1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00
llvm-mirror/lib/Target/Hexagon/HexagonSplitDouble.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

1207 lines
37 KiB
C++

//===--- HexagonSplitDouble.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hsdr"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <map>
#include <set>
#include <utility>
#include <vector>
using namespace llvm;
namespace llvm {
FunctionPass *createHexagonSplitDoubleRegs();
void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
} // end namespace llvm
namespace {
static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
cl::desc("Maximum number of split partitions"));
static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
cl::desc("Do not split loads or stores"));
class HexagonSplitDoubleRegs : public MachineFunctionPass {
public:
static char ID;
HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr),
TII(nullptr) {
initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Hexagon Split Double Registers";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
static const TargetRegisterClass *const DoubleRC;
const HexagonRegisterInfo *TRI;
const HexagonInstrInfo *TII;
const MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
typedef std::set<unsigned> USet;
typedef std::map<unsigned,USet> UUSetMap;
typedef std::pair<unsigned,unsigned> UUPair;
typedef std::map<unsigned,UUPair> UUPairMap;
typedef std::map<const MachineLoop*,USet> LoopRegMap;
bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
bool isVolatileInstr(const MachineInstr *MI) const;
bool isFixedInstr(const MachineInstr *MI) const;
void partitionRegisters(UUSetMap &P2Rs);
int32_t profit(const MachineInstr *MI) const;
bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
void collectIndRegs(LoopRegMap &IRM);
void createHalfInstr(unsigned Opc, MachineInstr *MI,
const UUPairMap &PairMap, unsigned SubR);
void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
bool splitPartition(const USet &Part);
static int Counter;
static void dump_partition(raw_ostream&, const USet&,
const TargetRegisterInfo&);
};
char HexagonSplitDoubleRegs::ID;
int HexagonSplitDoubleRegs::Counter = 0;
const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC
= &Hexagon::DoubleRegsRegClass;
} // end anonymous namespace
INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
"Hexagon Split Double Registers", false, false)
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
const USet &Part, const TargetRegisterInfo &TRI) {
dbgs() << '{';
for (auto I : Part)
dbgs() << ' ' << PrintReg(I, &TRI);
dbgs() << " }";
}
#endif
bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
for (auto I : IRM) {
const USet &Rs = I.second;
if (Rs.find(Reg) != Rs.end())
return true;
}
return false;
}
bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
for (auto &I : MI->memoperands())
if (I->isVolatile())
return true;
return false;
}
bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
if (MI->mayLoad() || MI->mayStore())
if (MemRefsFixed || isVolatileInstr(MI))
return true;
if (MI->isDebugValue())
return false;
unsigned Opc = MI->getOpcode();
switch (Opc) {
default:
return true;
case TargetOpcode::PHI:
case TargetOpcode::COPY:
break;
case Hexagon::L2_loadrd_io:
// Not handling stack stores (only reg-based addresses).
if (MI->getOperand(1).isReg())
break;
return true;
case Hexagon::S2_storerd_io:
// Not handling stack stores (only reg-based addresses).
if (MI->getOperand(0).isReg())
break;
return true;
case Hexagon::L2_loadrd_pi:
case Hexagon::S2_storerd_pi:
case Hexagon::A2_tfrpi:
case Hexagon::A2_combineii:
case Hexagon::A4_combineir:
case Hexagon::A4_combineii:
case Hexagon::A4_combineri:
case Hexagon::A2_combinew:
case Hexagon::CONST64:
case Hexagon::A2_sxtw:
case Hexagon::A2_andp:
case Hexagon::A2_orp:
case Hexagon::A2_xorp:
case Hexagon::S2_asl_i_p_or:
case Hexagon::S2_asl_i_p:
case Hexagon::S2_asr_i_p:
case Hexagon::S2_lsr_i_p:
break;
}
for (auto &Op : MI->operands()) {
if (!Op.isReg())
continue;
unsigned R = Op.getReg();
if (!TargetRegisterInfo::isVirtualRegister(R))
return true;
}
return false;
}
void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
typedef std::map<unsigned,unsigned> UUMap;
typedef std::vector<unsigned> UVect;
unsigned NumRegs = MRI->getNumVirtRegs();
BitVector DoubleRegs(NumRegs);
for (unsigned i = 0; i < NumRegs; ++i) {
unsigned R = TargetRegisterInfo::index2VirtReg(i);
if (MRI->getRegClass(R) == DoubleRC)
DoubleRegs.set(i);
}
BitVector FixedRegs(NumRegs);
for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
unsigned R = TargetRegisterInfo::index2VirtReg(x);
MachineInstr *DefI = MRI->getVRegDef(R);
// In some cases a register may exist, but never be defined or used.
