1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/unittests/Analysis/MemorySSATest.cpp
Alina Sbirlea 8601cb2c88 [MemorySSA] Make insertDef insert corresponding phi nodes.
Summary:
The original assumption for the insertDef method was that it would not
materialize Defs out of no-where, hence it will not insert phis needed
after inserting a Def.

However, when cloning an instruction (use case used in LICM), we do
materialize Defs "out of no-where". If the block receiving a Def has at
least one other Def, then no processing is needed. If the block just
received its first Def, we must check where Phi placement is needed.
The only new usage of insertDef is in LICM, hence the trigger for the bug.

But the original goal of the method also fails to apply for the move()
method. If we move a Def from the entry point of a diamond to either the
left or right blocks, then the merge block must add a phi.
While this usecase does not currently occur, or may be viewed as an
incorrect transformation, MSSA must behave corectly given the scenario.

Resolves PR40749 and PR40754.

Reviewers: george.burgess.iv

Subscribers: sanjoy, jlebar, Prazek, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D58652

llvm-svn: 355040
2019-02-27 22:20:22 +00:00

1586 lines
62 KiB
C++

//===- MemorySSA.cpp - Unit tests for MemorySSA ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "gtest/gtest.h"
using namespace llvm;
const static char DLString[] = "e-i64:64-f80:128-n8:16:32:64-S128";
/// There's a lot of common setup between these tests. This fixture helps reduce
/// that. Tests should mock up a function, store it in F, and then call
/// setupAnalyses().
class MemorySSATest : public testing::Test {
protected:
// N.B. Many of these members depend on each other (e.g. the Module depends on
// the Context, etc.). So, order matters here (and in TestAnalyses).
LLVMContext C;
Module M;
IRBuilder<> B;
DataLayout DL;
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI;
Function *F;
// Things that we need to build after the function is created.
struct TestAnalyses {
DominatorTree DT;
AssumptionCache AC;
AAResults AA;
BasicAAResult BAA;
// We need to defer MSSA construction until AA is *entirely* set up, which
// requires calling addAAResult. Hence, we just use a pointer here.
std::unique_ptr<MemorySSA> MSSA;
MemorySSAWalker *Walker;
TestAnalyses(MemorySSATest &Test)
: DT(*Test.F), AC(*Test.F), AA(Test.TLI),
BAA(Test.DL, *Test.F, Test.TLI, AC, &DT) {
AA.addAAResult(BAA);
MSSA = make_unique<MemorySSA>(*Test.F, &AA, &DT);
Walker = MSSA->getWalker();
}
};
std::unique_ptr<TestAnalyses> Analyses;
void setupAnalyses() {
assert(F);
Analyses.reset(new TestAnalyses(*this));
}
public:
MemorySSATest()
: M("MemorySSATest", C), B(C), DL(DLString), TLI(TLII), F(nullptr) {}
};
TEST_F(MemorySSATest, CreateALoad) {
// We create a diamond where there is a store on one side, and then after
// building MemorySSA, create a load after the merge point, and use it to test
// updating by creating an access for the load.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Add the load
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(B.getInt8Ty(), PointerArg);
// MemoryPHI should already exist.
MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
EXPECT_NE(MP, nullptr);
// Create the load memory acccess
MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LoadInst, MP, Merge, MemorySSA::Beginning));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, CreateLoadsAndStoreUpdater) {
// We create a diamond, then build memoryssa with no memory accesses, and
// incrementally update it by inserting a store in the, entry, a load in the
// merge point, then a store in the branch, another load in the merge point,
// and then a store in the entry.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left, Left->begin());
Argument *PointerArg = &*F->arg_begin();
B.SetInsertPoint(Left);
B.CreateBr(Merge);
B.SetInsertPoint(Right);
B.CreateBr(Merge);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Add the store
B.SetInsertPoint(Entry, Entry->begin());
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *EntryStoreAccess = Updater.createMemoryAccessInBB(
EntryStore, nullptr, Entry, MemorySSA::Beginning);
Updater.insertDef(cast<MemoryDef>(EntryStoreAccess));
// Add the load
B.SetInsertPoint(Merge, Merge->begin());
LoadInst *FirstLoad = B.CreateLoad(B.getInt8Ty(), PointerArg);
// MemoryPHI should not already exist.
MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
EXPECT_EQ(MP, nullptr);
// Create the load memory access
MemoryUse *FirstLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
FirstLoad, nullptr, Merge, MemorySSA::Beginning));
Updater.insertUse(FirstLoadAccess);
// Should just have a load using the entry access, because it should discover
// the phi is trivial
EXPECT_EQ(FirstLoadAccess->getDefiningAccess(), EntryStoreAccess);
// Create a store on the left
// Add the store
B.SetInsertPoint(Left, Left->begin());
StoreInst *LeftStore = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *LeftStoreAccess = Updater.createMemoryAccessInBB(
LeftStore, nullptr, Left, MemorySSA::Beginning);
Updater.insertDef(cast<MemoryDef>(LeftStoreAccess), false);
// MemoryPHI should exist after adding LeftStore.
