1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/CodeGen/PrologEpilogInserter.cpp
Thomas Lively 352e779087 Revert "[WebAssembly][InstrEmitter] Foundation for multivalue call lowering"
Summary:
This reverts commit 3ef169e586f4d14efe690c23c878d5aa92a80eb5. The
purpose of this commit was to allow stack machines to perform
instruction selection for instructions with variadic defs. However,
MachineInstrs fundamentally cannot support variadic defs right now, so
this change does not turn out to be useful.

Depends on D73927.

Reviewers: aheejin

Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73928
2020-02-04 20:04:59 -08:00

1310 lines
50 KiB
C++

//===- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "prologepilog"
using MBBVector = SmallVector<MachineBasicBlock *, 4>;
STATISTIC(NumLeafFuncWithSpills, "Number of leaf functions with CSRs");
STATISTIC(NumFuncSeen, "Number of functions seen in PEI");
namespace {
class PEI : public MachineFunctionPass {
public:
static char ID;
PEI() : MachineFunctionPass(ID) {
initializePEIPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
bool runOnMachineFunction(MachineFunction &MF) override;
private:
RegScavenger *RS;
// MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved
// stack frame indexes.
unsigned MinCSFrameIndex = std::numeric_limits<unsigned>::max();
unsigned MaxCSFrameIndex = 0;
// Save and Restore blocks of the current function. Typically there is a
// single save block, unless Windows EH funclets are involved.
MBBVector SaveBlocks;
MBBVector RestoreBlocks;
// Flag to control whether to use the register scavenger to resolve
// frame index materialization registers. Set according to
// TRI->requiresFrameIndexScavenging() for the current function.
bool FrameIndexVirtualScavenging;
// Flag to control whether the scavenger should be passed even though
// FrameIndexVirtualScavenging is used.
bool FrameIndexEliminationScavenging;
// Emit remarks.
MachineOptimizationRemarkEmitter *ORE = nullptr;
void calculateCallFrameInfo(MachineFunction &MF);
void calculateSaveRestoreBlocks(MachineFunction &MF);
void spillCalleeSavedRegs(MachineFunction &MF);
void calculateFrameObjectOffsets(MachineFunction &MF);
void replaceFrameIndices(MachineFunction &MF);
void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
int &SPAdj);
void insertPrologEpilogCode(MachineFunction &MF);
};
} // end anonymous namespace
char PEI::ID = 0;
char &llvm::PrologEpilogCodeInserterID = PEI::ID;
static cl::opt<unsigned>
WarnStackSize("warn-stack-size", cl::Hidden, cl::init((unsigned)-1),
cl::desc("Warn for stack size bigger than the given"
" number"));
INITIALIZE_PASS_BEGIN(PEI, DEBUG_TYPE, "Prologue/Epilogue Insertion", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(PEI, DEBUG_TYPE,
"Prologue/Epilogue Insertion & Frame Finalization", false,
false)
MachineFunctionPass *llvm::createPrologEpilogInserterPass() {
return new PEI();
}
STATISTIC(NumBytesStackSpace,
"Number of bytes used for stack in all functions");
void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// StackObjSet - A set of stack object indexes
using StackObjSet = SmallSetVector<int, 8>;
using SavedDbgValuesMap =
SmallDenseMap<MachineBasicBlock *, SmallVector<MachineInstr *, 4>, 4>;
/// Stash DBG_VALUEs that describe parameters and which are placed at the start
/// of the block. Later on, after the prologue code has been emitted, the
/// stashed DBG_VALUEs will be reinserted at the start of the block.
static void stashEntryDbgValues(MachineBasicBlock &MBB,
SavedDbgValuesMap &EntryDbgValues) {
SmallVector<const MachineInstr *, 4> FrameIndexValues;
for (auto &MI : MBB) {
if (!MI.isDebugInstr())
break;
if (!MI.isDebugValue() || !MI.getDebugVariable()->isParameter())
continue;
if (MI.getOperand(0).isFI()) {
// We can only emit valid locations for frame indices after the frame
// setup, so do not stash away them.
FrameIndexValues.push_back(&MI);
continue;
}
const DILocalVariable *Var = MI.getDebugVariable();
const DIExpression *Expr = MI.getDebugExpression();
auto Overlaps = [Var, Expr](const MachineInstr *DV) {
return Var == DV->getDebugVariable() &&
Expr->fragmentsOverlap(DV->getDebugExpression());
};
// See if the debug value overlaps with any preceding debug value that will
// not be stashed. If that is the case, then we can't stash this value, as
// we would then reorder the values at reinsertion.
if (llvm::none_of(FrameIndexValues, Overlaps))
EntryDbgValues[&MBB].push_back(&MI);
}
// Remove stashed debug values from the block.
if (EntryDbgValues.count(&MBB))
for (auto *MI : EntryDbgValues[&MBB])
MI->removeFromParent();
}
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
bool PEI::runOnMachineFunction(MachineFunction &MF) {
NumFuncSeen++;
const Function &F = MF.getFunction();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
RS = TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr;
FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(MF);
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
// Calculate the MaxCallFrameSize and AdjustsStack variables for the
// function's frame information. Also eliminates call frame pseudo
// instructions.
calculateCallFrameInfo(MF);
// Determine placement of CSR spill/restore code and prolog/epilog code:
// place all spills in the entry block, all restores in return blocks.
calculateSaveRestoreBlocks(MF);
// Stash away DBG_VALUEs that should not be moved by insertion of prolog code.
