1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00
llvm-mirror/lib/CodeGen/ShrinkWrap.cpp
Reid Kleckner 68092989f3 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00

619 lines
23 KiB
C++

//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for safe point where the prologue and epilogue can be
// inserted.
// The safe point for the prologue (resp. epilogue) is called Save
// (resp. Restore).
// A point is safe for prologue (resp. epilogue) if and only if
// it 1) dominates (resp. post-dominates) all the frame related operations and
// between 2) two executions of the Save (resp. Restore) point there is an
// execution of the Restore (resp. Save) point.
//
// For instance, the following points are safe:
// for (int i = 0; i < 10; ++i) {
// Save
// ...
// Restore
// }
// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
// And the following points are not:
// for (int i = 0; i < 10; ++i) {
// Save
// ...
// }
// for (int i = 0; i < 10; ++i) {
// ...
// Restore
// }
// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
//
// This pass also ensures that the safe points are 3) cheaper than the regular
// entry and exits blocks.
//
// Property #1 is ensured via the use of MachineDominatorTree and
// MachinePostDominatorTree.
// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
// points must be in the same loop.
// Property #3 is ensured via the MachineBlockFrequencyInfo.
//
// If this pass found points matching all these properties, then
// MachineFrameInfo is updated with this information.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "shrink-wrap"
STATISTIC(NumFunc, "Number of functions");
STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
STATISTIC(NumCandidatesDropped,
"Number of shrink-wrapping candidates dropped because of frequency");
static cl::opt<cl::boolOrDefault>
EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
cl::desc("enable the shrink-wrapping pass"));
namespace {
/// Class to determine where the safe point to insert the
/// prologue and epilogue are.
/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
/// shrink-wrapping term for prologue/epilogue placement, this pass
/// does not rely on expensive data-flow analysis. Instead we use the
/// dominance properties and loop information to decide which point
/// are safe for such insertion.
class ShrinkWrap : public MachineFunctionPass {
/// Hold callee-saved information.
RegisterClassInfo RCI;
MachineDominatorTree *MDT;
MachinePostDominatorTree *MPDT;
/// Current safe point found for the prologue.
/// The prologue will be inserted before the first instruction
/// in this basic block.
MachineBasicBlock *Save;
/// Current safe point found for the epilogue.
/// The epilogue will be inserted before the first terminator instruction
/// in this basic block.
MachineBasicBlock *Restore;
/// Hold the information of the basic block frequency.
/// Use to check the profitability of the new points.
MachineBlockFrequencyInfo *MBFI;
/// Hold the loop information. Used to determine if Save and Restore
/// are in the same loop.
MachineLoopInfo *MLI;
// Emit remarks.
MachineOptimizationRemarkEmitter *ORE = nullptr;
/// Frequency of the Entry block.
uint64_t EntryFreq;
/// Current opcode for frame setup.
unsigned FrameSetupOpcode;
/// Current opcode for frame destroy.
unsigned FrameDestroyOpcode;
/// Stack pointer register, used by llvm.{savestack,restorestack}
unsigned SP;
/// Entry block.
const MachineBasicBlock *Entry;
using SetOfRegs = SmallSetVector<unsigned, 16>;
/// Registers that need to be saved for the current function.
mutable SetOfRegs CurrentCSRs;
/// Current MachineFunction.
MachineFunction *MachineFunc;
/// Check if \p MI uses or defines a callee-saved register or
/// a frame index. If this is the case, this means \p MI must happen
/// after Save and before Restore.
bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
if (CurrentCSRs.empty()) {
BitVector SavedRegs;
const TargetFrameLowering *TFI =
MachineFunc->getSubtarget().getFrameLowering();
TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
for (int Reg = SavedRegs.find_first(); Reg != -1;
Reg = SavedRegs.find_next(Reg))
CurrentCSRs.insert((unsigned)Reg);
}
return CurrentCSRs;
}
/// Update the Save and Restore points such that \p MBB is in
/// the region that is dominated by Save and post-dominated by Restore
/// and Save and Restore still match the safe point definition.
/// Such point may not exist and Save and/or Restore may be null after
/// this call.
void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
/// Initialize the pass for \p MF.
void init(MachineFunction &MF) {
RCI.runOnMachineFunction(MF);
MDT = &getAnalysis<MachineDominatorTree>();
MPDT = &getAnalysis<MachinePostDominatorTree>();
Save = nullptr;
Restore = nullptr;
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
MLI = &getAnalysis<MachineLoopInfo>();
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
EntryFreq = MBFI->getEntryFreq();
const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
FrameSetupOpcode = TII.getCallFrameSetupOpcode();
FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
Entry = &MF.front();
CurrentCSRs.clear();
MachineFunc = &MF;
++NumFunc;
}
/// Check whether or not Save and Restore points are still interesting for
/// shrink-wrapping.
bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
/// Check if shrink wrapping is enabled for this target and function.
static bool isShrinkWrapEnabled(const MachineFunction &MF);
public:
static char ID;
ShrinkWrap() : MachineFunctionPass(ID) {
initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
/// Perform the shrink-wrapping analysis and update
/// the MachineFrameInfo attached to \p MF with the results.
