1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/unittests/IR/BasicBlockTest.cpp
Arthur Eubanks 715f6ac984 [test] Rewrite phi-empty.ll into a unittest
phi-empty.ll does not pass under the new PM because the NPM runs
-loop-simplify. Running -loop-simplify ends up not reproing
https://llvm.org/PR48296.

Verified that this test fails when 9eb2c011 is reverted.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D92807
2020-12-08 09:59:31 -08:00

280 lines
9.6 KiB
C++

//===- llvm/unittest/IR/BasicBlockTest.cpp - BasicBlock unit tests --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/BasicBlock.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock-matchers.h"
#include "gtest/gtest.h"
#include <memory>
namespace llvm {
namespace {
TEST(BasicBlockTest, PhiRange) {
LLVMContext Context;
// Create the main block.
std::unique_ptr<BasicBlock> BB(BasicBlock::Create(Context));
// Create some predecessors of it.
std::unique_ptr<BasicBlock> BB1(BasicBlock::Create(Context));
BranchInst::Create(BB.get(), BB1.get());
std::unique_ptr<BasicBlock> BB2(BasicBlock::Create(Context));
BranchInst::Create(BB.get(), BB2.get());
// Make sure this doesn't crash if there are no phis.
for (auto &PN : BB->phis()) {
(void)PN;
EXPECT_TRUE(false) << "empty block should have no phis";
}
// Make it a cycle.
auto *BI = BranchInst::Create(BB.get(), BB.get());
// Now insert some PHI nodes.
auto *Int32Ty = Type::getInt32Ty(Context);
auto *P1 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.1", BI);
auto *P2 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.2", BI);
auto *P3 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.3", BI);
// Some non-PHI nodes.
auto *Sum = BinaryOperator::CreateAdd(P1, P2, "sum", BI);
// Now wire up the incoming values that are interesting.
P1->addIncoming(P2, BB.get());
P2->addIncoming(P1, BB.get());
P3->addIncoming(Sum, BB.get());
// Finally, let's iterate them, which is the thing we're trying to test.
// We'll use this to wire up the rest of the incoming values.
for (auto &PN : BB->phis()) {
PN.addIncoming(UndefValue::get(Int32Ty), BB1.get());
PN.addIncoming(UndefValue::get(Int32Ty), BB2.get());
}
// Test that we can use const iterators and generally that the iterators
// behave like iterators.
BasicBlock::const_phi_iterator CI;
CI = BB->phis().begin();
EXPECT_NE(CI, BB->phis().end());
// Test that filtering iterators work with basic blocks.
auto isPhi = [](Instruction &I) { return isa<PHINode>(&I); };
auto Phis = make_filter_range(*BB, isPhi);
auto ReversedPhis = reverse(make_filter_range(*BB, isPhi));
EXPECT_EQ(std::distance(Phis.begin(), Phis.end()), 3);
EXPECT_EQ(&*Phis.begin(), P1);
EXPECT_EQ(std::distance(ReversedPhis.begin(), ReversedPhis.end()), 3);
EXPECT_EQ(&*ReversedPhis.begin(), P3);
// And iterate a const range.