SavedDbgValuesMap EntryDbgValues;
for (MachineBasicBlock *SaveBlock : SaveBlocks)
stashEntryDbgValues(*SaveBlock, EntryDbgValues);
// Handle CSR spilling and restoring, for targets that need it.
if (MF.getTarget().usesPhysRegsForPEI())
spillCalleeSavedRegs(MF);
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameFinalized(MF, RS);
// Calculate actual frame offsets for all abstract stack objects...
calculateFrameObjectOffsets(MF);
// Add prolog and epilog code to the function. This function is required
// to align the stack frame as necessary for any stack variables or
// called functions. Because of this, calculateCalleeSavedRegisters()
// must be called before this function in order to set the AdjustsStack
// and MaxCallFrameSize variables.
if (!F.hasFnAttribute(Attribute::Naked))
insertPrologEpilogCode(MF);
// Reinsert stashed debug values at the start of the entry blocks.
for (auto &I : EntryDbgValues)
I.first->insert(I.first->begin(), I.second.begin(), I.second.end());
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameIndicesReplaced(MF, RS);
// Replace all MO_FrameIndex operands with physical register references
// and actual offsets.
//
replaceFrameIndices(MF);
// If register scavenging is needed, as we've enabled doing it as a
// post-pass, scavenge the virtual registers that frame index elimination
// inserted.
if (TRI->requiresRegisterScavenging(MF) && FrameIndexVirtualScavenging)
scavengeFrameVirtualRegs(MF, *RS);
// Warn on stack size when we exceeds the given limit.
MachineFrameInfo &MFI = MF.getFrameInfo();
uint64_t StackSize = MFI.getStackSize();
if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) {
DiagnosticInfoStackSize DiagStackSize(F, StackSize);
F.getContext().diagnose(DiagStackSize);
}
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "StackSize",
MF.getFunction().getSubprogram(),
&MF.front())
<< ore::NV("NumStackBytes", StackSize) << " stack bytes in function";
});
delete RS;
SaveBlocks.clear();
RestoreBlocks.clear();
MFI.setSavePoint(nullptr);
MFI.setRestorePoint(nullptr);
return true;
}
/// Calculate the MaxCallFrameSize and AdjustsStack
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallFrameInfo(MachineFunction &MF) {
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned MaxCallFrameSize = 0;
bool AdjustsStack = MFI.adjustsStack();
// Get the function call frame set-up and tear-down instruction opcode
unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
// Early exit for targets which have no call frame setup/destroy pseudo
// instructions.
if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
return;
std::vector<MachineBasicBlock::iterator> FrameSDOps;
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
if (TII.isFrameInstr(*I)) {
unsigned Size = TII.getFrameSize(*I);
if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
AdjustsStack = true;
FrameSDOps.push_back(I);
} else if (I->isInlineAsm()) {
// Some inline asm's need a stack frame, as indicated by operand 1.
unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
AdjustsStack = true;
}
assert(!MFI.isMaxCallFrameSizeComputed() ||
(MFI.getMaxCallFrameSize() == MaxCallFrameSize &&
MFI.adjustsStack() == AdjustsStack));
MFI.setAdjustsStack(AdjustsStack);
MFI.setMaxCallFrameSize(MaxCallFrameSize);
for (std::vector<MachineBasicBlock::iterator>::iterator
i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
MachineBasicBlock::iterator I = *i;
// If call frames are not being included as part of the stack frame, and
// the target doesn't indicate otherwise, remove the call frame pseudos
// here. The sub/add sp instruction pairs are still inserted, but we don't
// need to track the SP adjustment for frame index elimination.
if (TFI->canSimplifyCallFramePseudos(MF))
TFI->eliminateCallFramePseudoInstr(MF, *I->getParent(), I);
}
}
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
// Even when we do not change any CSR, we still want to insert the
// prologue and epilogue of the function.
// So set the save points for those.
// Use the points found by shrink-wrapping, if any.
if (MFI.getSavePoint()) {
SaveBlocks.push_back(MFI.getSavePoint());
assert(MFI.getRestorePoint() && "Both restore and save must be set");
MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
// If RestoreBlock does not have any successor and is not a return block
// then the end point is unreachable and we do not need to insert any
// epilogue.
if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
RestoreBlocks.push_back(RestoreBlock);
return;
}
// Save refs to entry and return blocks.
