1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00
llvm-mirror/test/Analysis/Delinearization/multidim_two_accesses_different_delinearization.ll
David Green e74f29c6a3 [DA] Enable -da-delinearize by default
This enables da-delinearize in Dependence Analysis for delinearizing array
accesses into multiple dimensions. This can help to increase the power of
Dependence analysis on multi-dimensional arrays and prevent having to fall
back to the slower and less accurate MIV tests. It adds static checks on the
bounds of the arrays to ensure that one dimension doesn't overflow into
another, and brings our code in line with our tests.

Differential Revision: https://reviews.llvm.org/D45872

llvm-svn: 335217
2018-06-21 11:53:16 +00:00

44 lines
1.3 KiB
LLVM

; RUN: opt -basicaa -da -analyze < %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; Derived from the following code:
;
; void foo(long n, long m, double *A) {
; for (long i = 0; i < n; i++)
; for (long j = 0; j < m; j++)
; *(A + i * n + j) = 1.0;
; *(A + j * m + i) = 2.0;
; }
define void @foo(i64 %n, i64 %m, double* %A) {
entry:
br label %for.i
for.i:
%i = phi i64 [ 0, %entry ], [ %i.inc, %for.i.inc ]
br label %for.j
for.j:
%j = phi i64 [ 0, %for.i ], [ %j.inc, %for.j ]
%tmp = mul nsw i64 %i, %m
%vlaarrayidx.sum = add i64 %j, %tmp
%arrayidx = getelementptr inbounds double, double* %A, i64 %vlaarrayidx.sum
store double 1.0, double* %arrayidx
%tmp1 = mul nsw i64 %j, %n
%vlaarrayidx.sum1 = add i64 %i, %tmp1
%arrayidx1 = getelementptr inbounds double, double* %A, i64 %vlaarrayidx.sum1
store double 1.0, double* %arrayidx1
%j.inc = add nsw i64 %j, 1
%j.exitcond = icmp eq i64 %j.inc, %m
br i1 %j.exitcond, label %for.i.inc, label %for.j
for.i.inc:
%i.inc = add nsw i64 %i, 1
%i.exitcond = icmp eq i64 %i.inc, %n
br i1 %i.exitcond, label %end, label %for.i
end:
ret void
}