1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Target/NVPTX/NVPTXInstrInfo.td
Justin Lebar 881bba8e1c [NVPTX] Use different, convergent MIs for convergent calls.
Summary:
Calls sometimes need to be convergent.  This is already handled at the
LLVM IR level, but it also needs to be handled at the MI level.

Ideally we'd propagate convergence from instructions, down through the
selection DAG, and into MIs.  But this is Hard, and would affect
optimizations in the SDNs -- right now only SDNs with two operands have
any flags at all.

Instead, here's a much simpler hack: Add new opcodes for NVPTX for
convergent calls, and generate these when lowering convergent LLVM
calls.

Reviewers: jholewinski

Subscribers: jholewinski, chandlerc, joker.eph, jhen, tra, llvm-commits

Differential Revision: http://reviews.llvm.org/D17423

llvm-svn: 262373
2016-03-01 19:24:03 +00:00

2719 lines
114 KiB
TableGen

//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the PTX instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "NVPTXInstrFormats.td"
// A NOP instruction
def NOP : NVPTXInst<(outs), (ins), "", []>;
// List of vector specific properties
def isVecLD : VecInstTypeEnum<1>;
def isVecST : VecInstTypeEnum<2>;
def isVecBuild : VecInstTypeEnum<3>;
def isVecShuffle : VecInstTypeEnum<4>;
def isVecExtract : VecInstTypeEnum<5>;
def isVecInsert : VecInstTypeEnum<6>;
def isVecDest : VecInstTypeEnum<7>;
def isVecOther : VecInstTypeEnum<15>;
//===----------------------------------------------------------------------===//
// NVPTX Operand Definitions.
//===----------------------------------------------------------------------===//
def brtarget : Operand<OtherVT>;
// CVT conversion modes
// These must match the enum in NVPTX.h
def CvtNONE : PatLeaf<(i32 0x0)>;
def CvtRNI : PatLeaf<(i32 0x1)>;
def CvtRZI : PatLeaf<(i32 0x2)>;
def CvtRMI : PatLeaf<(i32 0x3)>;
def CvtRPI : PatLeaf<(i32 0x4)>;
def CvtRN : PatLeaf<(i32 0x5)>;
def CvtRZ : PatLeaf<(i32 0x6)>;
def CvtRM : PatLeaf<(i32 0x7)>;
def CvtRP : PatLeaf<(i32 0x8)>;
def CvtNONE_FTZ : PatLeaf<(i32 0x10)>;
def CvtRNI_FTZ : PatLeaf<(i32 0x11)>;
def CvtRZI_FTZ : PatLeaf<(i32 0x12)>;
def CvtRMI_FTZ : PatLeaf<(i32 0x13)>;
def CvtRPI_FTZ : PatLeaf<(i32 0x14)>;
def CvtRN_FTZ : PatLeaf<(i32 0x15)>;
def CvtRZ_FTZ : PatLeaf<(i32 0x16)>;
def CvtRM_FTZ : PatLeaf<(i32 0x17)>;
def CvtRP_FTZ : PatLeaf<(i32 0x18)>;
def CvtSAT : PatLeaf<(i32 0x20)>;
def CvtSAT_FTZ : PatLeaf<(i32 0x30)>;
def CvtMode : Operand<i32> {
let PrintMethod = "printCvtMode";
}
// Compare modes
// These must match the enum in NVPTX.h
def CmpEQ : PatLeaf<(i32 0)>;
def CmpNE : PatLeaf<(i32 1)>;
def CmpLT : PatLeaf<(i32 2)>;
def CmpLE : PatLeaf<(i32 3)>;
def CmpGT : PatLeaf<(i32 4)>;
def CmpGE : PatLeaf<(i32 5)>;
def CmpLO : PatLeaf<(i32 6)>;
def CmpLS : PatLeaf<(i32 7)>;
def CmpHI : PatLeaf<(i32 8)>;
def CmpHS : PatLeaf<(i32 9)>;
def CmpEQU : PatLeaf<(i32 10)>;
def CmpNEU : PatLeaf<(i32 11)>;
def CmpLTU : PatLeaf<(i32 12)>;
def CmpLEU : PatLeaf<(i32 13)>;
def CmpGTU : PatLeaf<(i32 14)>;
def CmpGEU : PatLeaf<(i32 15)>;
def CmpNUM : PatLeaf<(i32 16)>;
def CmpNAN : PatLeaf<(i32 17)>;
def CmpEQ_FTZ : PatLeaf<(i32 0x100)>;
def CmpNE_FTZ : PatLeaf<(i32 0x101)>;
def CmpLT_FTZ : PatLeaf<(i32 0x102)>;
def CmpLE_FTZ : PatLeaf<(i32 0x103)>;
def CmpGT_FTZ : PatLeaf<(i32 0x104)>;
def CmpGE_FTZ : PatLeaf<(i32 0x105)>;
def CmpLO_FTZ : PatLeaf<(i32 0x106)>;
def CmpLS_FTZ : PatLeaf<(i32 0x107)>;
def CmpHI_FTZ : PatLeaf<(i32 0x108)>;
def CmpHS_FTZ : PatLeaf<(i32 0x109)>;
def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>;
def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>;
def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>;
def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>;
def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>;
def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>;
def CmpNUM_FTZ : PatLeaf<(i32 0x110)>;
def CmpNAN_FTZ : PatLeaf<(i32 0x111)>;
def CmpMode : Operand<i32> {
let PrintMethod = "printCmpMode";
}
def F32ConstZero : Operand<f32>, PatLeaf<(f32 fpimm)>, SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstantFP(0.0, MVT::f32);
}]>;
def F32ConstOne : Operand<f32>, PatLeaf<(f32 fpimm)>, SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstantFP(1.0, MVT::f32);
}]>;
//===----------------------------------------------------------------------===//
// NVPTX Instruction Predicate Definitions
//===----------------------------------------------------------------------===//
def hasAtomRedG32 : Predicate<"Subtarget->hasAtomRedG32()">;
def hasAtomRedS32 : Predicate<"Subtarget->hasAtomRedS32()">;
def hasAtomRedGen32 : Predicate<"Subtarget->hasAtomRedGen32()">;
def useAtomRedG32forGen32 :
Predicate<"!Subtarget->hasAtomRedGen32() && Subtarget->hasAtomRedG32()">;
def hasBrkPt : Predicate<"Subtarget->hasBrkPt()">;
def hasAtomRedG64 : Predicate<"Subtarget->hasAtomRedG64()">;
def hasAtomRedS64 : Predicate<"Subtarget->hasAtomRedS64()">;
def hasAtomRedGen64 : Predicate<"Subtarget->hasAtomRedGen64()">;
def useAtomRedG64forGen64 :
Predicate<"!Subtarget->hasAtomRedGen64() && Subtarget->hasAtomRedG64()">;
def hasAtomAddF32 : Predicate<"Subtarget->hasAtomAddF32()">;
def hasVote : Predicate<"Subtarget->hasVote()">;
def hasDouble : Predicate<"Subtarget->hasDouble()">;
def reqPTX20 : Predicate<"Subtarget->reqPTX20()">;
def hasLDG : Predicate<"Subtarget->hasLDG()">;
def hasLDU : Predicate<"Subtarget->hasLDU()">;
def hasGenericLdSt : Predicate<"Subtarget->hasGenericLdSt()">;
def doF32FTZ : Predicate<"useF32FTZ()">;
def doNoF32FTZ : Predicate<"!useF32FTZ()">;
def doMulWide : Predicate<"doMulWide">;
def allowFMA : Predicate<"allowFMA()">;
def noFMA : Predicate<"!allowFMA()">;
def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">;
def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">;
def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">;
def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">;
def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">;
def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">;
def true : Predicate<"1">;
def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">;
//===----------------------------------------------------------------------===//
// Some Common Instruction Class Templates
//===----------------------------------------------------------------------===//
// Template for instructions which take three int64, int32, or int16 args.