MP = MSSA.getMemoryAccess(Merge);
EXPECT_NE(MP, nullptr);
// Add the second load
B.SetInsertPoint(Merge, Merge->begin());
LoadInst *SecondLoad = B.CreateLoad(B.getInt8Ty(), PointerArg);
// Create the load memory access
MemoryUse *SecondLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
SecondLoad, nullptr, Merge, MemorySSA::Beginning));
Updater.insertUse(SecondLoadAccess);
// Now the load should be a phi of the entry store and the left store
MemoryPhi *MergePhi =
dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
EXPECT_NE(MergePhi, nullptr);
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
// Now create a store below the existing one in the entry
B.SetInsertPoint(Entry, --Entry->end());
StoreInst *SecondEntryStore = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *SecondEntryStoreAccess = Updater.createMemoryAccessInBB(
SecondEntryStore, nullptr, Entry, MemorySSA::End);
// Insert it twice just to test renaming
Updater.insertDef(cast<MemoryDef>(SecondEntryStoreAccess), false);
EXPECT_NE(FirstLoadAccess->getDefiningAccess(), MergePhi);
Updater.insertDef(cast<MemoryDef>(SecondEntryStoreAccess), true);
EXPECT_EQ(FirstLoadAccess->getDefiningAccess(), MergePhi);
// and make sure the phi below it got updated, despite being blocks away
MergePhi = dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
EXPECT_NE(MergePhi, nullptr);
EXPECT_EQ(MergePhi->getIncomingValue(0), SecondEntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, CreateALoadUpdater) {
// We create a diamond, then build memoryssa with no memory accesses, and
// incrementally update it by inserting a store in one of the branches, and a
// load in the merge point
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left, Left->begin());
Argument *PointerArg = &*F->arg_begin();
B.SetInsertPoint(Left);
B.CreateBr(Merge);
B.SetInsertPoint(Right);
B.CreateBr(Merge);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
B.SetInsertPoint(Left, Left->begin());
// Add the store
StoreInst *SI = B.CreateStore(B.getInt8(16), PointerArg);
MemoryAccess *StoreAccess =
Updater.createMemoryAccessInBB(SI, nullptr, Left, MemorySSA::Beginning);
Updater.insertDef(cast<MemoryDef>(StoreAccess));
// MemoryPHI should be created when inserting the def
MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
EXPECT_NE(MP, nullptr);
// Add the load
B.SetInsertPoint(Merge, Merge->begin());
LoadInst *LoadInst = B.CreateLoad(B.getInt8Ty(), PointerArg);
// Create the load memory acccess
MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LoadInst, nullptr, Merge, MemorySSA::Beginning));
Updater.insertUse(LoadAccess);
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, SinkLoad) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left, Left->begin());
Argument *PointerArg = &*F->arg_begin();
B.SetInsertPoint(Left);
B.CreateBr(Merge);
B.SetInsertPoint(Right);
B.CreateBr(Merge);
// Load in left block
B.SetInsertPoint(Left, Left->begin());
LoadInst *LoadInst1 = B.CreateLoad(B.getInt8Ty(), PointerArg);
// Store in merge block
B.SetInsertPoint(Merge, Merge->begin());
B.CreateStore(B.getInt8(16), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Mimic sinking of a load:
// - clone load
// - insert in "exit" block
// - insert in mssa
// - remove from original block
LoadInst *LoadInstClone = cast<LoadInst>(LoadInst1->clone());
Merge->getInstList().insert(Merge->begin(), LoadInstClone);
MemoryAccess * NewLoadAccess =
Updater.createMemoryAccessInBB(LoadInstClone, nullptr,
LoadInstClone->getParent(),
MemorySSA::Beginning);
Updater.insertUse(cast<MemoryUse>(NewLoadAccess));
MSSA.verifyMemorySSA();
Updater.removeMemoryAccess(MSSA.getMemoryAccess(LoadInst1));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStore) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block. This destroys the old
// access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
StoreInst *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
B.CreateLoad(B.getInt8Ty(), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
SideStore->moveBefore(Entry->getTerminator());
MemoryAccess *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
MemoryAccess *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
MemoryAccess *NewStoreAccess = Updater.createMemoryAccessAfter(
SideStore, EntryStoreAccess, EntryStoreAccess);
EntryStoreAccess->replaceAllUsesWith(NewStoreAccess);
Updater.removeMemoryAccess(SideStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStoreUpdater) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block. This destroys the old
// access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
auto *MergeLoad = B.CreateLoad(B.getInt8Ty(), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
SideStore->moveBefore(Entry->getTerminator());
auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
auto *NewStoreAccess = Updater.createMemoryAccessAfter(
SideStore, EntryStoreAccess, EntryStoreAccess);
// Before, the load will point to a phi of the EntryStore and SideStore.
auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
Updater.removeMemoryAccess(SideStoreAccess);
Updater.insertDef(cast<MemoryDef>(NewStoreAccess));
// After it's a phi of the new side store access.
EXPECT_EQ(MergePhi->getIncomingValue(0), NewStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), NewStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStoreUpdaterMove) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block. This does not destroy
// the old access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
auto *MergeLoad = B.CreateLoad(B.getInt8Ty(), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
// Before, the load will point to a phi of the EntryStore and SideStore.
auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
SideStore->moveBefore(*EntryStore->getParent(), ++EntryStore->getIterator());
Updater.moveAfter(SideStoreAccess, EntryStoreAccess);
// After, it's a phi of the side store.
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), SideStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveAStoreAllAround) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
// the store from the side block to the entry block, then to the other side
// block, then to before the load. This does not destroy the old access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
Argument *PointerArg = &*F->arg_begin();
StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
auto *MergeLoad = B.CreateLoad(B.getInt8Ty(), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Move the store
auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
// Before, the load will point to a phi of the EntryStore and SideStore.
auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
// Move the store before the entry store
SideStore->moveBefore(*EntryStore->getParent(), EntryStore->getIterator());
Updater.moveBefore(SideStoreAccess, EntryStoreAccess);
// After, it's a phi of the entry store.
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
MSSA.verifyMemorySSA();
// Now move the store to the right branch
SideStore->moveBefore(*Right, Right->begin());
Updater.moveToPlace(SideStoreAccess, Right, MemorySSA::Beginning);
MSSA.verifyMemorySSA();
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), SideStoreAccess);
// Now move it before the load
SideStore->moveBefore(MergeLoad);
Updater.moveBefore(SideStoreAccess, LoadAccess);
EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveAPhi) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
// removal cases.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(B.getInt8Ty(), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Before, the load will be a use of a phi<store, liveonentry>.
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
// Kill the store
Updater.removeMemoryAccess(StoreAccess);
MemoryPhi *MP = cast<MemoryPhi>(DefiningAccess);
// Verify the phi ended up as liveonentry, liveonentry
for (auto &Op : MP->incoming_values())
EXPECT_TRUE(MSSA.isLiveOnEntryDef(cast<MemoryAccess>(Op.get())));
// Replace the phi uses with the live on entry def
MP->replaceAllUsesWith(MSSA.getLiveOnEntryDef());
// Verify the load is now defined by liveOnEntryDef
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
// Remove the PHI
Updater.removeMemoryAccess(MP);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveMemoryAccess) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
// removal cases.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(B.getInt8Ty(), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
// Before, the load will be a use of a phi<store, liveonentry>. It should be
// the same after.
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
// The load is currently clobbered by one of the phi arguments, so the walker
// should determine the clobbering access as the phi.
EXPECT_EQ(DefiningAccess, Walker->getClobberingMemoryAccess(LoadInst));
Updater.removeMemoryAccess(StoreAccess);
MSSA.verifyMemorySSA();
// After the removeaccess, let's see if we got the right accesses
// The load should still point to the phi ...
EXPECT_EQ(DefiningAccess, LoadAccess->getDefiningAccess());
// but we should now get live on entry for the clobbering definition of the
// load, since it will walk past the phi node since every argument is the
// same.