SaveBlocks.push_back(&MF.front());
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHFuncletEntry())
SaveBlocks.push_back(&MBB);
if (MBB.isReturnBlock())
RestoreBlocks.push_back(&MBB);
}
}
static void assignCalleeSavedSpillSlots(MachineFunction &F,
const BitVector &SavedRegs,
unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex) {
if (SavedRegs.empty())
return;
const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo();
const MCPhysReg *CSRegs = F.getRegInfo().getCalleeSavedRegs();
std::vector<CalleeSavedInfo> CSI;
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
if (SavedRegs.test(Reg))
CSI.push_back(CalleeSavedInfo(Reg));
}
const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = F.getFrameInfo();
if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI)) {
// If target doesn't implement this, use generic code.
if (CSI.empty())
return; // Early exit if no callee saved registers are modified!
unsigned NumFixedSpillSlots;
const TargetFrameLowering::SpillSlot *FixedSpillSlots =
TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
// Now that we know which registers need to be saved and restored, allocate
// stack slots for them.
for (auto &CS : CSI) {
// If the target has spilled this register to another register, we don't
// need to allocate a stack slot.
if (CS.isSpilledToReg())
continue;
unsigned Reg = CS.getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
int FrameIdx;
if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) {
CS.setFrameIdx(FrameIdx);
continue;
}
// Check to see if this physreg must be spilled to a particular stack slot
// on this target.
const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots;
while (FixedSlot != FixedSpillSlots + NumFixedSpillSlots &&
FixedSlot->Reg != Reg)
++FixedSlot;
unsigned Size = RegInfo->getSpillSize(*RC);
if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
// Nope, just spill it anywhere convenient.
unsigned Align = RegInfo->getSpillAlignment(*RC);
unsigned StackAlign = TFI->getStackAlignment();
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Align = std::min(Align, StackAlign);
FrameIdx = MFI.CreateStackObject(Size, Align, true);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
FrameIdx = MFI.CreateFixedSpillStackObject(Size, FixedSlot->Offset);
}
CS.setFrameIdx(FrameIdx);
}
}
MFI.setCalleeSavedInfo(CSI);
}
/// Helper function to update the liveness information for the callee-saved
/// registers.
static void updateLiveness(MachineFunction &MF) {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Visited will contain all the basic blocks that are in the region
// where the callee saved registers are alive:
// - Anything that is not Save or Restore -> LiveThrough.
// - Save -> LiveIn.
// - Restore -> LiveOut.
// The live-out is not attached to the block, so no need to keep
// Restore in this set.
SmallPtrSet<MachineBasicBlock *, 8> Visited;
SmallVector<MachineBasicBlock *, 8> WorkList;
MachineBasicBlock *Entry = &MF.front();
MachineBasicBlock *Save = MFI.getSavePoint();
if (!Save)
Save = Entry;
if (Entry != Save) {
WorkList.push_back(Entry);
Visited.insert(Entry);
}
Visited.insert(Save);
MachineBasicBlock *Restore = MFI.getRestorePoint();
if (Restore)
// By construction Restore cannot be visited, otherwise it
// means there exists a path to Restore that does not go
// through Save.
WorkList.push_back(Restore);
while (!WorkList.empty()) {
const MachineBasicBlock *CurBB = WorkList.pop_back_val();
// By construction, the region that is after the save point is
// dominated by the Save and post-dominated by the Restore.
if (CurBB == Save && Save != Restore)
continue;
// Enqueue all the successors not already visited.
// Those are by construction either before Save or after Restore.
for (MachineBasicBlock *SuccBB : CurBB->successors())
if (Visited.insert(SuccBB).second)
WorkList.push_back(SuccBB);
}
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
for (MachineBasicBlock *MBB : Visited) {
MCPhysReg Reg = CSI[i].getReg();
// Add the callee-saved register as live-in.
// It's killed at the spill.
if (!MRI.isReserved(Reg) && !MBB->isLiveIn(Reg))
MBB->addLiveIn(Reg);
}
// If callee-saved register is spilled to another register rather than
// spilling to stack, the destination register has to be marked as live for
// each MBB between the prologue and epilogue so that it is not clobbered
// before it is reloaded in the epilogue. The Visited set contains all
// blocks outside of the region delimited by prologue/epilogue.
if (CSI[i].isSpilledToReg()) {
for (MachineBasicBlock &MBB : MF) {
if (Visited.count(&MBB))
continue;
MCPhysReg DstReg = CSI[i].getDstReg();
if (!MBB.isLiveIn(DstReg))
MBB.addLiveIn(DstReg);
}
}
}
}
/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRSaves(MachineBasicBlock &SaveBlock,
ArrayRef<CalleeSavedInfo> CSI) {
MachineFunction &MF = *SaveBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineBasicBlock::iterator I = SaveBlock.begin();
if (!TFI->spillCalleeSavedRegisters(SaveBlock, I, CSI, TRI)) {
for (const CalleeSavedInfo &CS : CSI) {
// Insert the spill to the stack frame.
unsigned Reg = CS.getReg();
if (CS.isSpilledToReg()) {
BuildMI(SaveBlock, I, DebugLoc(),
TII.get(TargetOpcode::COPY), CS.getDstReg())
.addReg(Reg, getKillRegState(true));
} else {
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(SaveBlock, I, Reg, true, CS.getFrameIdx(), RC,
TRI);
}
}
}
}
/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRRestores(MachineBasicBlock &RestoreBlock,
std::vector<CalleeSavedInfo> &CSI) {
MachineFunction &MF = *RestoreBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
// Restore all registers immediately before the return and any
// terminators that precede it.