// The instructions are named "<OpcStr><Width>" (e.g. "add.s64").
multiclass I3<string OpcStr, SDNode OpNode> {
def i64rr :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
def i64ri :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
def i32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def i32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
def i16rr :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
def i16ri :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>;
}
// Template for instructions which take 3 int32 args. The instructions are
// named "<OpcStr>.s32" (e.g. "addc.cc.s32").
multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> {
def i32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def i32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
}
// Template for instructions which take three fp64 or fp32 args. The
// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64").
//
// Also defines ftz (flush subnormal inputs and results to sign-preserving
// zero) variants for fp32 functions.
multiclass F3<string OpcStr, SDNode OpNode> {
def f64rr :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, Float64Regs:$b),
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
Requires<[allowFMA]>;
def f64ri :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, f64imm:$b),
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
Requires<[allowFMA]>;
def f32rr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[allowFMA, doF32FTZ]>;
def f32ri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[allowFMA, doF32FTZ]>;
def f32rr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[allowFMA]>;
def f32ri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[allowFMA]>;
}
// Same as F3, but defines ".rn" variants (round to nearest even).
multiclass F3_rn<string OpcStr, SDNode OpNode> {
def f64rr :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, Float64Regs:$b),
!strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
Requires<[noFMA]>;
def f64ri :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, f64imm:$b),
!strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
Requires<[noFMA]>;
def f32rr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[noFMA, doF32FTZ]>;
def f32ri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[noFMA, doF32FTZ]>;
def f32rr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
!strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
Requires<[noFMA]>;
def f32ri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
!strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
Requires<[noFMA]>;
}
// Template for operations which take two f32 or f64 operands. Provides three
// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush
// subnormal inputs and results to zero).
multiclass F2<string OpcStr, SDNode OpNode> {
def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a),
!strconcat(OpcStr, ".f64 \t$dst, $a;"),
[(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>;
def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>,
Requires<[doF32FTZ]>;
def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
!strconcat(OpcStr, ".f32 \t$dst, $a;"),
[(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>;
}
//===----------------------------------------------------------------------===//
// NVPTX Instructions.
//===----------------------------------------------------------------------===//
//-----------------------------------
// Type Conversion
//-----------------------------------
let hasSideEffects = 0 in {
// Generate a cvt to the given type from all possible types. Each instance
// takes a CvtMode immediate that defines the conversion mode to use. It can
// be CvtNONE to omit a conversion mode.
multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> {
def _s16 :
NVPTXInst<(outs RC:$dst),
(ins Int16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".s16\t$dst, $src;"), []>;
def _u16 :
NVPTXInst<(outs RC:$dst),
(ins Int16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".u16\t$dst, $src;"), []>;
def _f16 :
NVPTXInst<(outs RC:$dst),
(ins Int16Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".f16\t$dst, $src;"), []>;
def _s32 :
NVPTXInst<(outs RC:$dst),
(ins Int32Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".s32\t$dst, $src;"), []>;
def _u32 :
NVPTXInst<(outs RC:$dst),
(ins Int32Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".u32\t$dst, $src;"), []>;
def _s64 :
NVPTXInst<(outs RC:$dst),
(ins Int64Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".s64\t$dst, $src;"), []>;
def _u64 :
NVPTXInst<(outs RC:$dst),
(ins Int64Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".u64\t$dst, $src;"), []>;
def _f32 :
NVPTXInst<(outs RC:$dst),
(ins Float32Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".f32\t$dst, $src;"), []>;
def _f64 :
NVPTXInst<(outs RC:$dst),
(ins Float64Regs:$src, CvtMode:$mode),
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
FromName, ".f64\t$dst, $src;"), []>;
}
// Generate cvts from all types to all types.
defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>;
defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>;
defm CVT_f16 : CVT_FROM_ALL<"f16", Int16Regs>;
defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>;
defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>;
defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>;
defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>;
defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>;
defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>;
// These cvts are different from those above: The source and dest registers
// are of the same type.
def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"cvt.s16.s8 \t$dst, $src;", []>;
def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"cvt.s32.s8 \t$dst, $src;", []>;
def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"cvt.s32.s16 \t$dst, $src;", []>;
def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"cvt.s64.s8 \t$dst, $src;", []>;
def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"cvt.s64.s16 \t$dst, $src;", []>;
def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"cvt.s64.s32 \t$dst, $src;", []>;
}
//-----------------------------------
// Integer Arithmetic
//-----------------------------------
// Template for xor masquerading as int1 arithmetic.
multiclass ADD_SUB_i1<SDNode OpNode> {
def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
"xor.pred \t$dst, $a, $b;",
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
"xor.pred \t$dst, $a, $b;",
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>;
}
// int1 addition and subtraction are both just xor.
defm ADD_i1 : ADD_SUB_i1<add>;
defm SUB_i1 : ADD_SUB_i1<sub>;
// int16, int32, and int64 signed addition. Since nvptx is 2's compliment, we
// also use these for unsigned arithmetic.
defm ADD : I3<"add.s", add>;
defm SUB : I3<"sub.s", sub>;
// int32 addition and subtraction with carry-out.
// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?).
defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>;
defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>;
// int32 addition and subtraction with carry-in and carry-out.
defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>;
defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>;
defm MULT : I3<"mul.lo.s", mul>;
defm MULTHS : I3<"mul.hi.s", mulhs>;
defm MULTHU : I3<"mul.hi.u", mulhu>;
defm SDIV : I3<"div.s", sdiv>;
defm UDIV : I3<"div.u", udiv>;
// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM
// will lower it.
defm SREM : I3<"rem.s", srem>;
defm UREM : I3<"rem.u", urem>;
//
// Wide multiplication
//
def MULWIDES64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
"mul.wide.s32 \t$dst, $a, $b;", []>;
def MULWIDES64Imm :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
"mul.wide.s32 \t$dst, $a, $b;", []>;
def MULWIDES64Imm64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
"mul.wide.s32 \t$dst, $a, $b;", []>;
def MULWIDEU64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
"mul.wide.u32 \t$dst, $a, $b;", []>;
def MULWIDEU64Imm :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
"mul.wide.u32 \t$dst, $a, $b;", []>;
def MULWIDEU64Imm64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
"mul.wide.u32 \t$dst, $a, $b;", []>;
def MULWIDES32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
"mul.wide.s16 \t$dst, $a, $b;", []>;
def MULWIDES32Imm :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
"mul.wide.s16 \t$dst, $a, $b;", []>;
def MULWIDES32Imm32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
"mul.wide.s16 \t$dst, $a, $b;", []>;
def MULWIDEU32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
"mul.wide.u16 \t$dst, $a, $b;", []>;
def MULWIDEU32Imm :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
"mul.wide.u16 \t$dst, $a, $b;", []>;
def MULWIDEU32Imm32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
"mul.wide.u16 \t$dst, $a, $b;", []>;
def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>;
def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>;
def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>;
// Matchers for signed, unsigned mul.wide ISD nodes.
def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)),
(MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)),
(MULWIDES32Imm Int16Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)),
(MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)),
(MULWIDEU32Imm Int16Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)),
(MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)),
(MULWIDES64Imm Int32Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)),
(MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)),
(MULWIDEU64Imm Int32Regs:$a, imm:$b)>,
Requires<[doMulWide]>;
// Predicates used for converting some patterns to mul.wide.
def SInt32Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isSignedIntN(32);
}]>;
def UInt32Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isIntN(32);
}]>;
def SInt16Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isSignedIntN(16);
}]>;
def UInt16Const : PatLeaf<(imm), [{
const APInt &v = N->getAPIntValue();
return v.isIntN(16);
}]>;
def Int5Const : PatLeaf<(imm), [{
// Check if 0 <= v < 32; only then will the result of (x << v) be an int32.
const APInt &v = N->getAPIntValue();
return v.sge(0) && v.slt(32);
}]>;
def Int4Const : PatLeaf<(imm), [{
// Check if 0 <= v < 16; only then will the result of (x << v) be an int16.
const APInt &v = N->getAPIntValue();
return v.sge(0) && v.slt(16);
}]>;
def SHL2MUL32 : SDNodeXForm<imm, [{
const APInt &v = N->getAPIntValue();
APInt temp(32, 1);
return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32);
}]>;
def SHL2MUL16 : SDNodeXForm<imm, [{
const APInt &v = N->getAPIntValue();
APInt temp(16, 1);
return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16);
}]>;
// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide.