// XXX: This currently requires either removing the phi or resetting optimized
// on the load
EXPECT_FALSE(
MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst)));
// If we reset optimized, we get live on entry.
LoadAccess->resetOptimized();
EXPECT_TRUE(
MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst)));
// The phi should now be a two entry phi with two live on entry defs.
for (const auto &Op : DefiningAccess->operands()) {
MemoryAccess *Operand = cast<MemoryAccess>(&*Op);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Operand));
}
// Now we try to remove the single valued phi
Updater.removeMemoryAccess(DefiningAccess);
MSSA.verifyMemorySSA();
// Now the load should be a load of live on entry.
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
}
// We had a bug with caching where the walker would report MemoryDef#3's clobber
// (below) was MemoryDef#1.
//
// define void @F(i8*) {
// %A = alloca i8, i8 1
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %A
// ; 2 = MemoryDef(1)
// store i8 1, i8* %A
// ; 3 = MemoryDef(2)
// store i8 2, i8* %A
// }
TEST_F(MemorySSATest, TestTripleStore) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
StoreInst *S1 = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
StoreInst *S2 = B.CreateStore(ConstantInt::get(Int8, 1), Alloca);
StoreInst *S3 = B.CreateStore(ConstantInt::get(Int8, 2), Alloca);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
unsigned I = 0;
for (StoreInst *V : {S1, S2, S3}) {
// Everything should be clobbered by its defining access
MemoryAccess *DefiningAccess = MSSA.getMemoryAccess(V)->getDefiningAccess();
MemoryAccess *WalkerClobber = Walker->getClobberingMemoryAccess(V);
EXPECT_EQ(DefiningAccess, WalkerClobber)
<< "Store " << I << " doesn't have the correct clobbering access";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
}
// ...And fixing the above bug made it obvious that, when walking, MemorySSA's
// walker was caching the initial node it walked. This was fine (albeit
// mostly redundant) unless the initial node being walked is a clobber for the
// query. In that case, we'd cache that the node clobbered itself.
TEST_F(MemorySSATest, TestStoreAndLoad) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Instruction *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
Instruction *LI = B.CreateLoad(Int8, Alloca);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LI);
EXPECT_EQ(LoadClobber, MSSA.getMemoryAccess(SI));
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(SI)));
}
// Another bug (related to the above two fixes): It was noted that, given the
// following code:
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %1
//
// ...A query to getClobberingMemoryAccess(MemoryAccess*, MemoryLocation) would
// hand back the store (correctly). A later call to
// getClobberingMemoryAccess(const Instruction*) would also hand back the store
// (incorrectly; it should return liveOnEntry).
//
// This test checks that repeated calls to either function returns what they're
// meant to.
TEST_F(MemorySSATest, TestStoreDoubleQuery) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
StoreInst *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemoryAccess *StoreAccess = MSSA.getMemoryAccess(SI);
MemoryLocation StoreLoc = MemoryLocation::get(SI);
MemoryAccess *Clobber =
Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
MemoryAccess *LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
EXPECT_EQ(Clobber, StoreAccess);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
// Try again (with entries in the cache already) for good measure...
Clobber = Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
EXPECT_EQ(Clobber, StoreAccess);
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
}
// Bug: During phi optimization, the walker wouldn't cache to the proper result
// in the farthest-walked BB.
//
// Specifically, it would assume that whatever we walked to was a clobber.
// "Whatever we walked to" isn't a clobber if we hit a cache entry.
//
// ...So, we need a test case that looks like:
// A
// / \
// B |
// \ /
// C
//
// Where, when we try to optimize a thing in 'C', a blocker is found in 'B'.
// The walk must determine that the blocker exists by using cache entries *while
// walking* 'B'.
TEST_F(MemorySSATest, PartialWalkerCacheWithPhis) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "A", F));
Type *Int8 = Type::getInt8Ty(C);
Constant *One = ConstantInt::get(Int8, 1);
Constant *Zero = ConstantInt::get(Int8, 0);
Value *AllocA = B.CreateAlloca(Int8, One, "a");
Value *AllocB = B.CreateAlloca(Int8, One, "b");
BasicBlock *IfThen = BasicBlock::Create(C, "B", F);
BasicBlock *IfEnd = BasicBlock::Create(C, "C", F);
B.CreateCondBr(UndefValue::get(Type::getInt1Ty(C)), IfThen, IfEnd);
B.SetInsertPoint(IfThen);
Instruction *FirstStore = B.CreateStore(Zero, AllocA);
B.CreateStore(Zero, AllocB);
Instruction *ALoad0 = B.CreateLoad(Int8, AllocA, "");
Instruction *BStore = B.CreateStore(Zero, AllocB);
// Due to use optimization/etc. we make a store to A, which is removed after
// we build MSSA. This helps keep the test case simple-ish.
Instruction *KillStore = B.CreateStore(Zero, AllocA);
Instruction *ALoad = B.CreateLoad(Int8, AllocA, "");
B.CreateBr(IfEnd);
B.SetInsertPoint(IfEnd);
Instruction *BelowPhi = B.CreateStore(Zero, AllocA);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
// Kill `KillStore`; it exists solely so that the load after it won't be
// optimized to FirstStore.
Updater.removeMemoryAccess(MSSA.getMemoryAccess(KillStore));
KillStore->eraseFromParent();
auto *ALoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(ALoad));
EXPECT_EQ(ALoadMA->getDefiningAccess(), MSSA.getMemoryAccess(BStore));
// Populate the cache for the store to AllocB directly after FirstStore. It
// should point to something in block B (so something in D can't be optimized
// to it).
MemoryAccess *Load0Clobber = Walker->getClobberingMemoryAccess(ALoad0);
EXPECT_EQ(MSSA.getMemoryAccess(FirstStore), Load0Clobber);
// If the bug exists, this will introduce a bad cache entry for %a on BStore.
// It will point to the store to %b after FirstStore. This only happens during
// phi optimization.
MemoryAccess *BottomClobber = Walker->getClobberingMemoryAccess(BelowPhi);
MemoryAccess *Phi = MSSA.getMemoryAccess(IfEnd);
EXPECT_EQ(BottomClobber, Phi);
// This query will first check the cache for {%a, BStore}. It should point to
// FirstStore, not to the store after FirstStore.
MemoryAccess *UseClobber = Walker->getClobberingMemoryAccess(ALoad);
EXPECT_EQ(UseClobber, MSSA.getMemoryAccess(FirstStore));
}
// Test that our walker properly handles loads with the invariant group
// attribute. It's a bit hacky, since we add the invariant attribute *after*
// building MSSA. Otherwise, the use optimizer will optimize it for us, which
// isn't what we want.