MachineBasicBlock::iterator I = RestoreBlock.getFirstTerminator();
if (!TFI->restoreCalleeSavedRegisters(RestoreBlock, I, CSI, TRI)) {
for (const CalleeSavedInfo &CI : reverse(CSI)) {
unsigned Reg = CI.getReg();
if (CI.isSpilledToReg()) {
BuildMI(RestoreBlock, I, DebugLoc(), TII.get(TargetOpcode::COPY), Reg)
.addReg(CI.getDstReg(), getKillRegState(true));
} else {
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(RestoreBlock, I, Reg, CI.getFrameIdx(), RC, TRI);
assert(I != RestoreBlock.begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
}
}
}
}
void PEI::spillCalleeSavedRegs(MachineFunction &MF) {
// We can't list this requirement in getRequiredProperties because some
// targets (WebAssembly) use virtual registers past this point, and the pass
// pipeline is set up without giving the passes a chance to look at the
// TargetMachine.
// FIXME: Find a way to express this in getRequiredProperties.
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs));
const Function &F = MF.getFunction();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = MF.getFrameInfo();
MinCSFrameIndex = std::numeric_limits<unsigned>::max();
MaxCSFrameIndex = 0;
// Determine which of the registers in the callee save list should be saved.
BitVector SavedRegs;
TFI->determineCalleeSaves(MF, SavedRegs, RS);
// Assign stack slots for any callee-saved registers that must be spilled.
assignCalleeSavedSpillSlots(MF, SavedRegs, MinCSFrameIndex, MaxCSFrameIndex);
// Add the code to save and restore the callee saved registers.
if (!F.hasFnAttribute(Attribute::Naked)) {
MFI.setCalleeSavedInfoValid(true);
std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
if (!CSI.empty()) {
if (!MFI.hasCalls())
NumLeafFuncWithSpills++;
for (MachineBasicBlock *SaveBlock : SaveBlocks) {
insertCSRSaves(*SaveBlock, CSI);
// Update the live-in information of all the blocks up to the save
// point.
updateLiveness(MF);
}
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
insertCSRRestores(*RestoreBlock, CSI);
}
}
}
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void
AdjustStackOffset(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
unsigned &MaxAlign, unsigned Skew) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
Offset += MFI.getObjectSize(FrameIdx);
unsigned Align = MFI.getObjectAlignment(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
MaxAlign = std::max(MaxAlign, Align);
// Adjust to alignment boundary.
Offset = alignTo(Offset, Align, Skew);
if (StackGrowsDown) {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset
<< "]\n");
MFI.setObjectOffset(FrameIdx, -Offset); // Set the computed offset
} else {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset
<< "]\n");
MFI.setObjectOffset(FrameIdx, Offset);
Offset += MFI.getObjectSize(FrameIdx);
}
}
/// Compute which bytes of fixed and callee-save stack area are unused and keep
/// track of them in StackBytesFree.
static inline void
computeFreeStackSlots(MachineFrameInfo &MFI, bool StackGrowsDown,
unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex,
int64_t FixedCSEnd, BitVector &StackBytesFree) {
// Avoid undefined int64_t -> int conversion below in extreme case.
if (FixedCSEnd > std::numeric_limits<int>::max())
return;
StackBytesFree.resize(FixedCSEnd, true);
SmallVector<int, 16> AllocatedFrameSlots;
// Add fixed objects.
for (int i = MFI.getObjectIndexBegin(); i != 0; ++i)
// StackSlot scavenging is only implemented for the default stack.
if (MFI.getStackID(i) == TargetStackID::Default)
AllocatedFrameSlots.push_back(i);
// Add callee-save objects.
for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i)
if (MFI.getStackID(i) == TargetStackID::Default)
AllocatedFrameSlots.push_back(i);
for (int i : AllocatedFrameSlots) {
// These are converted from int64_t, but they should always fit in int
// because of the FixedCSEnd check above.
int ObjOffset = MFI.getObjectOffset(i);
int ObjSize = MFI.getObjectSize(i);
int ObjStart, ObjEnd;
if (StackGrowsDown) {
// ObjOffset is negative when StackGrowsDown is true.