def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)),
(MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
Requires<[doMulWide]>;
def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)),
(MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
Requires<[doMulWide]>;
def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)),
(MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
Requires<[doMulWide]>;
def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)),
(MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
Requires<[doMulWide]>;
// Convert "sign/zero-extend then multiply" to mul.wide.
def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)),
(MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)),
(MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)),
(MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)),
(MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>,
Requires<[doMulWide]>;
def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)),
(MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)),
(MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)),
(MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
Requires<[doMulWide]>;
def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)),
(MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>,
Requires<[doMulWide]>;
//
// Integer multiply-add
//
def SDTIMAD :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>,
SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>;
def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>;
def MAD16rrr :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>;
def MAD16rri :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, Int16Regs:$b, i16imm:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>;
def MAD16rir :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, i16imm:$b, Int16Regs:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>;
def MAD16rii :
NVPTXInst<(outs Int16Regs:$dst),
(ins Int16Regs:$a, i16imm:$b, i16imm:$c),
"mad.lo.s16 \t$dst, $a, $b, $c;",
[(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>;
def MAD32rrr :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>;
def MAD32rri :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, Int32Regs:$b, i32imm:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>;
def MAD32rir :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, i32imm:$b, Int32Regs:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>;
def MAD32rii :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$a, i32imm:$b, i32imm:$c),
"mad.lo.s32 \t$dst, $a, $b, $c;",
[(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>;
def MAD64rrr :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>;
def MAD64rri :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, Int64Regs:$b, i64imm:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>;
def MAD64rir :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, i64imm:$b, Int64Regs:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>;
def MAD64rii :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$a, i64imm:$b, i64imm:$c),
"mad.lo.s64 \t$dst, $a, $b, $c;",
[(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>;
def INEG16 :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"neg.s16 \t$dst, $src;",
[(set Int16Regs:$dst, (ineg Int16Regs:$src))]>;
def INEG32 :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"neg.s32 \t$dst, $src;",
[(set Int32Regs:$dst, (ineg Int32Regs:$src))]>;
def INEG64 :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"neg.s64 \t$dst, $src;",
[(set Int64Regs:$dst, (ineg Int64Regs:$src))]>;
//-----------------------------------
// Floating Point Arithmetic
//-----------------------------------
// Constant 1.0f
def FloatConst1 : PatLeaf<(fpimm), [{
return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle &&
N->getValueAPF().convertToFloat() == 1.0f;
}]>;
// Constant 1.0 (double)
def DoubleConst1 : PatLeaf<(fpimm), [{
return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble &&
N->getValueAPF().convertToDouble() == 1.0;
}]>;
defm FADD : F3<"add", fadd>;
defm FSUB : F3<"sub", fsub>;
defm FMUL : F3<"mul", fmul>;
defm FADD_rn : F3_rn<"add", fadd>;
defm FSUB_rn : F3_rn<"sub", fsub>;
defm FMUL_rn : F3_rn<"mul", fmul>;
defm FABS : F2<"abs", fabs>;
defm FNEG : F2<"neg", fneg>;
defm FSQRT : F2<"sqrt.rn", fsqrt>;
//
// F64 division
//
def FDIV641r :
NVPTXInst<(outs Float64Regs:$dst),
(ins f64imm:$a, Float64Regs:$b),
"rcp.rn.f64 \t$dst, $b;",
[(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>;
def FDIV64rr :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, Float64Regs:$b),
"div.rn.f64 \t$dst, $a, $b;",
[(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>;
def FDIV64ri :
NVPTXInst<(outs Float64Regs:$dst),
(ins Float64Regs:$a, f64imm:$b),
"div.rn.f64 \t$dst, $a, $b;",
[(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>;
//
// F32 Approximate reciprocal
//
def FDIV321r_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.ftz.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
def FDIV321r :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX]>;
//
// F32 Approximate division
//
def FDIV32approxrr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.approx.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
def FDIV32approxri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.approx.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
def FDIV32approxrr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.approx.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_APPROX]>;
def FDIV32approxri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.approx.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_APPROX]>;
//
// F32 Semi-accurate reciprocal
//
// rcp.approx gives the same result as div.full(1.0f, a) and is faster.
//
def FDIV321r_approx_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.ftz.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL, doF32FTZ]>;
def FDIV321r_approx :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.approx.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL]>;
//
// F32 Semi-accurate division
//
def FDIV32rr_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.full.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL, doF32FTZ]>;
def FDIV32ri_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.full.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_FULL, doF32FTZ]>;
def FDIV32rr :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.full.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[do_DIVF32_FULL]>;
def FDIV32ri :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.full.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[do_DIVF32_FULL]>;
//
// F32 Accurate reciprocal
//
def FDIV321r_prec_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.rn.ftz.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[reqPTX20, doF32FTZ]>;
def FDIV321r_prec :
NVPTXInst<(outs Float32Regs:$dst),
(ins f32imm:$a, Float32Regs:$b),
"rcp.rn.f32 \t$dst, $b;",
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
Requires<[reqPTX20]>;
//
// F32 Accurate division
//
def FDIV32rr_prec_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.rn.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[doF32FTZ, reqPTX20]>;
def FDIV32ri_prec_ftz :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.rn.ftz.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[doF32FTZ, reqPTX20]>;
def FDIV32rr_prec :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, Float32Regs:$b),
"div.rn.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
Requires<[reqPTX20]>;
def FDIV32ri_prec :
NVPTXInst<(outs Float32Regs:$dst),
(ins Float32Regs:$a, f32imm:$b),
"div.rn.f32 \t$dst, $a, $b;",
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
Requires<[reqPTX20]>;
//
// F32 rsqrt
//
def RSQRTF32approx1r : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$b),
"rsqrt.approx.f32 \t$dst, $b;", []>;
// Convert 1.0f/sqrt(x) to rsqrt.approx.f32. (There is an rsqrt.approx.f64, but
// it's emulated in software.)
def: Pat<(fdiv FloatConst1, (int_nvvm_sqrt_f Float32Regs:$b)),
(RSQRTF32approx1r Float32Regs:$b)>,
Requires<[do_DIVF32_FULL, do_SQRTF32_APPROX, doNoF32FTZ]>;
multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> {
def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
Requires<[Pred]>;
def rri : NVPTXInst<(outs RC:$dst),
(ins RC:$a, RC:$b, ImmCls:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>,
Requires<[Pred]>;
def rir : NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, RC:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>,
Requires<[Pred]>;
def rii : NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, ImmCls:$c),
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
[(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>,
Requires<[Pred]>;
}
defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>;
defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>;
defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>;
// sin/cos
def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
"sin.approx.f32 \t$dst, $src;",
[(set Float32Regs:$dst, (fsin Float32Regs:$src))]>;
def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
"cos.approx.f32 \t$dst, $src;",
[(set Float32Regs:$dst, (fcos Float32Regs:$src))]>;
// Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)),
// i.e. "poor man's fmod()"
// frem - f32 FTZ
def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
(FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32
(FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ),
Float32Regs:$y))>,
Requires<[doF32FTZ]>;
def : Pat<(frem Float32Regs:$x, fpimm:$y),
(FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32
(FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ),
fpimm:$y))>,
Requires<[doF32FTZ]>;
// frem - f32
def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
(FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32
(FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI),
Float32Regs:$y))>;
def : Pat<(frem Float32Regs:$x, fpimm:$y),
(FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32
(FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI),
fpimm:$y))>;
// frem - f64
def : Pat<(frem Float64Regs:$x, Float64Regs:$y),
(FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64
(FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI),
Float64Regs:$y))>;
def : Pat<(frem Float64Regs:$x, fpimm:$y),
(FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64
(FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI),
fpimm:$y))>;
//-----------------------------------
// Bitwise operations
//-----------------------------------
// Template for three-arg bitwise operations. Takes three args, Creates .b16,
// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr.
multiclass BITWISE<string OpcStr, SDNode OpNode> {
def b1rr :
NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
!strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
def b1ri :
NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
!strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>;
def b16rr :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
!strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
def b16ri :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
!strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>;
def b32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def b32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
def b64rr :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
!strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
def b64ri :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
!strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
}
defm OR : BITWISE<"or", or>;
defm AND : BITWISE<"and", and>;
defm XOR : BITWISE<"xor", xor>;
def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src),
"not.pred \t$dst, $src;",
[(set Int1Regs:$dst, (not Int1Regs:$src))]>;
def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"not.b16 \t$dst, $src;",
[(set Int16Regs:$dst, (not Int16Regs:$src))]>;
def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
"not.b32 \t$dst, $src;",
[(set Int32Regs:$dst, (not Int32Regs:$src))]>;
def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
"not.b64 \t$dst, $src;",
[(set Int64Regs:$dst, (not Int64Regs:$src))]>;
// Template for left/right shifts. Takes three operands,
// [dest (reg), src (reg), shift (reg or imm)].