// FIXME: It may be easier/cleaner to just add an 'optimize uses?' flag to MSSA.
TEST_F(MemorySSATest, WalkerInvariantLoadOpt) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Constant *One = ConstantInt::get(Int8, 1);
Value *AllocA = B.CreateAlloca(Int8, One, "");
Instruction *Store = B.CreateStore(One, AllocA);
Instruction *Load = B.CreateLoad(Int8, AllocA);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
auto *LoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(Load));
auto *StoreMA = cast<MemoryDef>(MSSA.getMemoryAccess(Store));
EXPECT_EQ(LoadMA->getDefiningAccess(), StoreMA);
// ...At the time of writing, no cache should exist for LoadMA. Be a bit
// flexible to future changes.
Walker->invalidateInfo(LoadMA);
Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(C, {}));
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LoadMA);
EXPECT_EQ(LoadClobber, MSSA.getLiveOnEntryDef());
}
// Test loads get reoptimized properly by the walker.
TEST_F(MemorySSATest, WalkerReopt) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *AllocaA = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Instruction *SIA = B.CreateStore(ConstantInt::get(Int8, 0), AllocaA);
Value *AllocaB = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
Instruction *SIB = B.CreateStore(ConstantInt::get(Int8, 0), AllocaB);
Instruction *LIA = B.CreateLoad(Int8, AllocaA);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LIA);
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LIA));
EXPECT_EQ(LoadClobber, MSSA.getMemoryAccess(SIA));
EXPECT_TRUE(MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(SIA)));
Updater.removeMemoryAccess(LoadAccess);
// Create the load memory access pointing to an unoptimized place.
MemoryUse *NewLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LIA, MSSA.getMemoryAccess(SIB), LIA->getParent(), MemorySSA::End));
// This should it cause it to be optimized
EXPECT_EQ(Walker->getClobberingMemoryAccess(NewLoadAccess), LoadClobber);
EXPECT_EQ(NewLoadAccess->getDefiningAccess(), LoadClobber);
}
// Test out MemorySSAUpdater::moveBefore
TEST_F(MemorySSATest, MoveAboveMemoryDef) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *A = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Value *B_ = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
Value *C = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "C");
StoreInst *StoreA0 = B.CreateStore(ConstantInt::get(Int8, 0), A);
StoreInst *StoreB = B.CreateStore(ConstantInt::get(Int8, 0), B_);
LoadInst *LoadB = B.CreateLoad(Int8, B_);
StoreInst *StoreA1 = B.CreateStore(ConstantInt::get(Int8, 4), A);
StoreInst *StoreC = B.CreateStore(ConstantInt::get(Int8, 4), C);
StoreInst *StoreA2 = B.CreateStore(ConstantInt::get(Int8, 4), A);
LoadInst *LoadC = B.CreateLoad(Int8, C);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker &Walker = *Analyses->Walker;
MemorySSAUpdater Updater(&MSSA);
StoreC->moveBefore(StoreB);
Updater.moveBefore(cast<MemoryDef>(MSSA.getMemoryAccess(StoreC)),
cast<MemoryDef>(MSSA.getMemoryAccess(StoreB)));
MSSA.verifyMemorySSA();
EXPECT_EQ(MSSA.getMemoryAccess(StoreB)->getDefiningAccess(),
MSSA.getMemoryAccess(StoreC));
EXPECT_EQ(MSSA.getMemoryAccess(StoreC)->getDefiningAccess(),
MSSA.getMemoryAccess(StoreA0));
EXPECT_EQ(MSSA.getMemoryAccess(StoreA2)->getDefiningAccess(),
MSSA.getMemoryAccess(StoreA1));
EXPECT_EQ(Walker.getClobberingMemoryAccess(LoadB),
MSSA.getMemoryAccess(StoreB));
EXPECT_EQ(Walker.getClobberingMemoryAccess(LoadC),
MSSA.getMemoryAccess(StoreC));
// exercise block numbering
EXPECT_TRUE(MSSA.locallyDominates(MSSA.getMemoryAccess(StoreC),
MSSA.getMemoryAccess(StoreB)));
EXPECT_TRUE(MSSA.locallyDominates(MSSA.getMemoryAccess(StoreA1),
MSSA.getMemoryAccess(StoreA2)));
}
TEST_F(MemorySSATest, Irreducible) {
// Create the equivalent of
// x = something
// if (...)
// goto second_loop_entry
// while (...) {
// second_loop_entry:
// }
// use(x)
SmallVector<PHINode *, 8> Inserted;
IRBuilder<> B(C);
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Make blocks
BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
BasicBlock *LoopStartBB = BasicBlock::Create(C, "loopstart", F);
BasicBlock *LoopMainBB = BasicBlock::Create(C, "loopmain", F);
BasicBlock *AfterLoopBB = BasicBlock::Create(C, "afterloop", F);
B.SetInsertPoint(IfBB);
B.CreateCondBr(B.getTrue(), LoopMainBB, LoopStartBB);
B.SetInsertPoint(LoopStartBB);
B.CreateBr(LoopMainBB);
B.SetInsertPoint(LoopMainBB);
B.CreateCondBr(B.getTrue(), LoopStartBB, AfterLoopBB);
B.SetInsertPoint(AfterLoopBB);
Argument *FirstArg = &*F->arg_begin();
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAUpdater Updater(&MSSA);
// Create the load memory acccess
LoadInst *LoadInst = B.CreateLoad(B.getInt8Ty(), FirstArg);
MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
LoadInst, nullptr, AfterLoopBB, MemorySSA::Beginning));
Updater.insertUse(LoadAccess);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, MoveToBeforeLiveOnEntryInvalidatesCache) {
// Create:
// %1 = alloca i8
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %1
// ; 2 = MemoryDef(1)
// store i8 0, i8* %1
//
// ...And be sure that MSSA's caching doesn't give us `1` for the clobber of
// `2` after `1` is removed.