ObjStart = -ObjOffset - ObjSize;
ObjEnd = -ObjOffset;
} else {
ObjStart = ObjOffset;
ObjEnd = ObjOffset + ObjSize;
}
// Ignore fixed holes that are in the previous stack frame.
if (ObjEnd > 0)
StackBytesFree.reset(ObjStart, ObjEnd);
}
}
/// Assign frame object to an unused portion of the stack in the fixed stack
/// object range. Return true if the allocation was successful.
static inline bool scavengeStackSlot(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, unsigned MaxAlign,
BitVector &StackBytesFree) {
if (MFI.isVariableSizedObjectIndex(FrameIdx))
return false;
if (StackBytesFree.none()) {
// clear it to speed up later scavengeStackSlot calls to
// StackBytesFree.none()
StackBytesFree.clear();
return false;
}
unsigned ObjAlign = MFI.getObjectAlignment(FrameIdx);
if (ObjAlign > MaxAlign)
return false;
int64_t ObjSize = MFI.getObjectSize(FrameIdx);
int FreeStart;
for (FreeStart = StackBytesFree.find_first(); FreeStart != -1;
FreeStart = StackBytesFree.find_next(FreeStart)) {
// Check that free space has suitable alignment.
unsigned ObjStart = StackGrowsDown ? FreeStart + ObjSize : FreeStart;
if (alignTo(ObjStart, ObjAlign) != ObjStart)
continue;
if (FreeStart + ObjSize > StackBytesFree.size())
return false;
bool AllBytesFree = true;
for (unsigned Byte = 0; Byte < ObjSize; ++Byte)
if (!StackBytesFree.test(FreeStart + Byte)) {
AllBytesFree = false;
break;
}
if (AllBytesFree)
break;
}
if (FreeStart == -1)
return false;
if (StackGrowsDown) {
int ObjStart = -(FreeStart + ObjSize);
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
<< ObjStart << "]\n");
MFI.setObjectOffset(FrameIdx, ObjStart);
} else {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
<< FreeStart << "]\n");
MFI.setObjectOffset(FrameIdx, FreeStart);
}
StackBytesFree.reset(FreeStart, FreeStart + ObjSize);
return true;
}
/// AssignProtectedObjSet - Helper function to assign large stack objects (i.e.,
/// those required to be close to the Stack Protector) to stack offsets.
static void
AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
SmallSet<int, 16> &ProtectedObjs,
MachineFrameInfo &MFI, bool StackGrowsDown,
int64_t &Offset, unsigned &MaxAlign, unsigned Skew) {
for (StackObjSet::const_iterator I = UnassignedObjs.begin(),
E = UnassignedObjs.end(); I != E; ++I) {
int i = *I;
AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign, Skew);
ProtectedObjs.insert(i);
}
}
/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
void PEI::calculateFrameObjectOffsets(MachineFunction &MF) {
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo &MFI = MF.getFrameInfo();
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
// of stack growth -- so it's always nonnegative.
int LocalAreaOffset = TFI.getOffsetOfLocalArea();
if (StackGrowsDown)
LocalAreaOffset = -LocalAreaOffset;
assert(LocalAreaOffset >= 0
&& "Local area offset should be in direction of stack growth");
int64_t Offset = LocalAreaOffset;
// Skew to be applied to alignment.
unsigned Skew = TFI.getStackAlignmentSkew(MF);
#ifdef EXPENSIVE_CHECKS
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i)
if (!MFI.isDeadObjectIndex(i) &&
MFI.getStackID(i) == TargetStackID::Default)
assert(MFI.getObjectAlignment(i) <= MFI.getMaxAlignment() &&
"MaxAlignment is invalid");
#endif
// If there are fixed sized objects that are preallocated in the local area,
// non-fixed objects can't be allocated right at the start of local area.
// Adjust 'Offset' to point to the end of last fixed sized preallocated
// object.
for (int i = MFI.getObjectIndexBegin(); i != 0; ++i) {
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
int64_t FixedOff;
if (StackGrowsDown) {
// The maximum distance from the stack pointer is at lower address of
// the object -- which is given by offset. For down growing stack
// the offset is negative, so we negate the offset to get the distance.
FixedOff = -MFI.getObjectOffset(i);
} else {
// The maximum distance from the start pointer is at the upper
// address of the object.
FixedOff = MFI.getObjectOffset(i) + MFI.getObjectSize(i);
}
if (FixedOff > Offset) Offset = FixedOff;
}
// First assign frame offsets to stack objects that are used to spill
// callee saved registers.
if (StackGrowsDown) {
for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
// If the stack grows down, we need to add the size to find the lowest
// address of the object.
