1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/System/Win32/Program.inc
Douglas Gregor 1fcfb8e183 Add llvm::Program::ChangeStderrToBinary().
llvm-svn: 94743
2010-01-28 06:42:08 +00:00

388 lines
11 KiB
C++

//===- Win32/Program.cpp - Win32 Program Implementation ------- -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides the Win32 specific implementation of the Program class.
//
//===----------------------------------------------------------------------===//
#include "Win32.h"
#include <cstdio>
#include <malloc.h>
#include <io.h>
#include <fcntl.h>
//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only Win32 specific code
//=== and must not be UNIX code
//===----------------------------------------------------------------------===//
namespace {
struct Win32ProcessInfo {
HANDLE hProcess;
DWORD dwProcessId;
};
}
namespace llvm {
using namespace sys;
Program::Program() : Data_(0) {}
Program::~Program() {
if (Data_) {
Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
CloseHandle(wpi->hProcess);
delete wpi;
Data_ = 0;
}
}
unsigned Program::GetPid() const {
Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
return wpi->dwProcessId;
}
// This function just uses the PATH environment variable to find the program.
Path
Program::FindProgramByName(const std::string& progName) {
// Check some degenerate cases
if (progName.length() == 0) // no program
return Path();
Path temp;
if (!temp.set(progName)) // invalid name
return Path();
if (temp.canExecute()) // already executable as is
return temp;
// At this point, the file name is valid and its not executable.
// Let Windows search for it.
char buffer[MAX_PATH];
char *dummy = NULL;
DWORD len = SearchPath(NULL, progName.c_str(), ".exe", MAX_PATH,
buffer, &dummy);
// See if it wasn't found.
if (len == 0)
return Path();
// See if we got the entire path.
if (len < MAX_PATH)
return Path(buffer);
// Buffer was too small; grow and retry.
while (true) {
char *b = reinterpret_cast<char *>(_alloca(len+1));
DWORD len2 = SearchPath(NULL, progName.c_str(), ".exe", len+1, b, &dummy);
// It is unlikely the search failed, but it's always possible some file
// was added or removed since the last search, so be paranoid...
if (len2 == 0)
return Path();
else if (len2 <= len)
return Path(b);
len = len2;
}
}
static HANDLE RedirectIO(const Path *path, int fd, std::string* ErrMsg) {
HANDLE h;
if (path == 0) {
DuplicateHandle(GetCurrentProcess(), (HANDLE)_get_osfhandle(fd),
GetCurrentProcess(), &h,
0, TRUE, DUPLICATE_SAME_ACCESS);
return h;
}
const char *fname;
if (path->isEmpty())
fname = "NUL";
else
fname = path->c_str();
SECURITY_ATTRIBUTES sa;
sa.nLength = sizeof(sa);
sa.lpSecurityDescriptor = 0;
sa.bInheritHandle = TRUE;
h = CreateFile(fname, fd ? GENERIC_WRITE : GENERIC_READ, FILE_SHARE_READ,
&sa, fd == 0 ? OPEN_EXISTING : CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
if (h == INVALID_HANDLE_VALUE) {
MakeErrMsg(ErrMsg, std::string(fname) + ": Can't open file for " +
(fd ? "input: " : "output: "));
}
return h;
}
#ifdef __MINGW32__
// Due to unknown reason, mingw32's w32api doesn't have this declaration.
extern "C"
BOOL WINAPI SetInformationJobObject(HANDLE hJob,
JOBOBJECTINFOCLASS JobObjectInfoClass,
LPVOID lpJobObjectInfo,
DWORD cbJobObjectInfoLength);
#endif
/// ArgNeedsQuotes - Check whether argument needs to be quoted when calling
/// CreateProcess.
static bool ArgNeedsQuotes(const char *Str) {
return Str[0] == '\0' || strchr(Str, ' ') != 0;
}
bool
Program::Execute(const Path& path,
const char** args,
const char** envp,
const Path** redirects,
unsigned memoryLimit,
std::string* ErrMsg) {
if (Data_) {
Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
CloseHandle(wpi->hProcess);
delete wpi;
Data_ = 0;
}
if (!path.canExecute()) {
if (ErrMsg)
*ErrMsg = "program not executable";
return false;
}
// Windows wants a command line, not an array of args, to pass to the new
// process. We have to concatenate them all, while quoting the args that
// have embedded spaces (or are empty).
// First, determine the length of the command line.
unsigned len = 0;
for (unsigned i = 0; args[i]; i++) {
len += strlen(args[i]) + 1;
if (ArgNeedsQuotes(args[i]))
len += 2;
}
// Now build the command line.
char *command = reinterpret_cast<char *>(_alloca(len+1));
char *p = command;
for (unsigned i = 0; args[i]; i++) {
const char *arg = args[i];
size_t len = strlen(arg);
bool needsQuoting = ArgNeedsQuotes(arg);
if (needsQuoting)
*p++ = '"';
memcpy(p, arg, len);
p += len;
if (needsQuoting)
*p++ = '"';
*p++ = ' ';
}
*p = 0;
// The pointer to the environment block for the new process.
char *envblock = 0;
if (envp) {
// An environment block consists of a null-terminated block of
// null-terminated strings. Convert the array of environment variables to
// an environment block by concatenating them.
// First, determine the length of the environment block.
len = 0;
for (unsigned i = 0; envp[i]; i++)
len += strlen(envp[i]) + 1;
// Now build the environment block.
envblock = reinterpret_cast<char *>(_alloca(len+1));
p = envblock;
for (unsigned i = 0; envp[i]; i++) {
const char *ev = envp[i];
size_t len = strlen(ev) + 1;
memcpy(p, ev, len);
p += len;
}
*p = 0;
}
// Create a child process.