IRBuilder<> B(C);
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry = BasicBlock::Create(C, "if", F);
B.SetInsertPoint(Entry);
Value *A = B.CreateAlloca(B.getInt8Ty());
StoreInst *StoreA = B.CreateStore(B.getInt8(0), A);
StoreInst *StoreB = B.CreateStore(B.getInt8(0), A);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
auto *DefA = cast<MemoryDef>(MSSA.getMemoryAccess(StoreA));
auto *DefB = cast<MemoryDef>(MSSA.getMemoryAccess(StoreB));
MemoryAccess *BClobber = MSSA.getWalker()->getClobberingMemoryAccess(DefB);
ASSERT_EQ(DefA, BClobber);
MemorySSAUpdater(&MSSA).removeMemoryAccess(DefA);
StoreA->eraseFromParent();
EXPECT_EQ(DefB->getDefiningAccess(), MSSA.getLiveOnEntryDef());
EXPECT_EQ(MSSA.getWalker()->getClobberingMemoryAccess(DefB),
MSSA.getLiveOnEntryDef())
<< "(DefA = " << DefA << ")";
}
TEST_F(MemorySSATest, RemovingDefInvalidatesCache) {
// Create:
// %x = alloca i8
// %y = alloca i8
// ; 1 = MemoryDef(liveOnEntry)
// store i8 0, i8* %x
// ; 2 = MemoryDef(1)
// store i8 0, i8* %y
// ; 3 = MemoryDef(2)
// store i8 0, i8* %x
//
// And be sure that MSSA's caching handles the removal of def `1`
// appropriately.
IRBuilder<> B(C);
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry = BasicBlock::Create(C, "if", F);
B.SetInsertPoint(Entry);
Value *X = B.CreateAlloca(B.getInt8Ty());
Value *Y = B.CreateAlloca(B.getInt8Ty());
StoreInst *StoreX1 = B.CreateStore(B.getInt8(0), X);
StoreInst *StoreY = B.CreateStore(B.getInt8(0), Y);
StoreInst *StoreX2 = B.CreateStore(B.getInt8(0), X);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
auto *DefX1 = cast<MemoryDef>(MSSA.getMemoryAccess(StoreX1));
auto *DefY = cast<MemoryDef>(MSSA.getMemoryAccess(StoreY));
auto *DefX2 = cast<MemoryDef>(MSSA.getMemoryAccess(StoreX2));
EXPECT_EQ(DefX2->getDefiningAccess(), DefY);
MemoryAccess *X2Clobber = MSSA.getWalker()->getClobberingMemoryAccess(DefX2);
ASSERT_EQ(DefX1, X2Clobber);
MemorySSAUpdater(&MSSA).removeMemoryAccess(DefX1);
StoreX1->eraseFromParent();
EXPECT_EQ(DefX2->getDefiningAccess(), DefY);
EXPECT_EQ(MSSA.getWalker()->getClobberingMemoryAccess(DefX2),
MSSA.getLiveOnEntryDef())
<< "(DefX1 = " << DefX1 << ")";
}
// Test Must alias for optimized uses
TEST_F(MemorySSATest, TestLoadMustAlias) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *AllocaA = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Value *AllocaB = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
B.CreateStore(ConstantInt::get(Int8, 1), AllocaB);
// Check load from LOE
LoadInst *LA1 = B.CreateLoad(Int8, AllocaA, "");
// Check load alias cached for second load
LoadInst *LA2 = B.CreateLoad(Int8, AllocaA, "");
B.CreateStore(ConstantInt::get(Int8, 1), AllocaA);
// Check load from store/def
LoadInst *LA3 = B.CreateLoad(Int8, AllocaA, "");
// Check load alias cached for second load
LoadInst *LA4 = B.CreateLoad(Int8, AllocaA, "");
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
unsigned I = 0;
for (LoadInst *V : {LA1, LA2}) {
MemoryUse *MemUse = dyn_cast_or_null<MemoryUse>(MSSA.getMemoryAccess(V));
EXPECT_EQ(MemUse->getOptimizedAccessType(), None)
<< "Load " << I << " doesn't have the correct alias information";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
for (LoadInst *V : {LA3, LA4}) {
MemoryUse *MemUse = dyn_cast_or_null<MemoryUse>(MSSA.getMemoryAccess(V));
EXPECT_EQ(MemUse->getOptimizedAccessType(), MustAlias)
<< "Load " << I << " doesn't have the correct alias information";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
}
// Test Must alias for optimized defs.
TEST_F(MemorySSATest, TestStoreMustAlias) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *AllocaA = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Value *AllocaB = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
StoreInst *SA1 = B.CreateStore(ConstantInt::get(Int8, 1), AllocaA);
StoreInst *SB1 = B.CreateStore(ConstantInt::get(Int8, 1), AllocaB);
StoreInst *SA2 = B.CreateStore(ConstantInt::get(Int8, 2), AllocaA);
StoreInst *SB2 = B.CreateStore(ConstantInt::get(Int8, 2), AllocaB);
StoreInst *SA3 = B.CreateStore(ConstantInt::get(Int8, 3), AllocaA);
StoreInst *SB3 = B.CreateStore(ConstantInt::get(Int8, 3), AllocaB);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
unsigned I = 0;
for (StoreInst *V : {SA1, SB1, SA2, SB2, SA3, SB3}) {
MemoryDef *MemDef = dyn_cast_or_null<MemoryDef>(MSSA.getMemoryAccess(V));
EXPECT_EQ(MemDef->isOptimized(), false)
<< "Store " << I << " is optimized from the start?";
EXPECT_EQ(MemDef->getOptimizedAccessType(), MayAlias)
<< "Store " << I
<< " has correct alias information before being optimized?";
if (V == SA1)
Walker->getClobberingMemoryAccess(V);
else {
MemoryAccess *Def = MemDef->getDefiningAccess();
MemoryAccess *Clob = Walker->getClobberingMemoryAccess(V);
EXPECT_NE(Def, Clob) << "Store " << I
<< " has Defining Access equal to Clobbering Access";
}
EXPECT_EQ(MemDef->isOptimized(), true)
<< "Store " << I << " was not optimized";
if (I == 0 || I == 1)
EXPECT_EQ(MemDef->getOptimizedAccessType(), None)
<< "Store " << I << " doesn't have the correct alias information";
else
EXPECT_EQ(MemDef->getOptimizedAccessType(), MustAlias)
<< "Store " << I << " doesn't have the correct alias information";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
}
// Test May alias for optimized uses.