// It should never appear anywhere, but mark it as "fixed", just to be
// safe.
if (!DefI || isFixedInstr(DefI))
FixedRegs.set(x);
}
UUSetMap AssocMap;
for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
if (FixedRegs[x])
continue;
unsigned R = TargetRegisterInfo::index2VirtReg(x);
DEBUG(dbgs() << PrintReg(R, TRI) << " ~~");
USet &Asc = AssocMap[R];
for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
U != Z; ++U) {
MachineOperand &Op = *U;
MachineInstr *UseI = Op.getParent();
if (isFixedInstr(UseI))
continue;
for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
MachineOperand &MO = UseI->getOperand(i);
// Skip non-registers or registers with subregisters.
if (&MO == &Op || !MO.isReg() || MO.getSubReg())
continue;
unsigned T = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(T)) {
FixedRegs.set(x);
continue;
}
if (MRI->getRegClass(T) != DoubleRC)
continue;
unsigned u = TargetRegisterInfo::virtReg2Index(T);
if (FixedRegs[u])
continue;
DEBUG(dbgs() << ' ' << PrintReg(T, TRI));
Asc.insert(T);
// Make it symmetric.
AssocMap[T].insert(R);
}
}
DEBUG(dbgs() << '\n');
}
UUMap R2P;
unsigned NextP = 1;
USet Visited;
for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
unsigned R = TargetRegisterInfo::index2VirtReg(x);
if (Visited.count(R))
continue;
// Create a new partition for R.
unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
UVect WorkQ;
WorkQ.push_back(R);
for (unsigned i = 0; i < WorkQ.size(); ++i) {
unsigned T = WorkQ[i];
if (Visited.count(T))
continue;
R2P[T] = ThisP;
Visited.insert(T);
// Add all registers associated with T.
USet &Asc = AssocMap[T];
for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
WorkQ.push_back(*J);
}
}
for (auto I : R2P)
P2Rs[I.second].insert(I.first);
}
static inline int32_t profitImm(unsigned Lo, unsigned Hi) {
int32_t P = 0;
bool LoZ1 = false, HiZ1 = false;
if (Lo == 0 || Lo == 0xFFFFFFFF)
P += 10, LoZ1 = true;
if (Hi == 0 || Hi == 0xFFFFFFFF)
P += 10, HiZ1 = true;
if (!LoZ1 && !HiZ1 && Lo == Hi)
P += 3;
return P;
}
int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
unsigned ImmX = 0;
unsigned Opc = MI->getOpcode();
switch (Opc) {
case TargetOpcode::PHI:
for (const auto &Op : MI->operands())
if (!Op.getSubReg())
return 0;
return 10;
case TargetOpcode::COPY:
if (MI->getOperand(1).getSubReg() != 0)
return 10;
return 0;
case Hexagon::L2_loadrd_io:
case Hexagon::S2_storerd_io:
return -1;
case Hexagon::L2_loadrd_pi:
case Hexagon::S2_storerd_pi:
return 2;
case Hexagon::A2_tfrpi:
case Hexagon::CONST64: {
uint64_t D = MI->getOperand(1).getImm();
unsigned Lo = D & 0xFFFFFFFFULL;
unsigned Hi = D >> 32;
return profitImm(Lo, Hi);
}
case Hexagon::A2_combineii:
case Hexagon::A4_combineii:
return profitImm(MI->getOperand(1).getImm(),
MI->getOperand(2).getImm());
case Hexagon::A4_combineri:
ImmX++;
case Hexagon::A4_combineir: {
ImmX++;
int64_t V = MI->getOperand(ImmX).getImm();
if (V == 0 || V == -1)
return 10;
// Fall through into A2_combinew.