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char ShrinkWrap::ID = 0;
char &llvm::ShrinkWrapID = ShrinkWrap::ID;
INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
RegScavenger *RS) const {
// This prevents premature stack popping when occurs a indirect stack
// access. It is overly aggressive for the moment.
// TODO: - Obvious non-stack loads and store, such as global values,
// are known to not access the stack.
// - Further, data dependency and alias analysis can validate
// that load and stores never derive from the stack pointer.
if (MI.mayLoadOrStore())
return true;
if (MI.getOpcode() == FrameSetupOpcode ||
MI.getOpcode() == FrameDestroyOpcode) {
LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
return true;
}
for (const MachineOperand &MO : MI.operands()) {
bool UseOrDefCSR = false;
if (MO.isReg()) {
// Ignore instructions like DBG_VALUE which don't read/def the register.
if (!MO.isDef() && !MO.readsReg())
continue;
Register PhysReg = MO.getReg();
if (!PhysReg)
continue;
assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!");
// The stack pointer is not normally described as a callee-saved register
// in calling convention definitions, so we need to watch for it
// separately. An SP mentioned by a call instruction, we can ignore,
// though, as it's harmless and we do not want to effectively disable tail
// calls by forcing the restore point to post-dominate them.
UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
RCI.getLastCalleeSavedAlias(PhysReg);
} else if (MO.isRegMask()) {
// Check if this regmask clobbers any of the CSRs.
for (unsigned Reg : getCurrentCSRs(RS)) {
if (MO.clobbersPhysReg(Reg)) {
UseOrDefCSR = true;
break;
}
}
}
// Skip FrameIndex operands in DBG_VALUE instructions.
if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
<< MO.isFI() << "): " << MI << '\n');
return true;
}
}
return false;
}
/// Helper function to find the immediate (post) dominator.
template <typename ListOfBBs, typename DominanceAnalysis>
static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
DominanceAnalysis &Dom) {
MachineBasicBlock *IDom = &Block;
for (MachineBasicBlock *BB : BBs) {
IDom = Dom.findNearestCommonDominator(IDom, BB);
if (!IDom)
break;
}
if (IDom == &Block)
return nullptr;
return IDom;
}
void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
RegScavenger *RS) {
// Get rid of the easy cases first.
if (!Save)
Save = &MBB;
else
Save = MDT->findNearestCommonDominator(Save, &MBB);
if (!Save) {
LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
return;
}
if (!Restore)
Restore = &MBB;
else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
// means the block never returns. If that's the
// case, we don't want to call
// `findNearestCommonDominator`, which will
// return `Restore`.
Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
else
Restore = nullptr; // Abort, we can't find a restore point in this case.
// Make sure we would be able to insert the restore code before the
// terminator.
if (Restore == &MBB) {
for (const MachineInstr &Terminator : MBB.terminators()) {
if (!useOrDefCSROrFI(Terminator, RS))
continue;
// One of the terminator needs to happen before the restore point.
if (MBB.succ_empty()) {
Restore = nullptr; // Abort, we can't find a restore point in this case.
break;
}
// Look for a restore point that post-dominates all the successors.
// The immediate post-dominator is what we are looking for.
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
break;
}
}
if (!Restore) {
LLVM_DEBUG(
dbgs() << "Restore point needs to be spanned on several blocks\n");
return;
}
// Make sure Save and Restore are suitable for shrink-wrapping:
// 1. all path from Save needs to lead to Restore before exiting.
// 2. all path to Restore needs to go through Save from Entry.
// We achieve that by making sure that:
// A. Save dominates Restore.
// B. Restore post-dominates Save.
// C. Save and Restore are in the same loop.
bool SaveDominatesRestore = false;
bool RestorePostDominatesSave = false;
while (Save && Restore &&
(!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
!(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
// Post-dominance is not enough in loops to ensure that all uses/defs
// are after the prologue and before the epilogue at runtime.
// E.g.,
// while(1) {
// Save
// Restore
// if (...)
// break;
// use/def CSRs
// }
// All the uses/defs of CSRs are dominated by Save and post-dominated
// by Restore. However, the CSRs uses are still reachable after
// Restore and before Save are executed.
//
// For now, just push the restore/save points outside of loops.
// FIXME: Refine the criteria to still find interesting cases
// for loops.
MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
// Fix (A).
if (!SaveDominatesRestore) {
Save = MDT->findNearestCommonDominator(Save, Restore);
continue;
}
// Fix (B).
if (!RestorePostDominatesSave)
Restore = MPDT->findNearestCommonDominator(Restore, Save);
// Fix (C).
if (Save && Restore &&
(MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
// Push Save outside of this loop if immediate dominator is different
// from save block. If immediate dominator is not different, bail out.