// dest and src may be int64, int32, or int16, but shift is always int32.
//
// This template also defines a 32-bit shift (imm, imm) instruction.
multiclass SHIFT<string OpcStr, SDNode OpNode> {
def i64rr :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>;
def i64ri :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b),
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>;
def i32rr :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
def i32ri :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>;
def i32ii :
NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b),
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
[(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>;
def i16rr :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>;
def i16ri :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>;
}
defm SHL : SHIFT<"shl.b", shl>;
defm SRA : SHIFT<"shr.s", sra>;
defm SRL : SHIFT<"shr.u", srl>;
//
// Rotate: Use ptx shf instruction if available.
//
// 32 bit r2 = rotl r1, n
// =>
// r2 = shf.l r1, r1, n
def ROTL32imm_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
"shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>,
Requires<[hasHWROT32]>;
def ROTL32reg_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[hasHWROT32]>;
// 32 bit r2 = rotr r1, n
// =>
// r2 = shf.r r1, r1, n
def ROTR32imm_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
"shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>,
Requires<[hasHWROT32]>;
def ROTR32reg_hw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
[(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[hasHWROT32]>;
// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1.
def ROT32imm_sw :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2),
"{{\n\t"
".reg .b32 %lhs;\n\t"
".reg .b32 %rhs;\n\t"
"shl.b32 \t%lhs, $src, $amt1;\n\t"
"shr.b32 \t%rhs, $src, $amt2;\n\t"
"add.u32 \t$dst, %lhs, %rhs;\n\t"
"}}",
[]>;
def SUB_FRM_32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)),
(ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
Requires<[noHWROT32]>;
def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)),
(ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>,
Requires<[noHWROT32]>;
// 32-bit software rotate left by register.
def ROTL32reg_sw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b32 %lhs;\n\t"
".reg .b32 %rhs;\n\t"
".reg .b32 %amt2;\n\t"
"shl.b32 \t%lhs, $src, $amt;\n\t"
"sub.s32 \t%amt2, 32, $amt;\n\t"
"shr.b32 \t%rhs, $src, %amt2;\n\t"
"add.u32 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[noHWROT32]>;
// 32-bit software rotate right by register.
def ROTR32reg_sw :
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b32 %lhs;\n\t"
".reg .b32 %rhs;\n\t"
".reg .b32 %amt2;\n\t"
"shr.b32 \t%lhs, $src, $amt;\n\t"
"sub.s32 \t%amt2, 32, $amt;\n\t"
"shl.b32 \t%rhs, $src, %amt2;\n\t"
"add.u32 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
Requires<[noHWROT32]>;
// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1.
def ROT64imm_sw :
NVPTXInst<(outs Int64Regs:$dst),
(ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2),
"{{\n\t"
".reg .b64 %lhs;\n\t"
".reg .b64 %rhs;\n\t"
"shl.b64 \t%lhs, $src, $amt1;\n\t"
"shr.b64 \t%rhs, $src, $amt2;\n\t"
"add.u64 \t$dst, %lhs, %rhs;\n\t"
"}}",
[]>;
def SUB_FRM_64 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)),
(ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>;
def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)),
(ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>;
// 64-bit software rotate left by register.
def ROTL64reg_sw :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b64 %lhs;\n\t"
".reg .b64 %rhs;\n\t"
".reg .u32 %amt2;\n\t"
"shl.b64 \t%lhs, $src, $amt;\n\t"
"sub.u32 \t%amt2, 64, $amt;\n\t"
"shr.b64 \t%rhs, $src, %amt2;\n\t"
"add.u64 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>;
def ROTR64reg_sw :
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
"{{\n\t"
".reg .b64 %lhs;\n\t"
".reg .b64 %rhs;\n\t"
".reg .u32 %amt2;\n\t"
"shr.b64 \t%lhs, $src, $amt;\n\t"
"sub.u32 \t%amt2, 64, $amt;\n\t"
"shl.b64 \t%rhs, $src, %amt2;\n\t"
"add.u64 \t$dst, %lhs, %rhs;\n\t"
"}}",
[(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>;
//
// Funnnel shift in clamp mode
//
// Create SDNodes so they can be used in the DAG code, e.g.
// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts)
def SDTIntShiftDOp :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisInt<0>, SDTCisInt<3>]>;
def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>;
def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>;
def FUNSHFLCLAMP :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
"shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;",
[(set Int32Regs:$dst,
(FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
def FUNSHFRCLAMP :
NVPTXInst<(outs Int32Regs:$dst),
(ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
"shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;",
[(set Int32Regs:$dst,
(FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
//
// BFE - bit-field extract
//
// Template for BFE instructions. Takes four args,
// [dest (reg), src (reg), start (reg or imm), end (reg or imm)].
// Start may be an imm only if end is also an imm. FIXME: Is this a
// restriction in PTX?
//
// dest and src may be int32 or int64, but start and end are always int32.
multiclass BFE<string TyStr, RegisterClass RC> {
def rrr
: NVPTXInst<(outs RC:$d),
(ins RC:$a, Int32Regs:$b, Int32Regs:$c),
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
def rri
: NVPTXInst<(outs RC:$d),
(ins RC:$a, Int32Regs:$b, i32imm:$c),
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
def rii
: NVPTXInst<(outs RC:$d),
(ins RC:$a, i32imm:$b, i32imm:$c),
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
}
defm BFE_S32 : BFE<"s32", Int32Regs>;
defm BFE_U32 : BFE<"u32", Int32Regs>;
defm BFE_S64 : BFE<"s64", Int64Regs>;
defm BFE_U64 : BFE<"u64", Int64Regs>;
//-----------------------------------
// Comparison instructions (setp, set)
//-----------------------------------
// FIXME: This doesn't cover versions of set and setp that combine with a
// boolean predicate, e.g. setp.eq.and.b16.
multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> {
def rr :
NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp),
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
"\t$dst, $a, $b;"), []>;
def ri :
NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
"\t$dst, $a, $b;"), []>;
def ir :
NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
"\t$dst, $a, $b;"), []>;
}
defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>;
defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>;
defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>;
defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>;
defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>;
defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>;
defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>;
defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>;
defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>;
defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>;
defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>;
// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form
// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination
// reg, either u32, s32, or f32. Anyway these aren't used at the moment.
multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> {
def rr : NVPTXInst<(outs Int32Regs:$dst),
(ins RC:$a, RC:$b, CmpMode:$cmp),
!strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
def ri : NVPTXInst<(outs Int32Regs:$dst),
(ins RC:$a, ImmCls:$b, CmpMode:$cmp),
!strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
def ir : NVPTXInst<(outs Int32Regs:$dst),
(ins ImmCls:$a, RC:$b, CmpMode:$cmp),
!strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
}
defm SET_b16 : SET<"b16", Int16Regs, i16imm>;
defm SET_s16 : SET<"s16", Int16Regs, i16imm>;
defm SET_u16 : SET<"u16", Int16Regs, i16imm>;
defm SET_b32 : SET<"b32", Int32Regs, i32imm>;
defm SET_s32 : SET<"s32", Int32Regs, i32imm>;
defm SET_u32 : SET<"u32", Int32Regs, i32imm>;
defm SET_b64 : SET<"b64", Int64Regs, i64imm>;
defm SET_s64 : SET<"s64", Int64Regs, i64imm>;
defm SET_u64 : SET<"u64", Int64Regs, i64imm>;
defm SET_f32 : SET<"f32", Float32Regs, f32imm>;
defm SET_f64 : SET<"f64", Float64Regs, f64imm>;
//-----------------------------------
// Selection instructions (selp)
//-----------------------------------
// FIXME: Missing slct
// selp instructions that don't have any pattern matches; we explicitly use
// them within this file.
multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> {
def rr : NVPTXInst<(outs RC:$dst),
(ins RC:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
def ri : NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
def ir : NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
def ii : NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
}
multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls,
SDNode ImmNode> {
def rr :
NVPTXInst<(outs RC:$dst),
(ins RC:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>;
def ri :
NVPTXInst<(outs RC:$dst),
(ins RC:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>;
def ir :
NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, RC:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>;
def ii :
NVPTXInst<(outs RC:$dst),
(ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
[(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>;
}
// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as
// good.
defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>;
defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>;
defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>;
defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>;
defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>;
defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>;
defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>;
defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>;
defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>;
defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>;
defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>;
//-----------------------------------
// Data Movement (Load / Store, Move)
//-----------------------------------
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex],
[SDNPWantRoot]>;
def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex],
[SDNPWantRoot]>;
def MEMri : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops Int32Regs, i32imm);
}
def MEMri64 : Operand<i64> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops Int64Regs, i64imm);
}
def imem : Operand<iPTR> {
let PrintMethod = "printOperand";
}
def imemAny : Operand<iPTRAny> {
let PrintMethod = "printOperand";
}
def LdStCode : Operand<i32> {
let PrintMethod = "printLdStCode";
}
def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>;
// Load a memory address into a u32 or u64 register.
def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a),
"mov.u32 \t$dst, $a;",
[(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>;
def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a),
"mov.u64 \t$dst, $a;",
[(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>;
// Get pointer to local stack.
def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num),
"mov.u32 \t$d, __local_depot$num;", []>;
def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num),
"mov.u64 \t$d, __local_depot$num;", []>;
// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp
let IsSimpleMove=1 in {
def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss),
"mov.pred \t$dst, $sss;", []>;
def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss),
"mov.u16 \t$dst, $sss;", []>;
def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss),
"mov.u32 \t$dst, $sss;", []>;
def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss),
"mov.u64 \t$dst, $sss;", []>;
def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
"mov.f32 \t$dst, $src;", []>;
def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src),
"mov.f64 \t$dst, $src;", []>;
}
def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src),
"mov.pred \t$dst, $src;",
[(set Int1Regs:$dst, imm:$src)]>;
def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src),
"mov.u16 \t$dst, $src;",
[(set Int16Regs:$dst, imm:$src)]>;
def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src),
"mov.u32 \t$dst, $src;",
[(set Int32Regs:$dst, imm:$src)]>;
def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src),
"mov.u64 \t$dst, $src;",
[(set Int64Regs:$dst, imm:$src)]>;
def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src),
"mov.f32 \t$dst, $src;",
[(set Float32Regs:$dst, fpimm:$src)]>;
def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src),
"mov.f64 \t$dst, $src;",
[(set Float64Regs:$dst, fpimm:$src)]>;
def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>;
//---- Copy Frame Index ----
def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr),
"add.u32 \t$dst, ${addr:add};",
[(set Int32Regs:$dst, ADDRri:$addr)]>;
def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr),
"add.u64 \t$dst, ${addr:add};",
[(set Int64Regs:$dst, ADDRri64:$addr)]>;
//-----------------------------------
// Comparison and Selection
//-----------------------------------
multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode,
Instruction setp_16rr,
Instruction setp_16ri,
Instruction setp_16ir,
Instruction setp_32rr,
Instruction setp_32ri,
Instruction setp_32ir,
Instruction setp_64rr,
Instruction setp_64ri,
Instruction setp_64ir,
Instruction set_16rr,
Instruction set_16ri,
Instruction set_16ir,
Instruction set_32rr,
Instruction set_32ri,
Instruction set_32ir,
Instruction set_64rr,
Instruction set_64ri,
Instruction set_64ir> {
// i16 -> pred
def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)),
(setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)),
(setp_16ri Int16Regs:$a, imm:$b, Mode)>;
def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)),
(setp_16ir imm:$a, Int16Regs:$b, Mode)>;
// i32 -> pred
def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)),
(setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)),
(setp_32ri Int32Regs:$a, imm:$b, Mode)>;
def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)),
(setp_32ir imm:$a, Int32Regs:$b, Mode)>;
// i64 -> pred
def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)),
(setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)),
(setp_64ri Int64Regs:$a, imm:$b, Mode)>;
def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)),
(setp_64ir imm:$a, Int64Regs:$b, Mode)>;
// i16 -> i32
def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)),
(set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)),
(set_16ri Int16Regs:$a, imm:$b, Mode)>;
def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)),
(set_16ir imm:$a, Int16Regs:$b, Mode)>;
// i32 -> i32
def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)),
(set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)),
(set_32ri Int32Regs:$a, imm:$b, Mode)>;
def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)),
(set_32ir imm:$a, Int32Regs:$b, Mode)>;
// i64 -> i32
def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)),
(set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)),
(set_64ri Int64Regs:$a, imm:$b, Mode)>;
def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)),
(set_64ir imm:$a, Int64Regs:$b, Mode)>;
}
multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode>
: ISET_FORMAT<OpNode, Mode,
SETP_s16rr, SETP_s16ri, SETP_s16ir,
SETP_s32rr, SETP_s32ri, SETP_s32ir,
SETP_s64rr, SETP_s64ri, SETP_s64ir,
SET_s16rr, SET_s16ri, SET_s16ir,
SET_s32rr, SET_s32ri, SET_s32ir,
SET_s64rr, SET_s64ri, SET_s64ir> {
// TableGen doesn't like empty multiclasses.
def : PatLeaf<(i32 0)>;
}
multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode>
: ISET_FORMAT<OpNode, Mode,
SETP_u16rr, SETP_u16ri, SETP_u16ir,
SETP_u32rr, SETP_u32ri, SETP_u32ir,
SETP_u64rr, SETP_u64ri, SETP_u64ir,
SET_u16rr, SET_u16ri, SET_u16ir,
SET_u32rr, SET_u32ri, SET_u32ir,
SET_u64rr, SET_u64ri, SET_u64ir> {
// TableGen doesn't like empty multiclasses.
def : PatLeaf<(i32 0)>;
}
defm : ISET_FORMAT_SIGNED<setgt, CmpGT>;
defm : ISET_FORMAT_SIGNED<setlt, CmpLT>;
defm : ISET_FORMAT_SIGNED<setge, CmpGE>;
defm : ISET_FORMAT_SIGNED<setle, CmpLE>;
defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>;
defm : ISET_FORMAT_SIGNED<setne, CmpNE>;
defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>;
defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>;
defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>;
defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>;
defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>;
defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>;
// i1 compares
def : Pat<(setne Int1Regs:$a, Int1Regs:$b),
(XORb1rr Int1Regs:$a, Int1Regs:$b)>;
def : Pat<(setune Int1Regs:$a, Int1Regs:$b),
(XORb1rr Int1Regs:$a, Int1Regs:$b)>;
def : Pat<(seteq Int1Regs:$a, Int1Regs:$b),
(NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
def : Pat<(setueq Int1Regs:$a, Int1Regs:$b),
(NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
// i1 compare -> i32
def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
(SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
(SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> {
// f32 -> pred
def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
(SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
(SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
(SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
(SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
// f64 -> pred
def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)),
(SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)),
(SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)),
(SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
// f32 -> i32
def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
(SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
(SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
(SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
(SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
Requires<[doF32FTZ]>;
def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
(SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
// f64 -> i32
def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)),
(SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)),
(SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)),
(SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
}
defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>;
defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>;
defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>;
defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>;
defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>;
defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>;
defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>;
defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>;
defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>;
defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>;
defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>;
defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>;
defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>;
defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>;
defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>;
defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>;
defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>;
defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>;
defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>;
defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>;
// FIXME: What is this doing here? Can it be deleted?
// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad,
// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def SDTDeclareParamProfile :
SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
def SDTDeclareScalarParamProfile :
SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>;
def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>;
def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>;
def SDTCallVoidProfile : SDTypeProfile<0, 1, []>;
def SDTCallValProfile : SDTypeProfile<1, 0, []>;
def SDTMoveParamProfile : SDTypeProfile<1, 1, []>;
def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>;
def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>;
def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>;
def DeclareParam :
SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def DeclareScalarParam :
SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def DeclareRetParam :
SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def DeclareRet :
SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def LoadParam :
SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile,
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
def LoadParamV2 :
SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile,
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
def LoadParamV4 :
SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile,
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
def PrintCall :
SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def PrintConvergentCall :
SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def PrintCallUni :
SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def PrintConvergentCallUni :
SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParam :
SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamV2 :
SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamV4 :
SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamU32 :
SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def StoreParamS32 :
SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallArgBegin :
SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallArg :
SDNode<"NVPTXISD::CallArg", SDTCallArgProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def LastCallArg :
SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallArgEnd :
SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallVoid :
SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def Prototype :
SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def CallVal :
SDNode<"NVPTXISD::CallVal", SDTCallValProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def MoveParam :
SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>;
def StoreRetval :
SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile,
[SDNPHasChain, SDNPSideEffect]>;
def StoreRetvalV2 :
SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile,
[SDNPHasChain, SDNPSideEffect]>;
def StoreRetvalV4 :
SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile,
[SDNPHasChain, SDNPSideEffect]>;
def PseudoUseParam :
SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def RETURNNode :
SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile,
[SDNPHasChain, SDNPSideEffect]>;
class LoadParamMemInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
!strconcat(!strconcat("ld.param", opstr),
"\t$dst, [retval0+$b];"),
[]>;
class LoadParamRegInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
!strconcat("mov", opstr, "\t$dst, retval$b;"),
[(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>;
class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b),
!strconcat("ld.param.v2", opstr,
"\t{{$dst, $dst2}}, [retval0+$b];"), []>;
class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3,
regclass:$dst4),
(ins i32imm:$b),
!strconcat("ld.param.v4", opstr,
"\t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"),
[]>;
class StoreParamInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b),
!strconcat("st.param", opstr, "\t[param$a+$b], $val;"),
[]>;
class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2,
i32imm:$a, i32imm:$b),
!strconcat("st.param.v2", opstr,
"\t[param$a+$b], {{$val, $val2}};"),
[]>;
class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, regclass:$val1, regclass:$val2,
regclass:$val3, i32imm:$a, i32imm:$b),
!strconcat("st.param.v4", opstr,
"\t[param$a+$b], {{$val, $val2, $val3, $val4}};"),
[]>;
class StoreRetvalInst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, i32imm:$a),
!strconcat("st.param", opstr, "\t[func_retval0+$a], $val;"),
[]>;
class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a),
!strconcat("st.param.v2", opstr,
"\t[func_retval0+$a], {{$val, $val2}};"),
[]>;
class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> :
NVPTXInst<(outs),
(ins regclass:$val, regclass:$val2, regclass:$val3,
regclass:$val4, i32imm:$a),
!strconcat("st.param.v4", opstr,
"\t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"),
[]>;
let isCall=1 in {
multiclass CALL<string OpcStr, SDNode OpNode> {
def PrintCallNoRetInst : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " "), [(OpNode (i32 0))]>;
def PrintCallRetInst1 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>;
def PrintCallRetInst2 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>;
def PrintCallRetInst3 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>;
def PrintCallRetInst4 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "),
[(OpNode (i32 4))]>;
def PrintCallRetInst5 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "),
[(OpNode (i32 5))]>;
def PrintCallRetInst6 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
"retval5), "),
[(OpNode (i32 6))]>;
def PrintCallRetInst7 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
"retval5, retval6), "),
[(OpNode (i32 7))]>;
def PrintCallRetInst8 : NVPTXInst<(outs), (ins),
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
"retval5, retval6, retval7), "),
[(OpNode (i32 8))]>;
}
}
defm Call : CALL<"call", PrintCall>;
defm CallUni : CALL<"call.uni", PrintCallUni>;
// Convergent call instructions. These are identical to regular calls, except
// they have the isConvergent bit set.
let isConvergent=1 in {
defm ConvergentCall : CALL<"call", PrintConvergentCall>;
defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>;
}
def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">;
def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">;
def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">;
def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">;
def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">;
def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">;
def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">;
def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">;
def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">;
def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">;
def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">;
def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">;
def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">;
def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">;
def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">;
def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">;
def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">;
def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">;
def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">;
def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">;
def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">;
def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">;
def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">;
def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">;
// FIXME: StoreParamV4Inst crashes llvm-tblgen :(
//def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">;
def StoreParamV4I32 :
NVPTXInst<(outs), (ins Int32Regs:$val, Int32Regs:$val2, Int32Regs:$val3,
Int32Regs:$val4, i32imm:$a, i32imm:$b),
"st.param.v4.b32\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
[]>;
def StoreParamV4I16 :
NVPTXInst<(outs), (ins Int16Regs:$val, Int16Regs:$val2, Int16Regs:$val3,
Int16Regs:$val4, i32imm:$a, i32imm:$b),
"st.param.v4.b16\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
[]>;
def StoreParamV4I8 :
NVPTXInst<(outs), (ins Int16Regs:$val, Int16Regs:$val2, Int16Regs:$val3,
Int16Regs:$val4, i32imm:$a, i32imm:$b),
"st.param.v4.b8\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
[]>;
def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">;
def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">;
def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">;
def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">;
// FIXME: StoreParamV4Inst crashes llvm-tblgen :(
//def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">;
def StoreParamV4F32 :
NVPTXInst<(outs), (ins Float32Regs:$val, Float32Regs:$val2, Float32Regs:$val3,
Float32Regs:$val4, i32imm:$a, i32imm:$b),
"st.param.v4.f32\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
[]>;
def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">;
def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">;
def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">;
def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">;
def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">;
def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">;
def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">;
def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">;
def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">;
def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">;
def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">;
def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">;
def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">;
def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">;
def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">;
def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">;
def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>;
def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>;
def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>;
def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>;
class CallArgInst<NVPTXRegClass regclass> :
NVPTXInst<(outs), (ins regclass:$a), "$a, ",
[(CallArg (i32 0), regclass:$a)]>;
class LastCallArgInst<NVPTXRegClass regclass> :
NVPTXInst<(outs), (ins regclass:$a), "$a",
[(LastCallArg (i32 0), regclass:$a)]>;
def CallArgI64 : CallArgInst<Int64Regs>;
def CallArgI32 : CallArgInst<Int32Regs>;
def CallArgI16 : CallArgInst<Int16Regs>;
def CallArgF64 : CallArgInst<Float64Regs>;
def CallArgF32 : CallArgInst<Float32Regs>;
def LastCallArgI64 : LastCallArgInst<Int64Regs>;
def LastCallArgI32 : LastCallArgInst<Int32Regs>;
def LastCallArgI16 : LastCallArgInst<Int16Regs>;
def LastCallArgF64 : LastCallArgInst<Float64Regs>;
def LastCallArgF32 : LastCallArgInst<Float32Regs>;
def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ",
[(CallArg (i32 0), (i32 imm:$a))]>;
def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a",
[(LastCallArg (i32 0), (i32 imm:$a))]>;
def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ",
[(CallArg (i32 1), (i32 imm:$a))]>;
def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a",
[(LastCallArg (i32 1), (i32 imm:$a))]>;
def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ",
[(CallVoid (Wrapper tglobaladdr:$addr))]>;
def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ",
[(CallVoid Int32Regs:$addr)]>;
def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ",
[(CallVoid Int64Regs:$addr)]>;
def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;",
[(Prototype (i32 imm:$val))]>;
def DeclareRetMemInst :
NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num),
".param .align $align .b8 retval$num[$size];",
[(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>;
def DeclareRetScalarInst :
NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
".param .b$size retval$num;",
[(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>;
def DeclareRetRegInst :
NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
".reg .b$size retval$num;",
[(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>;
def DeclareParamInst :
NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size),
".param .align $align .b8 param$a[$size];",
[(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>;
def DeclareScalarParamInst :
NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
".param .b$size param$a;",
[(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>;
def DeclareScalarRegInst :
NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
".reg .b$size param$a;",
[(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>;
class MoveParamInst<NVPTXRegClass regclass, string asmstr> :
NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
!strconcat("mov", asmstr, "\t$dst, $src;"),
[(set regclass:$dst, (MoveParam regclass:$src))]>;
def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">;
def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">;
def MoveParamI16 :
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
"cvt.u16.u32\t$dst, $src;",
[(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>;
def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">;
def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">;
class PseudoUseParamInst<NVPTXRegClass regclass> :
NVPTXInst<(outs), (ins regclass:$src),
"// Pseudo use of $src",
[(PseudoUseParam regclass:$src)]>;
def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>;
def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>;
def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>;
def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>;
def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>;
//
// Load / Store Handling
//
multiclass LD<NVPTXRegClass regclass> {
def _avar : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr];", []>;
def _areg : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr];", []>;
def _areg_64 : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr];", []>;
def _ari : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr+$offset];", []>;
def _ari_64 : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr+$offset];", []>;
def _asi : NVPTXInst<
(outs regclass:$dst),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t$dst, [$addr+$offset];", []>;
}
let mayLoad=1, hasSideEffects=0 in {
defm LD_i8 : LD<Int16Regs>;
defm LD_i16 : LD<Int16Regs>;
defm LD_i32 : LD<Int32Regs>;
defm LD_i64 : LD<Int64Regs>;
defm LD_f32 : LD<Float32Regs>;
defm LD_f64 : LD<Float64Regs>;
}
multiclass ST<NVPTXRegClass regclass> {
def _avar : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, imem:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr], $src;", []>;
def _areg : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr], $src;", []>;
def _areg_64 : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr], $src;", []>;
def _ari : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr+$offset], $src;", []>;
def _ari_64 : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr+$offset], $src;", []>;
def _asi : NVPTXInst<
(outs),
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
" \t[$addr+$offset], $src;", []>;
}
let mayStore=1, hasSideEffects=0 in {
defm ST_i8 : ST<Int16Regs>;
defm ST_i16 : ST<Int16Regs>;
defm ST_i32 : ST<Int32Regs>;
defm ST_i64 : ST<Int64Regs>;
defm ST_f32 : ST<Float32Regs>;
defm ST_f64 : ST<Float64Regs>;
}
// The following is used only in and after vector elementizations. Vector
// elementization happens at the machine instruction level, so the following
// instructions never appear in the DAG.
