1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/include/llvm/Support/KnownBits.h
Jay Foad 87d37f4776 [KnownBits] Move AND, OR and XOR logic into KnownBits
Summary:
There are at least three clients for KnownBits calculations:
ValueTracking, SelectionDAG and GlobalISel. To reduce duplication the
common logic should be moved out of these clients and into KnownBits
itself.

This patch does this for AND, OR and XOR calculations by implementing
and using appropriate operator overloads KnownBits::operator& etc.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74060
2020-04-09 10:10:37 +01:00

287 lines
8.3 KiB
C++

//===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a class for representing known zeros and ones used by
// computeKnownBits.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_KNOWNBITS_H
#define LLVM_SUPPORT_KNOWNBITS_H
#include "llvm/ADT/APInt.h"
namespace llvm {
// Struct for tracking the known zeros and ones of a value.
struct KnownBits {
APInt Zero;
APInt One;
private:
// Internal constructor for creating a KnownBits from two APInts.
KnownBits(APInt Zero, APInt One)
: Zero(std::move(Zero)), One(std::move(One)) {}
public:
// Default construct Zero and One.
KnownBits() {}
/// Create a known bits object of BitWidth bits initialized to unknown.
KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {}
/// Get the bit width of this value.
unsigned getBitWidth() const {
assert(Zero.getBitWidth() == One.getBitWidth() &&
"Zero and One should have the same width!");
return Zero.getBitWidth();
}
/// Returns true if there is conflicting information.
bool hasConflict() const { return Zero.intersects(One); }
/// Returns true if we know the value of all bits.
bool isConstant() const {
assert(!hasConflict() && "KnownBits conflict!");
return Zero.countPopulation() + One.countPopulation() == getBitWidth();
}
/// Returns the value when all bits have a known value. This just returns One
/// with a protective assertion.
const APInt &getConstant() const {
assert(isConstant() && "Can only get value when all bits are known");
return One;
}
/// Returns true if we don't know any bits.
bool isUnknown() const { return Zero.isNullValue() && One.isNullValue(); }
/// Resets the known state of all bits.
void resetAll() {
Zero.clearAllBits();
One.clearAllBits();
}
/// Returns true if value is all zero.
bool isZero() const {
assert(!hasConflict() && "KnownBits conflict!");
return Zero.isAllOnesValue();
}
/// Returns true if value is all one bits.
bool isAllOnes() const {
assert(!hasConflict() && "KnownBits conflict!");
return One.isAllOnesValue();
}
/// Make all bits known to be zero and discard any previous information.
void setAllZero() {
Zero.setAllBits();
One.clearAllBits();
}
/// Make all bits known to be one and discard any previous information.
void setAllOnes() {
Zero.clearAllBits();
One.setAllBits();
}
/// Returns true if this value is known to be negative.
bool isNegative() const { return One.isSignBitSet(); }
/// Returns true if this value is known to be non-negative.
bool isNonNegative() const { return Zero.isSignBitSet(); }
/// Returns true if this value is known to be positive.
bool isStrictlyPositive() const { return Zero.isSignBitSet() && !One.isNullValue(); }
/// Make this value negative.
void makeNegative() {
One.setSignBit();
}
/// Make this value non-negative.
void makeNonNegative() {
Zero.setSignBit();
}
/// Return the minimal value possible given these KnownBits.
APInt getMinValue() const {
// Assume that all bits that aren't known-ones are zeros.
return One;
}
/// Return the maximal value possible given these KnownBits.
APInt getMaxValue() const {
// Assume that all bits that aren't known-zeros are ones.
return ~Zero;
}
/// Return known bits for a truncation of the value we're tracking.
KnownBits trunc(unsigned BitWidth) const {
return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth));
}
/// Return known bits for an "any" extension of the value we're tracking,
/// where we don't know anything about the extended bits.
KnownBits anyext(unsigned BitWidth) const {