for (const auto &PN : const_cast<const BasicBlock *>(BB.get())->phis()) {
EXPECT_EQ(BB.get(), PN.getIncomingBlock(0));
EXPECT_EQ(BB1.get(), PN.getIncomingBlock(1));
EXPECT_EQ(BB2.get(), PN.getIncomingBlock(2));
}
}
#define CHECK_ITERATORS(Range1, Range2) \
EXPECT_EQ(std::distance(Range1.begin(), Range1.end()), \
std::distance(Range2.begin(), Range2.end())); \
for (auto Pair : zip(Range1, Range2)) \
EXPECT_EQ(&std::get<0>(Pair), std::get<1>(Pair));
TEST(BasicBlockTest, TestInstructionsWithoutDebug) {
LLVMContext Ctx;
Module *M = new Module("MyModule", Ctx);
Type *ArgTy1[] = {Type::getInt32PtrTy(Ctx)};
FunctionType *FT = FunctionType::get(Type::getVoidTy(Ctx), ArgTy1, false);
Argument *V = new Argument(Type::getInt32Ty(Ctx));
Function *F = Function::Create(FT, Function::ExternalLinkage, "", M);
Function *DbgAddr = Intrinsic::getDeclaration(M, Intrinsic::dbg_addr);
Function *DbgDeclare = Intrinsic::getDeclaration(M, Intrinsic::dbg_declare);
Function *DbgValue = Intrinsic::getDeclaration(M, Intrinsic::dbg_value);
Value *DIV = MetadataAsValue::get(Ctx, (Metadata *)nullptr);
SmallVector<Value *, 3> Args = {DIV, DIV, DIV};
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
const BasicBlock *BBConst = BB1;
IRBuilder<> Builder1(BB1);
AllocaInst *Var = Builder1.CreateAlloca(Builder1.getInt8Ty());
Builder1.CreateCall(DbgValue, Args);
Instruction *AddInst = cast<Instruction>(Builder1.CreateAdd(V, V));
Instruction *MulInst = cast<Instruction>(Builder1.CreateMul(AddInst, V));
Builder1.CreateCall(DbgDeclare, Args);
Instruction *SubInst = cast<Instruction>(Builder1.CreateSub(MulInst, V));
Builder1.CreateCall(DbgAddr, Args);
SmallVector<Instruction *, 4> Exp = {Var, AddInst, MulInst, SubInst};
CHECK_ITERATORS(BB1->instructionsWithoutDebug(), Exp);
CHECK_ITERATORS(BBConst->instructionsWithoutDebug(), Exp);
EXPECT_EQ(static_cast<size_t>(BB1->sizeWithoutDebug()), Exp.size());
EXPECT_EQ(static_cast<size_t>(BBConst->sizeWithoutDebug()), Exp.size());
delete M;
delete V;
}
TEST(BasicBlockTest, ComesBefore) {
const char *ModuleString = R"(define i32 @f(i32 %x) {
%add = add i32 %x, 42
ret i32 %add
})";
LLVMContext Ctx;
SMDiagnostic Err;
auto M = parseAssemblyString(ModuleString, Err, Ctx);
ASSERT_TRUE(M.get());
Function *F = M->getFunction("f");
BasicBlock &BB = F->front();
BasicBlock::iterator I = BB.begin();
Instruction *Add = &*I++;
Instruction *Ret = &*I++;
// Intentionally duplicated to verify cached and uncached are the same.
EXPECT_FALSE(BB.isInstrOrderValid());
EXPECT_FALSE(Add->comesBefore(Add));
EXPECT_TRUE(BB.isInstrOrderValid());
EXPECT_FALSE(Add->comesBefore(Add));
BB.invalidateOrders();
EXPECT_FALSE(BB.isInstrOrderValid());
EXPECT_TRUE(Add->comesBefore(Ret));
EXPECT_TRUE(BB.isInstrOrderValid());
EXPECT_TRUE(Add->comesBefore(Ret));
BB.invalidateOrders();
EXPECT_FALSE(Ret->comesBefore(Add));
EXPECT_FALSE(Ret->comesBefore(Add));
BB.invalidateOrders();
EXPECT_FALSE(Ret->comesBefore(Ret));
EXPECT_FALSE(Ret->comesBefore(Ret));
}
TEST(BasicBlockTest, EmptyPhi) {
LLVMContext Ctx;
Module *M = new Module("MyModule", Ctx);
FunctionType *FT = FunctionType::get(Type::getVoidTy(Ctx), {}, false);