LLVM_FALLTHROUGH;
}
case Hexagon::A2_combinew:
return 2;
case Hexagon::A2_sxtw:
return 3;
case Hexagon::A2_andp:
case Hexagon::A2_orp:
case Hexagon::A2_xorp:
return 1;
case Hexagon::S2_asl_i_p_or: {
unsigned S = MI->getOperand(3).getImm();
if (S == 0 || S == 32)
return 10;
return -1;
}
case Hexagon::S2_asl_i_p:
case Hexagon::S2_asr_i_p:
case Hexagon::S2_lsr_i_p:
unsigned S = MI->getOperand(2).getImm();
if (S == 0 || S == 32)
return 10;
if (S == 16)
return 5;
if (S == 48)
return 7;
return -10;
}
return 0;
}
bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
const {
unsigned FixedNum = 0, LoopPhiNum = 0;
int32_t TotalP = 0;
for (unsigned DR : Part) {
MachineInstr *DefI = MRI->getVRegDef(DR);
int32_t P = profit(DefI);
if (P == std::numeric_limits<int>::min())
return false;
TotalP += P;
// Reduce the profitability of splitting induction registers.
if (isInduction(DR, IRM))
TotalP -= 30;
for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
U != W; ++U) {
MachineInstr *UseI = U->getParent();
if (isFixedInstr(UseI)) {
FixedNum++;
// Calculate the cost of generating REG_SEQUENCE instructions.
for (auto &Op : UseI->operands()) {
if (Op.isReg() && Part.count(Op.getReg()))
if (Op.getSubReg())
TotalP -= 2;
}
continue;
}
// If a register from this partition is used in a fixed instruction,
// and there is also a register in this partition that is used in
// a loop phi node, then decrease the splitting profit as this can
// confuse the modulo scheduler.
if (UseI->isPHI()) {
const MachineBasicBlock *PB = UseI->getParent();
const MachineLoop *L = MLI->getLoopFor(PB);
if (L && L->getHeader() == PB)
LoopPhiNum++;
}
// Splittable instruction.
int32_t P = profit(UseI);
if (P == std::numeric_limits<int>::min())
return false;
TotalP += P;
}
}
if (FixedNum > 0 && LoopPhiNum > 0)
TotalP -= 20*LoopPhiNum;
DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
return TotalP > 0;
}
void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
USet &Rs) {
const MachineBasicBlock *HB = L->getHeader();
const MachineBasicBlock *LB = L->getLoopLatch();
if (!HB || !LB)
return;
// Examine the latch branch. Expect it to be a conditional branch to
// the header (either "br-cond header" or "br-cond exit; br header").
MachineBasicBlock *TB = nullptr, *FB = nullptr;
MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
SmallVector<MachineOperand,2> Cond;
bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
// Only analyzable conditional branches. HII::analyzeBranch will put
// the branch opcode as the first element of Cond, and the predicate
// operand as the second.
if (BadLB || Cond.size() != 2)
return;
// Only simple jump-conditional (with or without negation).
if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
return;
// Must go to the header.
if (TB != HB && FB != HB)
return;
assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
// Expect a predicate register.
unsigned PR = Cond[1].getReg();
assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
// Get the registers on which the loop controlling compare instruction
// depends.
unsigned CmpR1 = 0, CmpR2 = 0;
const MachineInstr *CmpI = MRI->getVRegDef(PR);
while (CmpI->getOpcode() == Hexagon::C2_not)
CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
int Mask = 0, Val = 0;
bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
if (!OkCI)
return;
// Eliminate non-double input registers.
if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
CmpR1 = 0;
if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
CmpR2 = 0;
if (!CmpR1 && !CmpR2)
return;
// Now examine the top of the loop: the phi nodes that could poten-
// tially define loop induction registers. The registers defined by
// such a phi node would be used in a 64-bit add, which then would
// be used in the loop compare instruction.
// Get the set of all double registers defined by phi nodes in the
// loop header.
typedef std::vector<unsigned> UVect;
UVect DP;
for (auto &MI : *HB) {
if (!MI.isPHI())
break;
const MachineOperand &MD = MI.getOperand(0);
unsigned R = MD.getReg();
if (MRI->getRegClass(R) == DoubleRC)
DP.push_back(R);
}
if (DP.empty())
return;
auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
I != E; ++I) {
const MachineInstr *UseI = I->getParent();
if (UseI->getOpcode() != Hexagon::A2_addp)
continue;
// Get the output from the add. If it is one of the inputs to the
// loop-controlling compare instruction, then R is likely an induc-
// tion register.