TEST_F(MemorySSATest, TestLoadMayAlias) {
F = Function::Create(FunctionType::get(B.getVoidTy(),
{B.getInt8PtrTy(), B.getInt8PtrTy()},
false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
auto *ArgIt = F->arg_begin();
Argument *PointerA = &*ArgIt;
Argument *PointerB = &*(++ArgIt);
B.CreateStore(ConstantInt::get(Int8, 1), PointerB);
LoadInst *LA1 = B.CreateLoad(Int8, PointerA, "");
B.CreateStore(ConstantInt::get(Int8, 0), PointerA);
LoadInst *LB1 = B.CreateLoad(Int8, PointerB, "");
B.CreateStore(ConstantInt::get(Int8, 0), PointerA);
LoadInst *LA2 = B.CreateLoad(Int8, PointerA, "");
B.CreateStore(ConstantInt::get(Int8, 0), PointerB);
LoadInst *LB2 = B.CreateLoad(Int8, PointerB, "");
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
unsigned I = 0;
for (LoadInst *V : {LA1, LB1}) {
MemoryUse *MemUse = dyn_cast_or_null<MemoryUse>(MSSA.getMemoryAccess(V));
EXPECT_EQ(MemUse->getOptimizedAccessType(), MayAlias)
<< "Load " << I << " doesn't have the correct alias information";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
for (LoadInst *V : {LA2, LB2}) {
MemoryUse *MemUse = dyn_cast_or_null<MemoryUse>(MSSA.getMemoryAccess(V));
EXPECT_EQ(MemUse->getOptimizedAccessType(), MustAlias)
<< "Load " << I << " doesn't have the correct alias information";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
}
// Test May alias for optimized defs.
TEST_F(MemorySSATest, TestStoreMayAlias) {
F = Function::Create(FunctionType::get(B.getVoidTy(),
{B.getInt8PtrTy(), B.getInt8PtrTy()},
false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
auto *ArgIt = F->arg_begin();
Argument *PointerA = &*ArgIt;
Argument *PointerB = &*(++ArgIt);
Value *AllocaC = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "C");
// Store into arg1, must alias because it's LOE => must
StoreInst *SA1 = B.CreateStore(ConstantInt::get(Int8, 0), PointerA);
// Store into arg2, may alias store to arg1 => may
StoreInst *SB1 = B.CreateStore(ConstantInt::get(Int8, 1), PointerB);
// Store into aloca, no alias with args, so must alias LOE => must
StoreInst *SC1 = B.CreateStore(ConstantInt::get(Int8, 2), AllocaC);
// Store into arg1, may alias store to arg2 => may
StoreInst *SA2 = B.CreateStore(ConstantInt::get(Int8, 3), PointerA);
// Store into arg2, may alias store to arg1 => may
StoreInst *SB2 = B.CreateStore(ConstantInt::get(Int8, 4), PointerB);
// Store into aloca, no alias with args, so must alias SC1 => must
StoreInst *SC2 = B.CreateStore(ConstantInt::get(Int8, 5), AllocaC);
// Store into arg2, must alias store to arg2 => must
StoreInst *SB3 = B.CreateStore(ConstantInt::get(Int8, 6), PointerB);
std::initializer_list<StoreInst *> Sts = {SA1, SB1, SC1, SA2, SB2, SC2, SB3};
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
unsigned I = 0;
for (StoreInst *V : Sts) {
MemoryDef *MemDef = dyn_cast_or_null<MemoryDef>(MSSA.getMemoryAccess(V));
EXPECT_EQ(MemDef->isOptimized(), false)
<< "Store " << I << " is optimized from the start?";
EXPECT_EQ(MemDef->getOptimizedAccessType(), MayAlias)
<< "Store " << I
<< " has correct alias information before being optimized?";
++I;
}
for (StoreInst *V : Sts)
Walker->getClobberingMemoryAccess(V);
I = 0;
for (StoreInst *V : Sts) {
MemoryDef *MemDef = dyn_cast_or_null<MemoryDef>(MSSA.getMemoryAccess(V));
EXPECT_EQ(MemDef->isOptimized(), true)
<< "Store " << I << " was not optimized";
if (I == 1 || I == 3 || I == 4)
EXPECT_EQ(MemDef->getOptimizedAccessType(), MayAlias)
<< "Store " << I << " doesn't have the correct alias information";
else if (I == 0 || I == 2)
EXPECT_EQ(MemDef->getOptimizedAccessType(), None)
<< "Store " << I << " doesn't have the correct alias information";
else
EXPECT_EQ(MemDef->getOptimizedAccessType(), MustAlias)
<< "Store " << I << " doesn't have the correct alias information";
// EXPECT_EQ expands such that if we increment I above, it won't get
// incremented except when we try to print the error message.
++I;
}
}
TEST_F(MemorySSATest, LifetimeMarkersAreClobbers) {
// Example code:
// define void @a(i8* %foo) {
// %bar = getelementptr i8, i8* %foo, i64 1
// store i8 0, i8* %foo
// store i8 0, i8* %bar
// call void @llvm.lifetime.end.p0i8(i64 8, i32* %p)
// call void @llvm.lifetime.start.p0i8(i64 8, i32* %p)
// store i8 0, i8* %foo
// store i8 0, i8* %bar
// ret void
// }
//
// Patterns like this are possible after inlining; the stores to %foo and %bar
// should both be clobbered by the lifetime.start call if they're dominated by
// it.
IRBuilder<> B(C);
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Make blocks
BasicBlock *Entry = BasicBlock::Create(C, "entry", F);
B.SetInsertPoint(Entry);
Value *Foo = &*F->arg_begin();
Value *Bar = B.CreateGEP(B.getInt8Ty(), Foo, B.getInt64(1), "bar");
B.CreateStore(B.getInt8(0), Foo);
B.CreateStore(B.getInt8(0), Bar);
auto GetLifetimeIntrinsic = [&](Intrinsic::ID ID) {
return Intrinsic::getDeclaration(&M, ID, {Foo->getType()});
};
B.CreateCall(GetLifetimeIntrinsic(Intrinsic::lifetime_end),
{B.getInt64(2), Foo});
Instruction *LifetimeStart = B.CreateCall(
GetLifetimeIntrinsic(Intrinsic::lifetime_start), {B.getInt64(2), Foo});
Instruction *FooStore = B.CreateStore(B.getInt8(0), Foo);
Instruction *BarStore = B.CreateStore(B.getInt8(0), Bar);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemoryAccess *LifetimeStartAccess = MSSA.getMemoryAccess(LifetimeStart);
ASSERT_NE(LifetimeStartAccess, nullptr);
MemoryAccess *FooAccess = MSSA.getMemoryAccess(FooStore);
ASSERT_NE(FooAccess, nullptr);
MemoryAccess *BarAccess = MSSA.getMemoryAccess(BarStore);
ASSERT_NE(BarAccess, nullptr);
MemoryAccess *FooClobber =
MSSA.getWalker()->getClobberingMemoryAccess(FooAccess);
EXPECT_EQ(FooClobber, LifetimeStartAccess);
MemoryAccess *BarClobber =
MSSA.getWalker()->getClobberingMemoryAccess(BarAccess);
EXPECT_EQ(BarClobber, LifetimeStartAccess);
}
TEST_F(MemorySSATest, DefOptimizationsAreInvalidatedOnMoving) {
IRBuilder<> B(C);
F = Function::Create(FunctionType::get(B.getVoidTy(), {B.getInt1Ty()}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Make a CFG like
// entry
// / \
// a b
// \ /
// c
//
// Put a def in A and a def in B, move the def from A -> B, observe as the
// optimization is invalidated.