Function *F = Function::Create(FT, Function::ExternalLinkage, "", M);
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
ReturnInst::Create(Ctx, BB1);
Type *Ty = Type::getInt32PtrTy(Ctx);
BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
PHINode::Create(Ty, 0, "", BB2);
ReturnInst::Create(Ctx, BB2);
EXPECT_FALSE(verifyModule(*M, &errs()));
}
class InstrOrderInvalidationTest : public ::testing::Test {
protected:
void SetUp() override {
M.reset(new Module("MyModule", Ctx));
Nop = Intrinsic::getDeclaration(M.get(), Intrinsic::donothing);
FunctionType *FT = FunctionType::get(Type::getVoidTy(Ctx), {}, false);
Function *F = Function::Create(FT, Function::ExternalLinkage, "foo", *M);
BB = BasicBlock::Create(Ctx, "entry", F);
IRBuilder<> Builder(BB);
I1 = Builder.CreateCall(Nop);
I2 = Builder.CreateCall(Nop);
I3 = Builder.CreateCall(Nop);
Ret = Builder.CreateRetVoid();
}
LLVMContext Ctx;
std::unique_ptr<Module> M;
Function *Nop = nullptr;
BasicBlock *BB = nullptr;
Instruction *I1 = nullptr;
Instruction *I2 = nullptr;
Instruction *I3 = nullptr;
Instruction *Ret = nullptr;
};
TEST_F(InstrOrderInvalidationTest, InsertInvalidation) {
EXPECT_FALSE(BB->isInstrOrderValid());
EXPECT_TRUE(I1->comesBefore(I2));
EXPECT_TRUE(BB->isInstrOrderValid());
EXPECT_TRUE(I2->comesBefore(I3));
EXPECT_TRUE(I3->comesBefore(Ret));
EXPECT_TRUE(BB->isInstrOrderValid());
// Invalidate orders.
IRBuilder<> Builder(BB, I2->getIterator());
Instruction *I1a = Builder.CreateCall(Nop);
EXPECT_FALSE(BB->isInstrOrderValid());
EXPECT_TRUE(I1->comesBefore(I1a));
EXPECT_TRUE(BB->isInstrOrderValid());
EXPECT_TRUE(I1a->comesBefore(I2));
EXPECT_TRUE(I2->comesBefore(I3));
EXPECT_TRUE(I3->comesBefore(Ret));
EXPECT_TRUE(BB->isInstrOrderValid());
}
TEST_F(InstrOrderInvalidationTest, SpliceInvalidation) {
EXPECT_TRUE(I1->comesBefore(I2));
EXPECT_TRUE(I2->comesBefore(I3));
EXPECT_TRUE(I3->comesBefore(Ret));
EXPECT_TRUE(BB->isInstrOrderValid());
// Use Instruction::moveBefore, which uses splice.
I2->moveBefore(I1);
EXPECT_FALSE(BB->isInstrOrderValid());
EXPECT_TRUE(I2->comesBefore(I1));
EXPECT_TRUE(I1->comesBefore(I3));
EXPECT_TRUE(I3->comesBefore(Ret));
EXPECT_TRUE(BB->isInstrOrderValid());
}
TEST_F(InstrOrderInvalidationTest, RemoveNoInvalidation) {
// Cache the instruction order.
EXPECT_FALSE(BB->isInstrOrderValid());
EXPECT_TRUE(I1->comesBefore(I2));
EXPECT_TRUE(BB->isInstrOrderValid());
// Removing does not invalidate instruction order.
I2->removeFromParent();
I2->deleteValue();
I2 = nullptr;
EXPECT_TRUE(BB->isInstrOrderValid());
EXPECT_TRUE(I1->comesBefore(I3));
EXPECT_EQ(std::next(I1->getIterator()), I3->getIterator());
}
TEST_F(InstrOrderInvalidationTest, EraseNoInvalidation) {
// Cache the instruction order.
EXPECT_FALSE(BB->isInstrOrderValid());
EXPECT_TRUE(I1->comesBefore(I2));
EXPECT_TRUE(BB->isInstrOrderValid());
// Removing does not invalidate instruction order.
I2->eraseFromParent();
I2 = nullptr;
EXPECT_TRUE(BB->isInstrOrderValid());
EXPECT_TRUE(I1->comesBefore(I3));
EXPECT_EQ(std::next(I1->getIterator()), I3->getIterator());
}
} // End anonymous namespace.
} // End llvm namespace.