unsigned T = UseI->getOperand(0).getReg();
if (T == CmpR1 || T == CmpR2)
return false;
}
return true;
};
UVect::iterator End = llvm::remove_if(DP, NoIndOp);
Rs.insert(DP.begin(), End);
Rs.insert(CmpR1);
Rs.insert(CmpR2);
DEBUG({
dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: ";
dump_partition(dbgs(), Rs, *TRI);
dbgs() << '\n';
});
}
void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
typedef std::vector<MachineLoop*> LoopVector;
LoopVector WorkQ;
for (auto I : *MLI)
WorkQ.push_back(I);
for (unsigned i = 0; i < WorkQ.size(); ++i) {
for (auto I : *WorkQ[i])
WorkQ.push_back(I);
}
USet Rs;
for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
MachineLoop *L = WorkQ[i];
Rs.clear();
collectIndRegsForLoop(L, Rs);
if (!Rs.empty())
IRM.insert(std::make_pair(L, Rs));
}
}
void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
const UUPairMap &PairMap, unsigned SubR) {
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
for (auto &Op : MI->operands()) {
if (!Op.isReg()) {
NewI->addOperand(Op);
continue;
}
// For register operands, set the subregister.
unsigned R = Op.getReg();
unsigned SR = Op.getSubReg();
bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
bool isKill = Op.isKill();
if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
isKill = false;
UUPairMap::const_iterator F = PairMap.find(R);
if (F == PairMap.end()) {
SR = SubR;
} else {
const UUPair &P = F->second;
R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
SR = 0;
}
}
auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
Op.isInternalRead());
NewI->addOperand(CO);
}
}
void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
const UUPairMap &PairMap) {
bool Load = MI->mayLoad();
unsigned OrigOpc = MI->getOpcode();
bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
OrigOpc == Hexagon::S2_storerd_pi);
MachineInstr *LowI, *HighI;
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
// Index of the base-address-register operand.
unsigned AdrX = PostInc ? (Load ? 2 : 1)
: (Load ? 1 : 0);
MachineOperand &AdrOp = MI->getOperand(AdrX);
unsigned RSA = getRegState(AdrOp);
MachineOperand &ValOp = Load ? MI->getOperand(0)
: (PostInc ? MI->getOperand(3)
: MI->getOperand(2));
UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
assert(F != PairMap.end());
if (Load) {
const UUPair &P = F->second;
int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
.addImm(Off);
HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
.addImm(Off+4);
} else {
const UUPair &P = F->second;
int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
.addImm(Off)
.addReg(P.first);
HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
.addImm(Off+4)
.addReg(P.second);
}
if (PostInc) {
// Create the increment of the address register.
int64_t Inc = Load ? MI->getOperand(3).getImm()
: MI->getOperand(2).getImm();
MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
unsigned NewR = MRI->createVirtualRegister(RC);
assert(!UpdOp.getSubReg() && "Def operand with subreg");
BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
.addReg(AdrOp.getReg(), RSA)
.addImm(Inc);
MRI->replaceRegWith(UpdOp.getReg(), NewR);
// The original instruction will be deleted later.
}
// Generate a new pair of memory-operands.
MachineFunction &MF = *B.getParent();
for (auto &MO : MI->memoperands()) {
const MachinePointerInfo &Ptr = MO->getPointerInfo();
MachineMemOperand::Flags F = MO->getFlags();
int A = MO->getAlignment();
auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
LowI->addMemOperand(MF, Tmp1);
auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
HighI->addMemOperand(MF, Tmp2);
}
}
void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
const UUPairMap &PairMap) {
MachineOperand &Op0 = MI->getOperand(0);
MachineOperand &Op1 = MI->getOperand(1);
assert(Op0.isReg() && Op1.isImm());
uint64_t V = Op1.getImm();
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
assert(F != PairMap.end());
const UUPair &P = F->second;
// The operand to A2_tfrsi can only have 32 significant bits. Immediate
// values in MachineOperand are stored as 64-bit integers, and so the
// value -1 may be represented either as 64-bit -1, or 4294967295. Both
// will have the 32 higher bits truncated in the end, but -1 will remain
// as -1, while the latter may appear to be a large unsigned value
// requiring a constant extender. The casting to int32_t will select the
// former representation. (The same reasoning applies to all 32-bit
// values.)
