1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Bytecode/Writer/SlotTable.h
2004-06-17 18:19:28 +00:00

195 lines
6.1 KiB
C++

//===-- Internal/SlotTable.h - Type/Value Slot Holder -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SlotTable class for type plane numbering.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INTERNAL_SLOTTABLE_H
#define LLVM_INTERNAL_SLOTTABLE_H
#include <vector>
#include <map>
namespace llvm {
// Forward declarations
class Value;
class Type;
class Module;
class Function;
class SymbolTable;
class ConstantArray;
/// This class is the common abstract data type for both the SlotMachine and
/// the SlotCalculator. It provides the two-way mapping between Values and
/// Slots as well as the two-way mapping between Types and Slots. For Values,
/// the slot number can be extracted by simply using the getSlot()
/// method and passing in the Value. For Types, it is the same.
/// @brief Abstract data type for slot numbers.
class SlotTable
{
/// @name Types
/// @{
public:
/// This type is used throughout the code to make it clear that
/// an unsigned value refers to a Slot number and not something else.
/// @brief Type slot number identification type.
typedef unsigned SlotNum;
/// This type is used throughout the code to make it clear that an
/// unsigned value refers to a type plane number and not something else.
/// @brief The type of a plane number (corresponds to Type::TypeID).
typedef unsigned PlaneNum;
/// @brief Some constants used as flags instead of actual slot numbers
enum Constants {
MAX_SLOT = 4294967294U,
BAD_SLOT = 4294967295U
};
/// @brief A single plane of Values. Intended index is slot number.
typedef std::vector<const Value*> ValuePlane;
/// @brief A table of Values. Intended index is Type::TypeID.
typedef std::vector<ValuePlane> ValueTable;
/// @brief A map of values to slot numbers.
typedef std::map<const Value*,SlotNum> ValueMap;
/// @brief A single plane of Types. Intended index is slot number.
typedef std::vector<const Type*> TypePlane;
/// @brief A map of types to slot numbers.
typedef std::map<const Type*,SlotNum> TypeMap;
/// @}
/// @name Constructors
/// @{
public:
/// This constructor initializes all the containers in the SlotTable
/// to empty and then inserts all the primitive types into the type plane
/// by default. This is done as a convenience since most uses of the
/// SlotTable will need the primitive types. If you don't need them, pass
/// in true.
/// @brief Default Constructor
explicit SlotTable(
bool dont_insert_primitives = false ///< Control insertion of primitives.
);
/// @}
/// @name Accessors
/// @{
public:
/// @brief Get the number of planes of values.
size_t value_size() const { return vTable.size(); }
/// @brief Get the number of types.
size_t type_size() const { return tPlane.size(); }
/// @brief Determine if a specific type plane in the value table exists
bool plane_exists(PlaneNum plane) const {
return vTable.size() > plane;
}
/// @brief Determine if a specific type plane in the value table is empty
bool plane_empty(PlaneNum plane) const {
return (plane_exists(plane) ? vTable[plane].empty() : true);
}
/// @brief Get the number of entries in a specific plane of the value table
size_t plane_size(PlaneNum plane) const {
return (plane_exists(plane) ? vTable[plane].size() : 0 );
}
/// @returns true if the slot table is completely empty.
/// @brief Determine if the SlotTable is empty.
bool empty() const;
/// @returns the slot number or BAD_SLOT if Val is not in table.
/// @brief Get a slot number for a Value.
SlotNum getSlot(const Value* Val) const;
/// @returns the slot number or BAD_SLOT if Type is not in the table.
/// @brief Get a slot number for a Type.
SlotNum getSlot(const Type* Typ) const;
/// @returns true iff the Value is in the table.
/// @brief Determine if a Value has a slot number.
bool hasSlot(const Value* Val) { return getSlot(Val) != BAD_SLOT; }
/// @returns true iff the Type is in the table.
/// @brief Determine if a Type has a slot number.
bool hasSlot(const Type* Typ) { return getSlot(Typ) != BAD_SLOT; }
/// @}
/// @name Mutators
/// @{
public:
/// @brief Completely clear the SlotTable;
void clear();
/// @brief Resize the table to incorporate at least \p new_size planes
void resize( size_t new_size );
/// @returns the slot number of the newly inserted value in its plane
/// @brief Add a Value to the SlotTable
SlotNum insert(const Value* Val, PlaneNum plane );
/// @returns the slot number of the newly inserted type
/// @brief Add a Type to the SlotTable
SlotNum insert( const Type* Typ );
/// @returns the slot number that \p Val had when it was in the table
/// @brief Remove a Value from the SlotTable
SlotNum remove( const Value* Val, PlaneNum plane );
/// @returns the slot number that \p Typ had when it was in the table
/// @brief Remove a Type from the SlotTable
SlotNum remove( const Type* Typ );
/// @}
/// @name Implementation Details
/// @{
private:
/// Insert the primitive types into the type plane. This is called
/// by the constructor to initialize the type plane.
void insertPrimitives();
/// @}
/// @name Data
/// @{
private:
/// A two dimensional table of Values indexed by type and slot number. This
/// allows for efficient lookup of a Value by its type and slot number.
ValueTable vTable;
/// A map of Values to unsigned integer. This allows for efficient lookup of
/// A Value's slot number in its type plane.
ValueMap vMap;
/// A one dimensional vector of Types indexed by slot number. Types are
/// handled separately because they are not Values.
TypePlane tPlane;
/// A map of Types to unsigned integer. This allows for efficient lookup of
/// a Type's slot number in the type plane.
TypeMap tMap;
/// @}
};
} // End llvm namespace
// vim: sw=2
#endif