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
if (!Save)
break;
} else {
// If the loop does not exit, there is no point in looking
// for a post-dominator outside the loop.
SmallVector<MachineBasicBlock*, 4> ExitBlocks;
MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
// Push Restore outside of this loop.
// Look for the immediate post-dominator of the loop exits.
MachineBasicBlock *IPdom = Restore;
for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
if (!IPdom)
break;
}
// If the immediate post-dominator is not in a less nested loop,
// then we are stuck in a program with an infinite loop.
// In that case, we will not find a safe point, hence, bail out.
if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
Restore = IPdom;
else {
Restore = nullptr;
break;
}
}
}
}
}
static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
StringRef RemarkName, StringRef RemarkMessage,
const DiagnosticLocation &Loc,
const MachineBasicBlock *MBB) {
ORE->emit([&]() {
return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
<< RemarkMessage;
});
LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
return false;
}
bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
return false;
LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
init(MF);
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
// If MF is irreducible, a block may be in a loop without
// MachineLoopInfo reporting it. I.e., we may use the
// post-dominance property in loops, which lead to incorrect
// results. Moreover, we may miss that the prologue and
// epilogue are not in the same loop, leading to unbalanced
// construction/deconstruction of the stack frame.
return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
"Irreducible CFGs are not supported yet.",
MF.getFunction().getSubprogram(), &MF.front());
}
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
std::unique_ptr<RegScavenger> RS(
TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
for (MachineBasicBlock &MBB : MF) {
LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
<< MBB.getName() << '\n');
if (MBB.isEHFuncletEntry())
return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
"EH Funclets are not supported yet.",
MBB.front().getDebugLoc(), &MBB);
if (MBB.isEHPad()) {
// Push the prologue and epilogue outside of
// the region that may throw by making sure
// that all the landing pads are at least at the
// boundary of the save and restore points.
// The problem with exceptions is that the throw
// is not properly modeled and in particular, a
// basic block can jump out from the middle.
updateSaveRestorePoints(MBB, RS.get());
if (!ArePointsInteresting()) {
LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
return false;
}
continue;
}
for (const MachineInstr &MI : MBB) {
if (!useOrDefCSROrFI(MI, RS.get()))
continue;
// Save (resp. restore) point must dominate (resp. post dominate)
// MI. Look for the proper basic block for those.
updateSaveRestorePoints(MBB, RS.get());
// If we are at a point where we cannot improve the placement of
// save/restore instructions, just give up.
if (!ArePointsInteresting()) {
LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
return false;
}
// No need to look for other instructions, this basic block
// will already be part of the handled region.
break;
}
}
if (!ArePointsInteresting()) {
// If the points are not interesting at this point, then they must be null
// because it means we did not encounter any frame/CSR related code.
// Otherwise, we would have returned from the previous loop.
assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
return false;
}
LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
<< '\n');
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
do {
LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
<< Save->getNumber() << ' ' << Save->getName() << ' '
<< MBFI->getBlockFreq(Save).getFrequency()
<< "\nRestore: " << Restore->getNumber() << ' '
<< Restore->getName() << ' '
<< MBFI->getBlockFreq(Restore).getFrequency() << '\n');
bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
TFI->canUseAsEpilogue(*Restore)))
break;
LLVM_DEBUG(
dbgs() << "New points are too expensive or invalid for the target\n");
MachineBasicBlock *NewBB;
if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
if (!Save)
break;
NewBB = Save;
} else {
// Restore is expensive.
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
if (!Restore)
break;
NewBB = Restore;
}
updateSaveRestorePoints(*NewBB, RS.get());
} while (Save && Restore);
if (!ArePointsInteresting()) {
++NumCandidatesDropped;
return false;
}
LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
<< Save->getNumber() << ' ' << Save->getName()
<< "\nRestore: " << Restore->getNumber() << ' '
<< Restore->getName() << '\n');
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setSavePoint(Save);
MFI.setRestorePoint(Restore);
++NumCandidates;
return false;
}
bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
switch (EnableShrinkWrapOpt) {
case cl::BOU_UNSET:
return TFI->enableShrinkWrapping(MF) &&
// Windows with CFI has some limitations that make it impossible
// to use shrink-wrapping.
!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
// Sanitizers look at the value of the stack at the location
// of the crash. Since a crash can happen anywhere, the
// frame must be lowered before anything else happen for the
// sanitizers to be able to get a correct stack frame.
!(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
// If EnableShrinkWrap is set, it takes precedence on whatever the
// target sets. The rational is that we assume we want to test
// something related to shrink-wrapping.
case cl::BOU_TRUE:
return true;
case cl::BOU_FALSE:
return false;
}
llvm_unreachable("Invalid shrink-wrapping state");
}