return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth));
}
/// Return known bits for a zero extension of the value we're tracking.
KnownBits zext(unsigned BitWidth) const {
unsigned OldBitWidth = getBitWidth();
APInt NewZero = Zero.zext(BitWidth);
NewZero.setBitsFrom(OldBitWidth);
return KnownBits(NewZero, One.zext(BitWidth));
}
/// Return known bits for a sign extension of the value we're tracking.
KnownBits sext(unsigned BitWidth) const {
return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth));
}
/// Return known bits for an "any" extension or truncation of the value we're
/// tracking.
KnownBits anyextOrTrunc(unsigned BitWidth) const {
if (BitWidth > getBitWidth())
return anyext(BitWidth);
if (BitWidth < getBitWidth())
return trunc(BitWidth);
return *this;
}
/// Return known bits for a zero extension or truncation of the value we're
/// tracking.
KnownBits zextOrTrunc(unsigned BitWidth) const {
if (BitWidth > getBitWidth())
return zext(BitWidth);
if (BitWidth < getBitWidth())
return trunc(BitWidth);
return *this;
}
/// Return a KnownBits with the extracted bits
/// [bitPosition,bitPosition+numBits).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const {
return KnownBits(Zero.extractBits(NumBits, BitPosition),
One.extractBits(NumBits, BitPosition));
}
/// Returns the minimum number of trailing zero bits.
unsigned countMinTrailingZeros() const {
return Zero.countTrailingOnes();
}
/// Returns the minimum number of trailing one bits.
unsigned countMinTrailingOnes() const {
return One.countTrailingOnes();
}
/// Returns the minimum number of leading zero bits.
unsigned countMinLeadingZeros() const {
return Zero.countLeadingOnes();
}
/// Returns the minimum number of leading one bits.
unsigned countMinLeadingOnes() const {
return One.countLeadingOnes();
}
/// Returns the number of times the sign bit is replicated into the other
/// bits.
unsigned countMinSignBits() const {
if (isNonNegative())
return countMinLeadingZeros();
if (isNegative())
return countMinLeadingOnes();
return 0;
}
/// Returns the maximum number of trailing zero bits possible.
unsigned countMaxTrailingZeros() const {
return One.countTrailingZeros();
}
/// Returns the maximum number of trailing one bits possible.
unsigned countMaxTrailingOnes() const {
return Zero.countTrailingZeros();
}
/// Returns the maximum number of leading zero bits possible.
unsigned countMaxLeadingZeros() const {
return One.countLeadingZeros();
}
/// Returns the maximum number of leading one bits possible.
unsigned countMaxLeadingOnes() const {
return Zero.countLeadingZeros();
}
/// Returns the number of bits known to be one.
unsigned countMinPopulation() const {
return One.countPopulation();
}
/// Returns the maximum number of bits that could be one.
unsigned countMaxPopulation() const {
return getBitWidth() - Zero.countPopulation();
}
/// Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
static KnownBits computeForAddCarry(
const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry);
/// Compute known bits resulting from adding LHS and RHS.
static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS,
KnownBits RHS);
/// Update known bits based on ANDing with RHS.
KnownBits &operator&=(const KnownBits &RHS);
/// Update known bits based on ORing with RHS.
KnownBits &operator|=(const KnownBits &RHS);
/// Update known bits based on XORing with RHS.
KnownBits &operator^=(const KnownBits &RHS);
};
inline KnownBits operator&(KnownBits LHS, const KnownBits &RHS) {
LHS &= RHS;
return LHS;
}
inline KnownBits operator&(const KnownBits &LHS, KnownBits &&RHS) {
RHS &= LHS;
return std::move(RHS);
}
inline KnownBits operator|(KnownBits LHS, const KnownBits &RHS) {
LHS |= RHS;
return LHS;
}
inline KnownBits operator|(const KnownBits &LHS, KnownBits &&RHS) {
RHS |= LHS;
return std::move(RHS);
}
inline KnownBits operator^(KnownBits LHS, const KnownBits &RHS) {
LHS ^= RHS;
return LHS;
}
inline KnownBits operator^(const KnownBits &LHS, KnownBits &&RHS) {
RHS ^= LHS;
return std::move(RHS);
}
} // end namespace llvm
#endif