Offset += MFI.getObjectSize(i);
unsigned Align = MFI.getObjectAlignment(i);
// Adjust to alignment boundary
Offset = alignTo(Offset, Align, Skew);
LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << -Offset << "]\n");
MFI.setObjectOffset(i, -Offset); // Set the computed offset
}
} else if (MaxCSFrameIndex >= MinCSFrameIndex) {
// Be careful about underflow in comparisons agains MinCSFrameIndex.
for (unsigned i = MaxCSFrameIndex; i != MinCSFrameIndex - 1; --i) {
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
if (MFI.isDeadObjectIndex(i))
continue;
unsigned Align = MFI.getObjectAlignment(i);
// Adjust to alignment boundary
Offset = alignTo(Offset, Align, Skew);
LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << Offset << "]\n");
MFI.setObjectOffset(i, Offset);
Offset += MFI.getObjectSize(i);
}
}
// FixedCSEnd is the stack offset to the end of the fixed and callee-save
// stack area.
int64_t FixedCSEnd = Offset;
unsigned MaxAlign = MFI.getMaxAlignment();
// Make sure the special register scavenging spill slot is closest to the
// incoming stack pointer if a frame pointer is required and is closer
// to the incoming rather than the final stack pointer.
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
bool EarlyScavengingSlots = (TFI.hasFP(MF) &&
TFI.isFPCloseToIncomingSP() &&
RegInfo->useFPForScavengingIndex(MF) &&
!RegInfo->needsStackRealignment(MF));
if (RS && EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
IE = SFIs.end(); I != IE; ++I)
AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew);
}
// FIXME: Once this is working, then enable flag will change to a target
// check for whether the frame is large enough to want to use virtual
// frame index registers. Functions which don't want/need this optimization
// will continue to use the existing code path.
if (MFI.getUseLocalStackAllocationBlock()) {
unsigned Align = MFI.getLocalFrameMaxAlign().value();
// Adjust to alignment boundary.
Offset = alignTo(Offset, Align, Skew);
LLVM_DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");
// Resolve offsets for objects in the local block.
for (unsigned i = 0, e = MFI.getLocalFrameObjectCount(); i != e; ++i) {
std::pair<int, int64_t> Entry = MFI.getLocalFrameObjectMap(i);
int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
LLVM_DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" << FIOffset
<< "]\n");
MFI.setObjectOffset(Entry.first, FIOffset);
}
// Allocate the local block
Offset += MFI.getLocalFrameSize();
MaxAlign = std::max(Align, MaxAlign);
}
// Retrieve the Exception Handler registration node.
int EHRegNodeFrameIndex = std::numeric_limits<int>::max();
if (const WinEHFuncInfo *FuncInfo = MF.getWinEHFuncInfo())
EHRegNodeFrameIndex = FuncInfo->EHRegNodeFrameIndex;
// Make sure that the stack protector comes before the local variables on the
// stack.
SmallSet<int, 16> ProtectedObjs;
if (MFI.hasStackProtectorIndex()) {
int StackProtectorFI = MFI.getStackProtectorIndex();
StackObjSet LargeArrayObjs;
StackObjSet SmallArrayObjs;
StackObjSet AddrOfObjs;
// If we need a stack protector, we need to make sure that
// LocalStackSlotPass didn't already allocate a slot for it.
// If we are told to use the LocalStackAllocationBlock, the stack protector
// is expected to be already pre-allocated.
if (!MFI.getUseLocalStackAllocationBlock())
AdjustStackOffset(MFI, StackProtectorFI, StackGrowsDown, Offset, MaxAlign,
Skew);
else if (!MFI.isObjectPreAllocated(MFI.getStackProtectorIndex()))
llvm_unreachable(
"Stack protector not pre-allocated by LocalStackSlotPass.");
// Assign large stack objects first.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI.isDeadObjectIndex(i))
continue;
if (StackProtectorFI == (int)i || EHRegNodeFrameIndex == (int)i)
continue;
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
switch (MFI.getObjectSSPLayout(i)) {
case MachineFrameInfo::SSPLK_None:
continue;
case MachineFrameInfo::SSPLK_SmallArray:
SmallArrayObjs.insert(i);
continue;
case MachineFrameInfo::SSPLK_AddrOf:
AddrOfObjs.insert(i);
continue;
case MachineFrameInfo::SSPLK_LargeArray:
LargeArrayObjs.insert(i);
continue;
}
llvm_unreachable("Unexpected SSPLayoutKind.");
}
// We expect **all** the protected stack objects to be pre-allocated by
// LocalStackSlotPass. If it turns out that PEI still has to allocate some
// of them, we may end up messing up the expected order of the objects.
if (MFI.getUseLocalStackAllocationBlock() &&
!(LargeArrayObjs.empty() && SmallArrayObjs.empty() &&
AddrOfObjs.empty()))
llvm_unreachable("Found protected stack objects not pre-allocated by "
"LocalStackSlotPass.");
AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
}
SmallVector<int, 8> ObjectsToAllocate;
// Then prepare to assign frame offsets to stack objects that are not used to
// spill callee saved registers.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI.isDeadObjectIndex(i))
continue;
if (MFI.getStackProtectorIndex() == (int)i || EHRegNodeFrameIndex == (int)i)
continue;
if (ProtectedObjs.count(i))
continue;
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
// Add the objects that we need to allocate to our working set.