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
.addImm(int32_t(V & 0xFFFFFFFFULL));
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
.addImm(int32_t(V >> 32));
}
void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
const UUPairMap &PairMap) {
MachineOperand &Op0 = MI->getOperand(0);
MachineOperand &Op1 = MI->getOperand(1);
MachineOperand &Op2 = MI->getOperand(2);
assert(Op0.isReg());
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
assert(F != PairMap.end());
const UUPair &P = F->second;
if (Op1.isImm()) {
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
.addImm(Op1.getImm());
} else if (Op1.isReg()) {
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
.addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
} else
llvm_unreachable("Unexpected operand");
if (Op2.isImm()) {
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
.addImm(Op2.getImm());
} else if (Op2.isReg()) {
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
.addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
} else
llvm_unreachable("Unexpected operand");
}
void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
const UUPairMap &PairMap) {
MachineOperand &Op0 = MI->getOperand(0);
MachineOperand &Op1 = MI->getOperand(1);
assert(Op0.isReg() && Op1.isReg());
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
assert(F != PairMap.end());
const UUPair &P = F->second;
unsigned RS = getRegState(Op1);
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
.addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
.addReg(Op1.getReg(), RS, Op1.getSubReg())
.addImm(31);
}
void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
const UUPairMap &PairMap) {
using namespace Hexagon;
MachineOperand &Op0 = MI->getOperand(0);
MachineOperand &Op1 = MI->getOperand(1);
MachineOperand &Op2 = MI->getOperand(2);
assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
int64_t Sh64 = Op2.getImm();
assert(Sh64 >= 0 && Sh64 < 64);
unsigned S = Sh64;
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
assert(F != PairMap.end());
const UUPair &P = F->second;
unsigned LoR = P.first;
unsigned HiR = P.second;
unsigned Opc = MI->getOpcode();
bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
bool Left = !Right;
bool Signed = (Opc == S2_asr_i_p);
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned RS = getRegState(Op1);
unsigned ShiftOpc = Left ? S2_asl_i_r
: (Signed ? S2_asr_i_r : S2_lsr_i_r);
unsigned LoSR = isub_lo;
unsigned HiSR = isub_hi;
if (S == 0) {
// No shift, subregister copy.
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
.addReg(Op1.getReg(), RS, HiSR);
} else if (S < 32) {
const TargetRegisterClass *IntRC = &IntRegsRegClass;
unsigned TmpR = MRI->createVirtualRegister(IntRC);
// Expansion:
// Shift left: DR = shl R, #s
// LoR = shl R.lo, #s
// TmpR = extractu R.lo, #s, #32-s
// HiR = or (TmpR, asl(R.hi, #s))
// Shift right: DR = shr R, #s
// HiR = shr R.hi, #s
// TmpR = shr R.lo, #s
// LoR = insert TmpR, R.hi, #s, #32-s
// Shift left:
// LoR = shl R.lo, #s
// Shift right:
// TmpR = shr R.lo, #s
// Make a special case for A2_aslh and A2_asrh (they are predicable as
// opposed to S2_asl_i_r/S2_asr_i_r).
if (S == 16 && Left)
BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
else if (S == 16 && Signed)
BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
else
BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
.addImm(S);
if (Left) {
// TmpR = extractu R.lo, #s, #32-s
BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
.addImm(S)
.addImm(32-S);
// HiR = or (TmpR, asl(R.hi, #s))
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
.addReg(TmpR)
.addReg(Op1.getReg(), RS, HiSR)
.addImm(S);
} else {
// HiR = shr R.hi, #s
BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
.addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
.addImm(S);
// LoR = insert TmpR, R.hi, #s, #32-s
BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
.addReg(TmpR)
.addReg(Op1.getReg(), RS, HiSR)
.addImm(S)
.addImm(32-S);
}
} else if (S == 32) {
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
.addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
if (!Signed)
BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
.addImm(0);
else // Must be right shift.
BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
.addReg(Op1.getReg(), RS, HiSR)
.addImm(31);
} else if (S < 64) {
S -= 32;
if (S == 16 && Left)
BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
else if (S == 16 && Signed)
BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
.addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
else
BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
.addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
.addImm(S);
if (Signed)
BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
.addReg(Op1.getReg(), RS, HiSR)
.addImm(31);
else
BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
.addImm(0);
}
}
void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
const UUPairMap &PairMap) {
using namespace Hexagon;
MachineOperand &Op0 = MI->getOperand(0);
MachineOperand &Op1 = MI->getOperand(1);
MachineOperand &Op2 = MI->getOperand(2);
MachineOperand &Op3 = MI->getOperand(3);
assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
int64_t Sh64 = Op3.getImm();
assert(Sh64 >= 0 && Sh64 < 64);
unsigned S = Sh64;
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
assert(F != PairMap.end());
const UUPair &P = F->second;
unsigned LoR = P.first;
unsigned HiR = P.second;
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned RS1 = getRegState(Op1);
unsigned RS2 = getRegState(Op2);
const TargetRegisterClass *IntRC = &IntRegsRegClass;
unsigned LoSR = isub_lo;
unsigned HiSR = isub_hi;
// Op0 = S2_asl_i_p_or Op1, Op2, Op3
// means: Op0 = or (Op1, asl(Op2, Op3))
// Expansion of
// DR = or (R1, asl(R2, #s))
//
// LoR = or (R1.lo, asl(R2.lo, #s))
// Tmp1 = extractu R2.lo, #s, #32-s
// Tmp2 = or R1.hi, Tmp1
// HiR = or (Tmp2, asl(R2.hi, #s))
if (S == 0) {
// DR = or (R1, asl(R2, #0))
// -> or (R1, R2)
// i.e. LoR = or R1.lo, R2.lo
// HiR = or R1.hi, R2.hi
BuildMI(B, MI, DL, TII->get(A2_or), LoR)
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
.addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
BuildMI(B, MI, DL, TII->get(A2_or), HiR)
.addReg(Op1.getReg(), RS1, HiSR)
.addReg(Op2.getReg(), RS2, HiSR);
} else if (S < 32) {
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
.addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
.addImm(S);
unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
.addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
.addImm(S)
.addImm(32-S);
unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
.addReg(Op1.getReg(), RS1, HiSR)
.addReg(TmpR1);
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
.addReg(TmpR2)
.addReg(Op2.getReg(), RS2, HiSR)
.addImm(S);
} else if (S == 32) {
// DR = or (R1, asl(R2, #32))
// -> or R1, R2.lo
// LoR = R1.lo
// HiR = or R1.hi, R2.lo
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
BuildMI(B, MI, DL, TII->get(A2_or), HiR)
.addReg(Op1.getReg(), RS1, HiSR)
.addReg(Op2.getReg(), RS2, LoSR);
} else if (S < 64) {
// DR = or (R1, asl(R2, #s))
//
// LoR = R1:lo
// HiR = or (R1:hi, asl(R2:lo, #s-32))
S -= 32;
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
.addReg(Op1.getReg(), RS1, HiSR)
.addReg(Op2.getReg(), RS2, LoSR)
.addImm(S);
}
}
bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
const UUPairMap &PairMap) {
using namespace Hexagon;
DEBUG(dbgs() << "Splitting: " << *MI);
bool Split = false;
unsigned Opc = MI->getOpcode();
switch (Opc) {
case TargetOpcode::PHI:
case TargetOpcode::COPY: {
unsigned DstR = MI->getOperand(0).getReg();
if (MRI->getRegClass(DstR) == DoubleRC) {
createHalfInstr(Opc, MI, PairMap, isub_lo);
createHalfInstr(Opc, MI, PairMap, isub_hi);
Split = true;
}
break;
}
case A2_andp:
createHalfInstr(A2_and, MI, PairMap, isub_lo);
createHalfInstr(A2_and, MI, PairMap, isub_hi);
Split = true;
break;
case A2_orp:
createHalfInstr(A2_or, MI, PairMap, isub_lo);
createHalfInstr(A2_or, MI, PairMap, isub_hi);
Split = true;
break;
case A2_xorp:
createHalfInstr(A2_xor, MI, PairMap, isub_lo);
createHalfInstr(A2_xor, MI, PairMap, isub_hi);
Split = true;
break;
case L2_loadrd_io:
case L2_loadrd_pi:
case S2_storerd_io:
case S2_storerd_pi:
splitMemRef(MI, PairMap);
Split = true;
break;
case A2_tfrpi:
case CONST64:
splitImmediate(MI, PairMap);
Split = true;
break;