BasicBlock *Entry = BasicBlock::Create(C, "entry", F);
BasicBlock *BlockA = BasicBlock::Create(C, "a", F);
BasicBlock *BlockB = BasicBlock::Create(C, "b", F);
BasicBlock *BlockC = BasicBlock::Create(C, "c", F);
B.SetInsertPoint(Entry);
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "alloc");
StoreInst *StoreEntry = B.CreateStore(B.getInt8(0), Alloca);
B.CreateCondBr(B.getTrue(), BlockA, BlockB);
B.SetInsertPoint(BlockA);
StoreInst *StoreA = B.CreateStore(B.getInt8(1), Alloca);
B.CreateBr(BlockC);
B.SetInsertPoint(BlockB);
StoreInst *StoreB = B.CreateStore(B.getInt8(2), Alloca);
B.CreateBr(BlockC);
B.SetInsertPoint(BlockC);
B.CreateUnreachable();
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
auto *AccessEntry = cast<MemoryDef>(MSSA.getMemoryAccess(StoreEntry));
auto *StoreAEntry = cast<MemoryDef>(MSSA.getMemoryAccess(StoreA));
auto *StoreBEntry = cast<MemoryDef>(MSSA.getMemoryAccess(StoreB));
ASSERT_EQ(MSSA.getWalker()->getClobberingMemoryAccess(StoreAEntry),
AccessEntry);
ASSERT_TRUE(StoreAEntry->isOptimized());
ASSERT_EQ(MSSA.getWalker()->getClobberingMemoryAccess(StoreBEntry),
AccessEntry);
ASSERT_TRUE(StoreBEntry->isOptimized());
// Note that if we did InsertionPlace::Beginning, we don't go out of our way
// to invalidate the cache for StoreBEntry. If the user wants to actually do
// moves like these, it's up to them to ensure that nearby cache entries are
// correctly invalidated (which, in general, requires walking all instructions
// that the moved instruction dominates. So we probably shouldn't be doing
// moves like this in general. Still, works as a test-case. ;) )
MemorySSAUpdater(&MSSA).moveToPlace(StoreAEntry, BlockB,
MemorySSA::InsertionPlace::End);
ASSERT_FALSE(StoreAEntry->isOptimized());
ASSERT_EQ(MSSA.getWalker()->getClobberingMemoryAccess(StoreAEntry),
StoreBEntry);
}
TEST_F(MemorySSATest, TestOptimizedDefsAreProperUses) {
F = Function::Create(FunctionType::get(B.getVoidTy(),
{B.getInt8PtrTy(), B.getInt8PtrTy()},
false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *AllocA = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
Value *AllocB = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
StoreInst *StoreA = B.CreateStore(ConstantInt::get(Int8, 0), AllocA);
StoreInst *StoreB = B.CreateStore(ConstantInt::get(Int8, 1), AllocB);
StoreInst *StoreA2 = B.CreateStore(ConstantInt::get(Int8, 2), AllocA);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
// If these don't hold, there's no chance of the test result being useful.
ASSERT_EQ(Walker->getClobberingMemoryAccess(StoreA),
MSSA.getLiveOnEntryDef());
ASSERT_EQ(Walker->getClobberingMemoryAccess(StoreB),
MSSA.getLiveOnEntryDef());
auto *StoreAAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreA));
auto *StoreA2Access = cast<MemoryDef>(MSSA.getMemoryAccess(StoreA2));
ASSERT_EQ(Walker->getClobberingMemoryAccess(StoreA2), StoreAAccess);
ASSERT_EQ(StoreA2Access->getOptimized(), StoreAAccess);
auto *StoreBAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreB));
ASSERT_LT(StoreAAccess->getID(), StoreBAccess->getID());
ASSERT_LT(StoreBAccess->getID(), StoreA2Access->getID());
auto SortVecByID = [](std::vector<const MemoryDef *> &Defs) {
llvm::sort(Defs, [](const MemoryDef *LHS, const MemoryDef *RHS) {
return LHS->getID() < RHS->getID();
});
};
auto SortedUserList = [&](const MemoryDef *MD) {
std::vector<const MemoryDef *> Result;
transform(MD->users(), std::back_inserter(Result),
[](const User *U) { return cast<MemoryDef>(U); });
SortVecByID(Result);
return Result;
};
// Use std::vectors, since they have nice pretty-printing if the test fails.
// Parens are necessary because EXPECT_EQ is a macro, and we have commas in
// our init lists...
EXPECT_EQ(SortedUserList(StoreAAccess),
(std::vector<const MemoryDef *>{StoreBAccess, StoreA2Access}));
EXPECT_EQ(SortedUserList(StoreBAccess),
std::vector<const MemoryDef *>{StoreA2Access});
// StoreAAccess should be present twice, since it uses liveOnEntry for both
// its defining and optimized accesses. This is a bit awkward, and is not
// relied upon anywhere at the moment. If this is painful, we can fix it.
EXPECT_EQ(SortedUserList(cast<MemoryDef>(MSSA.getLiveOnEntryDef())),
(std::vector<const MemoryDef *>{StoreAAccess, StoreAAccess,
StoreBAccess}));
}
// entry
// |
// header
// / \
// body |
// \ /
// exit
// header:
// ; 1 = MemoryDef(liveOnEntry)
// body:
// ; 2 = MemoryDef(1)
// exit:
// ; 3 = MemoryPhi({body, 2}, {header, 1})
// ; 4 = MemoryDef(3); optimized to 3, cannot optimize thorugh phi.
// Insert edge: entry -> exit, check mssa Update is correct.