ObjectsToAllocate.push_back(i);
}
// Allocate the EH registration node first if one is present.
if (EHRegNodeFrameIndex != std::numeric_limits<int>::max())
AdjustStackOffset(MFI, EHRegNodeFrameIndex, StackGrowsDown, Offset,
MaxAlign, Skew);
// Give the targets a chance to order the objects the way they like it.
if (MF.getTarget().getOptLevel() != CodeGenOpt::None &&
MF.getTarget().Options.StackSymbolOrdering)
TFI.orderFrameObjects(MF, ObjectsToAllocate);
// Keep track of which bytes in the fixed and callee-save range are used so we
// can use the holes when allocating later stack objects. Only do this if
// stack protector isn't being used and the target requests it and we're
// optimizing.
BitVector StackBytesFree;
if (!ObjectsToAllocate.empty() &&
MF.getTarget().getOptLevel() != CodeGenOpt::None &&
MFI.getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(MF))
computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex,
FixedCSEnd, StackBytesFree);
// Now walk the objects and actually assign base offsets to them.
for (auto &Object : ObjectsToAllocate)
if (!scavengeStackSlot(MFI, Object, StackGrowsDown, MaxAlign,
StackBytesFree))
AdjustStackOffset(MFI, Object, StackGrowsDown, Offset, MaxAlign, Skew);
// Make sure the special register scavenging spill slot is closest to the
// stack pointer.
if (RS && !EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
IE = SFIs.end(); I != IE; ++I)
AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew);
}
if (!TFI.targetHandlesStackFrameRounding()) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
if (MFI.adjustsStack() && TFI.hasReservedCallFrame(MF))
Offset += MFI.getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
// ensure that the callee's frame or the alloca data is suitably aligned;
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
unsigned StackAlign;
if (MFI.adjustsStack() || MFI.hasVarSizedObjects() ||
(RegInfo->needsStackRealignment(MF) && MFI.getObjectIndexEnd() != 0))
StackAlign = TFI.getStackAlignment();
else
StackAlign = TFI.getTransientStackAlignment();
// If the frame pointer is eliminated, all frame offsets will be relative to
// SP not FP. Align to MaxAlign so this works.
StackAlign = std::max(StackAlign, MaxAlign);
Offset = alignTo(Offset, StackAlign, Skew);
}
// Update frame info to pretend that this is part of the stack...
int64_t StackSize = Offset - LocalAreaOffset;
MFI.setStackSize(StackSize);
NumBytesStackSpace += StackSize;
}
/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
void PEI::insertPrologEpilogCode(MachineFunction &MF) {
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
// Add prologue to the function...
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.emitPrologue(MF, *SaveBlock);
// Add epilogue to restore the callee-save registers in each exiting block.
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
TFI.emitEpilogue(MF, *RestoreBlock);
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.inlineStackProbe(MF, *SaveBlock);
// Emit additional code that is required to support segmented stacks, if
// we've been asked for it. This, when linked with a runtime with support
// for segmented stacks (libgcc is one), will result in allocating stack
// space in small chunks instead of one large contiguous block.
if (MF.shouldSplitStack()) {
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForSegmentedStacks(MF, *SaveBlock);
// Record that there are split-stack functions, so we will emit a
// special section to tell the linker.
MF.getMMI().setHasSplitStack(true);
} else
MF.getMMI().setHasNosplitStack(true);
// Emit additional code that is required to explicitly handle the stack in
// HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
// approach is rather similar to that of Segmented Stacks, but it uses a
// different conditional check and another BIF for allocating more stack
// space.
if (MF.getFunction().getCallingConv() == CallingConv::HiPE)
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForHiPEPrologue(MF, *SaveBlock);
}
/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
void PEI::replaceFrameIndices(MachineFunction &MF) {
const auto &ST = MF.getSubtarget();
const TargetFrameLowering &TFI = *ST.getFrameLowering();
if (!TFI.needsFrameIndexResolution(MF))
return;
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
// Allow the target to determine this after knowing the frame size.
FrameIndexEliminationScavenging = (RS && !FrameIndexVirtualScavenging) ||
TRI->requiresFrameIndexReplacementScavenging(MF);
// Store SPAdj at exit of a basic block.