STARTUPINFO si;
memset(&si, 0, sizeof(si));
si.cb = sizeof(si);
si.hStdInput = INVALID_HANDLE_VALUE;
si.hStdOutput = INVALID_HANDLE_VALUE;
si.hStdError = INVALID_HANDLE_VALUE;
if (redirects) {
si.dwFlags = STARTF_USESTDHANDLES;
si.hStdInput = RedirectIO(redirects[0], 0, ErrMsg);
if (si.hStdInput == INVALID_HANDLE_VALUE) {
MakeErrMsg(ErrMsg, "can't redirect stdin");
return false;
}
si.hStdOutput = RedirectIO(redirects[1], 1, ErrMsg);
if (si.hStdOutput == INVALID_HANDLE_VALUE) {
CloseHandle(si.hStdInput);
MakeErrMsg(ErrMsg, "can't redirect stdout");
return false;
}
if (redirects[1] && redirects[2] && *(redirects[1]) == *(redirects[2])) {
// If stdout and stderr should go to the same place, redirect stderr
// to the handle already open for stdout.
DuplicateHandle(GetCurrentProcess(), si.hStdOutput,
GetCurrentProcess(), &si.hStdError,
0, TRUE, DUPLICATE_SAME_ACCESS);
} else {
// Just redirect stderr
si.hStdError = RedirectIO(redirects[2], 2, ErrMsg);
if (si.hStdError == INVALID_HANDLE_VALUE) {
CloseHandle(si.hStdInput);
CloseHandle(si.hStdOutput);
MakeErrMsg(ErrMsg, "can't redirect stderr");
return false;
}
}
}
PROCESS_INFORMATION pi;
memset(&pi, 0, sizeof(pi));
fflush(stdout);
fflush(stderr);
BOOL rc = CreateProcess(path.c_str(), command, NULL, NULL, TRUE, 0,
envblock, NULL, &si, &pi);
DWORD err = GetLastError();
// Regardless of whether the process got created or not, we are done with
// the handles we created for it to inherit.
CloseHandle(si.hStdInput);
CloseHandle(si.hStdOutput);
CloseHandle(si.hStdError);
// Now return an error if the process didn't get created.
if (!rc) {
SetLastError(err);
MakeErrMsg(ErrMsg, std::string("Couldn't execute program '") +
path.str() + "'");
return false;
}
Win32ProcessInfo* wpi = new Win32ProcessInfo;
wpi->hProcess = pi.hProcess;
wpi->dwProcessId = pi.dwProcessId;
Data_ = wpi;
// Make sure these get closed no matter what.
AutoHandle hThread(pi.hThread);
// Assign the process to a job if a memory limit is defined.
AutoHandle hJob(0);
if (memoryLimit != 0) {
hJob = CreateJobObject(0, 0);
bool success = false;
if (hJob != 0) {
JOBOBJECT_EXTENDED_LIMIT_INFORMATION jeli;
memset(&jeli, 0, sizeof(jeli));
jeli.BasicLimitInformation.LimitFlags = JOB_OBJECT_LIMIT_PROCESS_MEMORY;
jeli.ProcessMemoryLimit = uintptr_t(memoryLimit) * 1048576;
if (SetInformationJobObject(hJob, JobObjectExtendedLimitInformation,
&jeli, sizeof(jeli))) {
if (AssignProcessToJobObject(hJob, pi.hProcess))
success = true;
}
}
if (!success) {
SetLastError(GetLastError());
MakeErrMsg(ErrMsg, std::string("Unable to set memory limit"));
TerminateProcess(pi.hProcess, 1);
WaitForSingleObject(pi.hProcess, INFINITE);
return false;
}
}
return true;
}
int
Program::Wait(unsigned secondsToWait,
std::string* ErrMsg) {
if (Data_ == 0) {
MakeErrMsg(ErrMsg, "Process not started!");
return -1;
}
Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
HANDLE hProcess = wpi->hProcess;
// Wait for the process to terminate.
DWORD millisecondsToWait = INFINITE;
if (secondsToWait > 0)
millisecondsToWait = secondsToWait * 1000;
if (WaitForSingleObject(hProcess, millisecondsToWait) == WAIT_TIMEOUT) {
if (!TerminateProcess(hProcess, 1)) {
MakeErrMsg(ErrMsg, "Failed to terminate timed-out program.");
return -1;
}
WaitForSingleObject(hProcess, INFINITE);
}
// Get its exit status.
DWORD status;
BOOL rc = GetExitCodeProcess(hProcess, &status);
DWORD err = GetLastError();
if (!rc) {
SetLastError(err);
MakeErrMsg(ErrMsg, "Failed getting status for program.");
return -1;
}
return status;
}
bool
Program::Kill(std::string* ErrMsg) {
if (Data_ == 0) {
MakeErrMsg(ErrMsg, "Process not started!");
return true;
}
Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
HANDLE hProcess = wpi->hProcess;
if (TerminateProcess(hProcess, 1) == 0) {
MakeErrMsg(ErrMsg, "The process couldn't be killed!");
return true;
}
return false;
}
bool Program::ChangeStdinToBinary(){
int result = _setmode( _fileno(stdin), _O_BINARY );
return result == -1;
}
bool Program::ChangeStdoutToBinary(){
int result = _setmode( _fileno(stdout), _O_BINARY );
return result == -1;
}
bool Program::ChangeStderrToBinary(){
int result = _setmode( _fileno(stderr), _O_BINARY );
return result == -1;
}
}