
; CHECK: bl __fixunstfdi
ret void
}
define void @test_sitofp() {
; CHECK-LABEL: test_sitofp:
%src32 = load i32* @var32
%val32 = sitofp i32 %src32 to fp128
store volatile fp128 %val32, fp128* @lhs
; CHECK: bl __floatsitf
%src64 = load i64* @var64
%val64 = sitofp i64 %src64 to fp128
store volatile fp128 %val64, fp128* @lhs
; CHECK: bl __floatditf
ret void
}
define void @test_uitofp() {
; CHECK-LABEL: test_uitofp:
%src32 = load i32* @var32
%val32 = uitofp i32 %src32 to fp128
store volatile fp128 %val32, fp128* @lhs
; CHECK: bl __floatunsitf
%src64 = load i64* @var64
%val64 = uitofp i64 %src64 to fp128
store volatile fp128 %val64, fp128* @lhs
; CHECK: bl __floatunditf
ret void
}
define i1 @test_setcc1() {
; CHECK-LABEL: test_setcc1:
%lhs = load fp128* @lhs, align 16
%rhs = load fp128* @rhs, align 16
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:lhs]
; CHECK: ldr q1, [{{x[0-9]+}}, :lo12:rhs]
; Technically, everything after the call to __letf2 is redundant, but we'll let
; LLVM have its fun for now.
%val = fcmp ole fp128 %lhs, %rhs
; CHECK: bl __letf2
; CHECK: cmp w0, #0
; CHECK: cset w0, le
ret i1 %val
; CHECK: ret
}
define i1 @test_setcc2() {
; CHECK-LABEL: test_setcc2:
%lhs = load fp128* @lhs, align 16
%rhs = load fp128* @rhs, align 16
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:lhs]
; CHECK: ldr q1, [{{x[0-9]+}}, :lo12:rhs]
%val = fcmp ugt fp128 %lhs, %rhs
; CHECK: bl __gttf2
; CHECK: cmp w0, #0
; CHECK: cset [[GT:w[0-9]+]], gt
; CHECK: bl __unordtf2
; CHECK: cmp w0, #0
; CHECK: cset [[UNORDERED:w[0-9]+]], ne
; CHECK: orr w0, [[UNORDERED]], [[GT]]
ret i1 %val
; CHECK: ret
}
define i32 @test_br_cc() {
; CHECK-LABEL: test_br_cc:
%lhs = load fp128* @lhs, align 16
%rhs = load fp128* @rhs, align 16
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:lhs]
; CHECK: ldr q1, [{{x[0-9]+}}, :lo12:rhs]
; olt == !uge, which LLVM unfortunately "optimizes" this to.
%cond = fcmp olt fp128 %lhs, %rhs
; CHECK: bl __getf2
; CHECK: cmp w0, #0
; CHECK: cset [[OGE:w[0-9]+]], ge
; CHECK: bl __unordtf2
; CHECK: cmp w0, #0
; CHECK: cset [[UNORDERED:w[0-9]+]], ne
; CHECK: orr [[UGE:w[0-9]+]], [[UNORDERED]], [[OGE]]
; CHECK: cbnz [[UGE]], [[RET29:.LBB[0-9]+_[0-9]+]]
br i1 %cond, label %iftrue, label %iffalse
iftrue:
ret i32 42
; CHECK-NEXT: BB#
; CHECK-NEXT: movz w0, #0x2a
; CHECK-NEXT: b [[REALRET:.LBB[0-9]+_[0-9]+]]
iffalse:
ret i32 29
; CHECK: [[RET29]]:
; CHECK-NEXT: movz w0, #0x1d
; CHECK-NEXT: [[REALRET]]:
; CHECK: ret
}
define void @test_select(i1 %cond, fp128 %lhs, fp128 %rhs) {
; CHECK-LABEL: test_select:
%val = select i1 %cond, fp128 %lhs, fp128 %rhs
store fp128 %val, fp128* @lhs, align 16
; CHECK: tst w0, #0x1
; CHECK-NEXT: b.eq [[IFFALSE:.LBB[0-9]+_[0-9]+]]
; CHECK-NEXT: BB#
; CHECK-NEXT: mov v[[VAL:[0-9]+]].16b, v0.16b
; CHECK-NEXT: [[IFFALSE]]:
; CHECK: str q[[VAL]], [{{x[0-9]+}}, :lo12:lhs]
ret void
; CHECK: ret
}
@varfloat = global float 0.0, align 4
@vardouble = global double 0.0, align 8
define void @test_round() {
; CHECK-LABEL: test_round:
%val = load fp128* @lhs, align 16
%float = fptrunc fp128 %val to float
store float %float, float* @varfloat, align 4
; CHECK: bl __trunctfsf2
; CHECK: str s0, [{{x[0-9]+}}, :lo12:varfloat]
%double = fptrunc fp128 %val to double
store double %double, double* @vardouble, align 8
; CHECK: bl __trunctfdf2
; CHECK: str d0, [{{x[0-9]+}}, :lo12:vardouble]
ret void
}
define void @test_extend() {
; CHECK-LABEL: test_extend:
%val = load fp128* @lhs, align 16
%float = load float* @varfloat
%fromfloat = fpext float %float to fp128
store volatile fp128 %fromfloat, fp128* @lhs, align 16
; CHECK: bl __extendsftf2
; CHECK: str q0, [{{x[0-9]+}}, :lo12:lhs]
%double = load double* @vardouble
%fromdouble = fpext double %double to fp128
store volatile fp128 %fromdouble, fp128* @lhs, align 16
; CHECK: bl __extenddftf2
; CHECK: str q0, [{{x[0-9]+}}, :lo12:lhs]
ret void
; CHECK: ret
}
define fp128 @test_neg(fp128 %in) {
; CHECK: [[MINUS0:.LCPI[0-9]+_0]]:
; Make sure the weird hex constant below *is* -0.0
; CHECK-NEXT: fp128 -0
; CHECK-LABEL: test_neg:
; Could in principle be optimized to fneg which we can't select, this makes
; sure that doesn't happen.
%ret = fsub fp128 0xL00000000000000008000000000000000, %in
; CHECK: mov v1.16b, v0.16b
; CHECK: ldr q0, [{{x[0-9]+}}, :lo12:[[MINUS0]]]
; CHECK: bl __subtf3
ret fp128 %ret
; CHECK: ret
}