case A2_combineii:
case A4_combineir:
case A4_combineii:
case A4_combineri:
case A2_combinew:
splitCombine(MI, PairMap);
Split = true;
break;
case A2_sxtw:
splitExt(MI, PairMap);
Split = true;
break;
case S2_asl_i_p:
case S2_asr_i_p:
case S2_lsr_i_p:
splitShift(MI, PairMap);
Split = true;
break;
case S2_asl_i_p_or:
splitAslOr(MI, PairMap);
Split = true;
break;
default:
llvm_unreachable("Instruction not splitable");
return false;
}
return Split;
}
void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
const UUPairMap &PairMap) {
for (auto &Op : MI->operands()) {
if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
continue;
unsigned R = Op.getReg();
UUPairMap::const_iterator F = PairMap.find(R);
if (F == PairMap.end())
continue;
const UUPair &P = F->second;
switch (Op.getSubReg()) {
case Hexagon::isub_lo:
Op.setReg(P.first);
break;
case Hexagon::isub_hi:
Op.setReg(P.second);
break;
}
Op.setSubReg(0);
}
}
void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
const UUPairMap &PairMap) {
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
for (auto &Op : MI->operands()) {
if (!Op.isReg() || !Op.isUse())
continue;
unsigned R = Op.getReg();
if (!TargetRegisterInfo::isVirtualRegister(R))
continue;
if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
continue;
UUPairMap::const_iterator F = PairMap.find(R);
if (F == PairMap.end())
continue;
const UUPair &Pr = F->second;
unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
.addReg(Pr.first)
.addImm(Hexagon::isub_lo)
.addReg(Pr.second)
.addImm(Hexagon::isub_hi);
Op.setReg(NewDR);
}
}
bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
typedef std::set<MachineInstr*> MISet;
bool Changed = false;
DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI);
dbgs() << '\n');
UUPairMap PairMap;
MISet SplitIns;
for (unsigned DR : Part) {
MachineInstr *DefI = MRI->getVRegDef(DR);
SplitIns.insert(DefI);
// Collect all instructions, including fixed ones. We won't split them,
// but we need to visit them again to insert the REG_SEQUENCE instructions.
for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
U != W; ++U)
SplitIns.insert(U->getParent());
unsigned LoR = MRI->createVirtualRegister(IntRC);
unsigned HiR = MRI->createVirtualRegister(IntRC);
DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> "
<< PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n');
PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
}
MISet Erase;
for (auto MI : SplitIns) {
if (isFixedInstr(MI)) {
collapseRegPairs(MI, PairMap);
} else {
bool Done = splitInstr(MI, PairMap);
if (Done)
Erase.insert(MI);
Changed |= Done;
}
}
for (unsigned DR : Part) {
// Before erasing "double" instructions, revisit all uses of the double
// registers in this partition, and replace all uses of them with subre-
// gisters, with the corresponding single registers.
MISet Uses;
for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
U != W; ++U)
Uses.insert(U->getParent());
for (auto M : Uses)
replaceSubregUses(M, PairMap);
}
for (auto MI : Erase) {
MachineBasicBlock *B = MI->getParent();
B->erase(MI);
}
return Changed;
}
bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "Splitting double registers in function: "
<< MF.getName() << '\n');
if (skipFunction(*MF.getFunction()))
return false;
auto &ST = MF.getSubtarget<HexagonSubtarget>();
TRI = ST.getRegisterInfo();
TII = ST.getInstrInfo();
MRI = &MF.getRegInfo();
MLI = &getAnalysis<MachineLoopInfo>();
UUSetMap P2Rs;
LoopRegMap IRM;
collectIndRegs(IRM);
partitionRegisters(P2Rs);
DEBUG({
dbgs() << "Register partitioning: (partition #0 is fixed)\n";
for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
dbgs() << '#' << I->first << " -> ";
dump_partition(dbgs(), I->second, *TRI);
dbgs() << '\n';
}
});
bool Changed = false;
int Limit = MaxHSDR;
for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
if (I->first == 0)
continue;
if (Limit >= 0 && Counter >= Limit)
break;
USet &Part = I->second;
DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n');
if (!isProfitable(Part, IRM))
continue;
Counter++;
Changed |= splitPartition(Part);
}
return Changed;
}
FunctionPass *llvm::createHexagonSplitDoubleRegs() {
return new HexagonSplitDoubleRegs();
}