TEST_F(MemorySSATest, TestAddedEdgeToBlockWithPhiNotOpt) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
Argument *PointerArg = &*F->arg_begin();
BasicBlock *Entry(BasicBlock::Create(C, "entry", F));
BasicBlock *Header(BasicBlock::Create(C, "header", F));
BasicBlock *Body(BasicBlock::Create(C, "body", F));
BasicBlock *Exit(BasicBlock::Create(C, "exit", F));
B.SetInsertPoint(Entry);
BranchInst::Create(Header, Entry);
B.SetInsertPoint(Header);
B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Exit, Body);
B.SetInsertPoint(Body);
B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Exit, Body);
B.SetInsertPoint(Exit);
StoreInst *S1 = B.CreateStore(B.getInt8(16), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
std::unique_ptr<MemorySSAUpdater> MSSAU =
make_unique<MemorySSAUpdater>(&MSSA);
MemoryPhi *Phi = MSSA.getMemoryAccess(Exit);
EXPECT_EQ(Phi, Walker->getClobberingMemoryAccess(S1));
// Alter CFG, add edge: entry -> exit
Entry->getTerminator()->eraseFromParent();
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Header, Exit);
SmallVector<CFGUpdate, 1> Updates;
Updates.push_back({cfg::UpdateKind::Insert, Entry, Exit});
Analyses->DT.applyUpdates(Updates);
MSSAU->applyInsertUpdates(Updates, Analyses->DT);
EXPECT_EQ(Phi, Walker->getClobberingMemoryAccess(S1));
}
// entry
// |
// header
// / \
// body |
// \ /
// exit
// header:
// ; 1 = MemoryDef(liveOnEntry)
// body:
// ; 2 = MemoryDef(1)
// exit:
// ; 3 = MemoryPhi({body, 2}, {header, 1})
// ; 4 = MemoryDef(3); optimize this to 1 now, added edge should invalidate
// the optimized access.
// Insert edge: entry -> exit, check mssa Update is correct.
TEST_F(MemorySSATest, TestAddedEdgeToBlockWithPhiOpt) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
Argument *PointerArg = &*F->arg_begin();
Type *Int8 = Type::getInt8Ty(C);
BasicBlock *Entry(BasicBlock::Create(C, "entry", F));
BasicBlock *Header(BasicBlock::Create(C, "header", F));
BasicBlock *Body(BasicBlock::Create(C, "body", F));
BasicBlock *Exit(BasicBlock::Create(C, "exit", F));
B.SetInsertPoint(Entry);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
BranchInst::Create(Header, Entry);
B.SetInsertPoint(Header);
StoreInst *S1 = B.CreateStore(B.getInt8(16), PointerArg);
B.CreateCondBr(B.getTrue(), Exit, Body);
B.SetInsertPoint(Body);
B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
BranchInst::Create(Exit, Body);
B.SetInsertPoint(Exit);
StoreInst *S2 = B.CreateStore(B.getInt8(16), PointerArg);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker *Walker = Analyses->Walker;
std::unique_ptr<MemorySSAUpdater> MSSAU =
make_unique<MemorySSAUpdater>(&MSSA);
MemoryDef *DefS1 = cast<MemoryDef>(MSSA.getMemoryAccess(S1));
EXPECT_EQ(DefS1, Walker->getClobberingMemoryAccess(S2));
// Alter CFG, add edge: entry -> exit
Entry->getTerminator()->eraseFromParent();
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Header, Exit);
SmallVector<CFGUpdate, 1> Updates;
Updates.push_back({cfg::UpdateKind::Insert, Entry, Exit});
Analyses->DT.applyUpdates(Updates);
MSSAU->applyInsertUpdates(Updates, Analyses->DT);
MemoryPhi *Phi = MSSA.getMemoryAccess(Exit);
EXPECT_EQ(Phi, Walker->getClobberingMemoryAccess(S2));
}
// entry
// / |
// a |
// / \ |
// b c f
// \ / |
// d |
// \ /
// e
// f:
// ; 1 = MemoryDef(liveOnEntry)
// e:
// ; 2 = MemoryPhi({d, liveOnEntry}, {f, 1})
//
// Insert edge: f -> c, check update is correct.
// After update:
// f:
// ; 1 = MemoryDef(liveOnEntry)
// c:
// ; 3 = MemoryPhi({a, liveOnEntry}, {f, 1})
// d:
// ; 4 = MemoryPhi({b, liveOnEntry}, {c, 3})
// e:
// ; 2 = MemoryPhi({d, 4}, {f, 1})
TEST_F(MemorySSATest, TestAddedEdgeToBlockWithNoPhiAddNewPhis) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
Argument *PointerArg = &*F->arg_begin();
BasicBlock *Entry(BasicBlock::Create(C, "entry", F));
BasicBlock *ABlock(BasicBlock::Create(C, "a", F));
BasicBlock *BBlock(BasicBlock::Create(C, "b", F));
BasicBlock *CBlock(BasicBlock::Create(C, "c", F));
BasicBlock *DBlock(BasicBlock::Create(C, "d", F));
BasicBlock *EBlock(BasicBlock::Create(C, "e", F));
BasicBlock *FBlock(BasicBlock::Create(C, "f", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), ABlock, FBlock);
B.SetInsertPoint(ABlock);
B.CreateCondBr(B.getTrue(), BBlock, CBlock);
B.SetInsertPoint(BBlock);
BranchInst::Create(DBlock, BBlock);
B.SetInsertPoint(CBlock);
BranchInst::Create(DBlock, CBlock);
B.SetInsertPoint(DBlock);
BranchInst::Create(EBlock, DBlock);
B.SetInsertPoint(FBlock);
B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(EBlock, FBlock);
setupAnalyses();
MemorySSA &MSSA = *Analyses->MSSA;
std::unique_ptr<MemorySSAUpdater> MSSAU =
make_unique<MemorySSAUpdater>(&MSSA);
// Alter CFG, add edge: f -> c
FBlock->getTerminator()->eraseFromParent();
B.SetInsertPoint(FBlock);
B.CreateCondBr(B.getTrue(), CBlock, EBlock);
SmallVector<CFGUpdate, 1> Updates;
Updates.push_back({cfg::UpdateKind::Insert, FBlock, CBlock});
Analyses->DT.applyUpdates(Updates);
MSSAU->applyInsertUpdates(Updates, Analyses->DT);
MemoryPhi *MPC = MSSA.getMemoryAccess(CBlock);
EXPECT_NE(MPC, nullptr);
MemoryPhi *MPD = MSSA.getMemoryAccess(DBlock);
EXPECT_NE(MPD, nullptr);
MemoryPhi *MPE = MSSA.getMemoryAccess(EBlock);
EXPECT_EQ(MPD, MPE->getIncomingValueForBlock(DBlock));
}