SmallVector<int, 8> SPState;
SPState.resize(MF.getNumBlockIDs());
df_iterator_default_set<MachineBasicBlock*> Reachable;
// Iterate over the reachable blocks in DFS order.
for (auto DFI = df_ext_begin(&MF, Reachable), DFE = df_ext_end(&MF, Reachable);
DFI != DFE; ++DFI) {
int SPAdj = 0;
// Check the exit state of the DFS stack predecessor.
if (DFI.getPathLength() >= 2) {
MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
assert(Reachable.count(StackPred) &&
"DFS stack predecessor is already visited.\n");
SPAdj = SPState[StackPred->getNumber()];
}
MachineBasicBlock *BB = *DFI;
replaceFrameIndices(BB, MF, SPAdj);
SPState[BB->getNumber()] = SPAdj;
}
// Handle the unreachable blocks.
for (auto &BB : MF) {
if (Reachable.count(&BB))
// Already handled in DFS traversal.
continue;
int SPAdj = 0;
replaceFrameIndices(&BB, MF, SPAdj);
}
}
void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
int &SPAdj) {
assert(MF.getSubtarget().getRegisterInfo() &&
"getRegisterInfo() must be implemented!");
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (RS && FrameIndexEliminationScavenging)
RS->enterBasicBlock(*BB);
bool InsideCallSequence = false;
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
if (TII.isFrameInstr(*I)) {
InsideCallSequence = TII.isFrameSetup(*I);
SPAdj += TII.getSPAdjust(*I);
I = TFI->eliminateCallFramePseudoInstr(MF, *BB, I);
continue;
}
MachineInstr &MI = *I;
bool DoIncr = true;
bool DidFinishLoop = true;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (!MI.getOperand(i).isFI())
continue;
// Frame indices in debug values are encoded in a target independent
// way with simply the frame index and offset rather than any
// target-specific addressing mode.
if (MI.isDebugValue()) {
assert(i == 0 && "Frame indices can only appear as the first "
"operand of a DBG_VALUE machine instruction");
unsigned Reg;
unsigned FrameIdx = MI.getOperand(0).getIndex();
unsigned Size = MF.getFrameInfo().getObjectSize(FrameIdx);
int64_t Offset =
TFI->getFrameIndexReference(MF, FrameIdx, Reg);
MI.getOperand(0).ChangeToRegister(Reg, false /*isDef*/);
MI.getOperand(0).setIsDebug();
const DIExpression *DIExpr = MI.getDebugExpression();
// If we have a direct DBG_VALUE, and its location expression isn't
// currently complex, then adding an offset will morph it into a
// complex location that is interpreted as being a memory address.
// This changes a pointer-valued variable to dereference that pointer,
// which is incorrect. Fix by adding DW_OP_stack_value.
unsigned PrependFlags = DIExpression::ApplyOffset;
if (!MI.isIndirectDebugValue() && !DIExpr->isComplex())
PrependFlags |= DIExpression::StackValue;
// If we have DBG_VALUE that is indirect and has a Implicit location
// expression need to insert a deref before prepending a Memory
// location expression. Also after doing this we change the DBG_VALUE
// to be direct.
if (MI.isIndirectDebugValue() && DIExpr->isImplicit()) {
SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
bool WithStackValue = true;
DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
// Make the DBG_VALUE direct.
MI.getOperand(1).ChangeToRegister(0, false);
}
DIExpr = DIExpression::prepend(DIExpr, PrependFlags, Offset);
MI.getOperand(3).setMetadata(DIExpr);
continue;
}
// TODO: This code should be commoned with the code for
// PATCHPOINT. There's no good reason for the difference in
// implementation other than historical accident. The only
// remaining difference is the unconditional use of the stack
// pointer as the base register.
if (MI.getOpcode() == TargetOpcode::STATEPOINT) {
assert((!MI.isDebugValue() || i == 0) &&
"Frame indicies can only appear as the first operand of a "
"DBG_VALUE machine instruction");
unsigned Reg;
MachineOperand &Offset = MI.getOperand(i + 1);
int refOffset = TFI->getFrameIndexReferencePreferSP(
MF, MI.getOperand(i).getIndex(), Reg, /*IgnoreSPUpdates*/ false);
Offset.setImm(Offset.getImm() + refOffset + SPAdj);
MI.getOperand(i).ChangeToRegister(Reg, false /*isDef*/);
continue;
}
// Some instructions (e.g. inline asm instructions) can have
// multiple frame indices and/or cause eliminateFrameIndex
// to insert more than one instruction. We need the register
// scavenger to go through all of these instructions so that
// it can update its register information. We keep the
// iterator at the point before insertion so that we can
// revisit them in full.
bool AtBeginning = (I == BB->begin());
if (!AtBeginning) --I;
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
TRI.eliminateFrameIndex(MI, SPAdj, i,
FrameIndexEliminationScavenging ? RS : nullptr);
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
I = BB->begin();
DoIncr = false;
}
DidFinishLoop = false;
break;
}
// If we are looking at a call sequence, we need to keep track of
// the SP adjustment made by each instruction in the sequence.
// This includes both the frame setup/destroy pseudos (handled above),
// as well as other instructions that have side effects w.r.t the SP.
// Note that this must come after eliminateFrameIndex, because
// if I itself referred to a frame index, we shouldn't count its own
// adjustment.
if (DidFinishLoop && InsideCallSequence)
SPAdj += TII.getSPAdjust(MI);
if (DoIncr && I != BB->end()) ++I;
// Update register states.
if (RS && FrameIndexEliminationScavenging && DidFinishLoop)
RS->forward(MI);
}
}