multiclass LD_VEC<NVPTXRegClass regclass> {
def _v2_avar : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr];", []>;
def _v2_areg : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr];", []>;
def _v2_areg_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr];", []>;
def _v2_ari : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
def _v2_ari_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
def _v2_asi : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
def _v4_avar : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
def _v4_areg : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
def _v4_areg_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
def _v4_ari : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
def _v4_ari_64 : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
def _v4_asi : NVPTXInst<
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
}
let mayLoad=1, hasSideEffects=0 in {
defm LDV_i8 : LD_VEC<Int16Regs>;
defm LDV_i16 : LD_VEC<Int16Regs>;
defm LDV_i32 : LD_VEC<Int32Regs>;
defm LDV_i64 : LD_VEC<Int64Regs>;
defm LDV_f32 : LD_VEC<Float32Regs>;
defm LDV_f64 : LD_VEC<Float64Regs>;
}
multiclass ST_VEC<NVPTXRegClass regclass> {
def _v2_avar : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2}};", []>;
def _v2_areg : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2}};", []>;
def _v2_areg_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2}};", []>;
def _v2_ari : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr,
i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2}};", []>;
def _v2_ari_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr,
i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2}};", []>;
def _v2_asi : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr,
i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2}};", []>;
def _v4_avar : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_areg : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_areg_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_ari : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_ari_64 : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
"\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
def _v4_asi : NVPTXInst<
(outs),
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}"
"$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
}
let mayStore=1, hasSideEffects=0 in {
defm STV_i8 : ST_VEC<Int16Regs>;
defm STV_i16 : ST_VEC<Int16Regs>;
defm STV_i32 : ST_VEC<Int32Regs>;
defm STV_i64 : ST_VEC<Int64Regs>;
defm STV_f32 : ST_VEC<Float32Regs>;
defm STV_f64 : ST_VEC<Float64Regs>;
}
//---- Conversion ----
class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn,
NVPTXRegClass regclassOut> :
NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a),
!strconcat("mov.b", !strconcat(SzStr, " \t $d, $a;")),
[(set regclassOut:$d, (bitconvert regclassIn:$a))]>;
def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>;
def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>;
def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>;
def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>;
// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where
// we cannot specify floating-point literals in isel patterns. Therefore, we
// use an integer selp to select either 1 or 0 and then cvt to floating-point.
// sint -> f32
def : Pat<(f32 (sint_to_fp Int1Regs:$a)),
(CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f32 (sint_to_fp Int16Regs:$a)),
(CVT_f32_s16 Int16Regs:$a, CvtRN)>;
def : Pat<(f32 (sint_to_fp Int32Regs:$a)),
(CVT_f32_s32 Int32Regs:$a, CvtRN)>;
def : Pat<(f32 (sint_to_fp Int64Regs:$a)),
(CVT_f32_s64 Int64Regs:$a, CvtRN)>;
// uint -> f32
def : Pat<(f32 (uint_to_fp Int1Regs:$a)),
(CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f32 (uint_to_fp Int16Regs:$a)),
(CVT_f32_u16 Int16Regs:$a, CvtRN)>;
def : Pat<(f32 (uint_to_fp Int32Regs:$a)),
(CVT_f32_u32 Int32Regs:$a, CvtRN)>;
def : Pat<(f32 (uint_to_fp Int64Regs:$a)),
(CVT_f32_u64 Int64Regs:$a, CvtRN)>;
// sint -> f64
def : Pat<(f64 (sint_to_fp Int1Regs:$a)),
(CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f64 (sint_to_fp Int16Regs:$a)),
(CVT_f64_s16 Int16Regs:$a, CvtRN)>;
def : Pat<(f64 (sint_to_fp Int32Regs:$a)),
(CVT_f64_s32 Int32Regs:$a, CvtRN)>;
def : Pat<(f64 (sint_to_fp Int64Regs:$a)),
(CVT_f64_s64 Int64Regs:$a, CvtRN)>;
// uint -> f64
def : Pat<(f64 (uint_to_fp Int1Regs:$a)),
(CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
def : Pat<(f64 (uint_to_fp Int16Regs:$a)),
(CVT_f64_u16 Int16Regs:$a, CvtRN)>;
def : Pat<(f64 (uint_to_fp Int32Regs:$a)),
(CVT_f64_u32 Int32Regs:$a, CvtRN)>;
def : Pat<(f64 (uint_to_fp Int64Regs:$a)),
(CVT_f64_u64 Int64Regs:$a, CvtRN)>;
// f32 -> sint
def : Pat<(i1 (fp_to_sint Float32Regs:$a)),
(SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
(CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
(CVT_s16_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
(CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
(CVT_s32_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
(CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
(CVT_s64_f32 Float32Regs:$a, CvtRZI)>;
// f32 -> uint
def : Pat<(i1 (fp_to_uint Float32Regs:$a)),
(SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
(CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
(CVT_u16_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
(CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
(CVT_u32_f32 Float32Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
(CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
(CVT_u64_f32 Float32Regs:$a, CvtRZI)>;
// f64 -> sint
def : Pat<(i1 (fp_to_sint Float64Regs:$a)),
(SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_sint Float64Regs:$a)),
(CVT_s16_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_sint Float64Regs:$a)),
(CVT_s32_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_sint Float64Regs:$a)),
(CVT_s64_f64 Float64Regs:$a, CvtRZI)>;
// f64 -> uint
def : Pat<(i1 (fp_to_uint Float64Regs:$a)),
(SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
def : Pat<(i16 (fp_to_uint Float64Regs:$a)),
(CVT_u16_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i32 (fp_to_uint Float64Regs:$a)),
(CVT_u32_f64 Float64Regs:$a, CvtRZI)>;
def : Pat<(i64 (fp_to_uint Float64Regs:$a)),
(CVT_u64_f64 Float64Regs:$a, CvtRZI)>;
// sext i1
def : Pat<(i16 (sext Int1Regs:$a)),
(SELP_s16ii -1, 0, Int1Regs:$a)>;
def : Pat<(i32 (sext Int1Regs:$a)),
(SELP_s32ii -1, 0, Int1Regs:$a)>;
def : Pat<(i64 (sext Int1Regs:$a)),
(SELP_s64ii -1, 0, Int1Regs:$a)>;
// zext i1
def : Pat<(i16 (zext Int1Regs:$a)),
(SELP_u16ii 1, 0, Int1Regs:$a)>;
def : Pat<(i32 (zext Int1Regs:$a)),
(SELP_u32ii 1, 0, Int1Regs:$a)>;
def : Pat<(i64 (zext Int1Regs:$a)),
(SELP_u64ii 1, 0, Int1Regs:$a)>;
// anyext i1
def : Pat<(i16 (anyext Int1Regs:$a)),
(SELP_u16ii -1, 0, Int1Regs:$a)>;
def : Pat<(i32 (anyext Int1Regs:$a)),
(SELP_u32ii -1, 0, Int1Regs:$a)>;
def : Pat<(i64 (anyext Int1Regs:$a)),
(SELP_u64ii -1, 0, Int1Regs:$a)>;
// sext i16
def : Pat<(i32 (sext Int16Regs:$a)),
(CVT_s32_s16 Int16Regs:$a, CvtNONE)>;
def : Pat<(i64 (sext Int16Regs:$a)),
(CVT_s64_s16 Int16Regs:$a, CvtNONE)>;
// zext i16
def : Pat<(i32 (zext Int16Regs:$a)),
(CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
def : Pat<(i64 (zext Int16Regs:$a)),
(CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
// anyext i16
def : Pat<(i32 (anyext Int16Regs:$a)),
(CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
def : Pat<(i64 (anyext Int16Regs:$a)),
(CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
// sext i32
def : Pat<(i64 (sext Int32Regs:$a)),
(CVT_s64_s32 Int32Regs:$a, CvtNONE)>;
// zext i32
def : Pat<(i64 (zext Int32Regs:$a)),
(CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
// anyext i32
def : Pat<(i64 (anyext Int32Regs:$a)),
(CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
// truncate i64
def : Pat<(i32 (trunc Int64Regs:$a)),
(CVT_u32_u64 Int64Regs:$a, CvtNONE)>;
def : Pat<(i16 (trunc Int64Regs:$a)),
(CVT_u16_u64 Int64Regs:$a, CvtNONE)>;
def : Pat<(i1 (trunc Int64Regs:$a)),
(SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>;
// truncate i32
def : Pat<(i16 (trunc Int32Regs:$a)),
(CVT_u16_u32 Int32Regs:$a, CvtNONE)>;
def : Pat<(i1 (trunc Int32Regs:$a)),
(SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>;
// truncate i16
def : Pat<(i1 (trunc Int16Regs:$a)),
(SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>;
// sext_inreg
def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>;
def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>;
def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>;
def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>;
def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>;
def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>;
// Select instructions with 32-bit predicates
def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b),
(SELP_b16rr Int16Regs:$a, Int16Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b),
(SELP_b32rr Int32Regs:$a, Int32Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b),
(SELP_b64rr Int64Regs:$a, Int64Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b),
(SELP_f32rr Float32Regs:$a, Float32Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b),
(SELP_f64rr Float64Regs:$a, Float64Regs:$b,
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
// pack a set of smaller int registers to a larger int register
def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d),
(ins Int16Regs:$s1, Int16Regs:$s2,
Int16Regs:$s3, Int16Regs:$s4),
"mov.b64\t$d, {{$s1, $s2, $s3, $s4}};", []>;
def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d),
(ins Int16Regs:$s1, Int16Regs:$s2),
"mov.b32\t$d, {{$s1, $s2}};", []>;
def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d),
(ins Int32Regs:$s1, Int32Regs:$s2),
"mov.b64\t$d, {{$s1, $s2}};", []>;
def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d),
(ins Float32Regs:$s1, Float32Regs:$s2),
"mov.b64\t$d, {{$s1, $s2}};", []>;
// unpack a larger int register to a set of smaller int registers
def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2,
Int16Regs:$d3, Int16Regs:$d4),
(ins Int64Regs:$s),
"mov.b64\t{{$d1, $d2, $d3, $d4}}, $s;", []>;
def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2),
(ins Int32Regs:$s),
"mov.b32\t{{$d1, $d2}}, $s;", []>;
def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2),
(ins Int64Regs:$s),
"mov.b64\t{{$d1, $d2}}, $s;", []>;
def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2),
(ins Float64Regs:$s),
"mov.b64\t{{$d1, $d2}}, $s;", []>;
// Count leading zeros
def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
"clz.b32\t$d, $a;", []>;
def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
"clz.b64\t$d, $a;", []>;
// 32-bit has a direct PTX instruction
def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>;
def : Pat<(ctlz_zero_undef Int32Regs:$a), (CLZr32 Int32Regs:$a)>;
// For 64-bit, the result in PTX is actually 32-bit so we zero-extend
// to 64-bit to match the LLVM semantics
def : Pat<(ctlz Int64Regs:$a), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
def : Pat<(ctlz_zero_undef Int64Regs:$a),
(CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
// For 16-bit, we zero-extend to 32-bit, then trunc the result back
// to 16-bits (ctlz of a 16-bit value is guaranteed to require less
// than 16 bits to store). We also need to subtract 16 because the
// high-order 16 zeros were counted.
def : Pat<(ctlz Int16Regs:$a),
(SUBi16ri (CVT_u16_u32 (CLZr32
(CVT_u32_u16 Int16Regs:$a, CvtNONE)),
CvtNONE), 16)>;
def : Pat<(ctlz_zero_undef Int16Regs:$a),
(SUBi16ri (CVT_u16_u32 (CLZr32
(CVT_u32_u16 Int16Regs:$a, CvtNONE)),
CvtNONE), 16)>;
// Population count
def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
"popc.b32\t$d, $a;", []>;
def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
"popc.b64\t$d, $a;", []>;
// 32-bit has a direct PTX instruction
def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>;
// For 64-bit, the result in PTX is actually 32-bit so we zero-extend
// to 64-bit to match the LLVM semantics
def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>;
// For 16-bit, we zero-extend to 32-bit, then trunc the result back
// to 16-bits (ctpop of a 16-bit value is guaranteed to require less
// than 16 bits to store)
def : Pat<(ctpop Int16Regs:$a),
(CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>;
// fround f64 -> f32
def : Pat<(f32 (fround Float64Regs:$a)),
(CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(f32 (fround Float64Regs:$a)),
(CVT_f32_f64 Float64Regs:$a, CvtRN)>;
// fextend f32 -> f64
def : Pat<(f64 (fextend Float32Regs:$a)),
(CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
def : Pat<(f64 (fextend Float32Regs:$a)),
(CVT_f64_f32 Float32Regs:$a, CvtNONE)>;
def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue]>;
//-----------------------------------
// Control-flow
//-----------------------------------
let isTerminator=1 in {
let isReturn=1, isBarrier=1 in
def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>;
let isBranch=1 in
def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
"@$a bra \t$target;",
[(brcond Int1Regs:$a, bb:$target)]>;
let isBranch=1 in
def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
"@!$a bra \t$target;", []>;
let isBranch=1, isBarrier=1 in
def GOTO : NVPTXInst<(outs), (ins brtarget:$target),
"bra.uni \t$target;", [(br bb:$target)]>;
}
def : Pat<(brcond Int32Regs:$a, bb:$target),
(CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>;
// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a
// conditional branch if the target block is the next block so that the code
// can fall through to the target block. The invertion is done by 'xor
// condition, 1', which will be translated to (setne condition, -1). Since ptx
// supports '@!pred bra target', we should use it.
def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target),
(CBranchOther Int1Regs:$a, bb:$target)>;
// Call
def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart,
[SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPSideEffect]>;
def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def calltarget : Operand<i32>;
let isCall=1 in {
def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>;
}
def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>;
// Pseudo instructions.
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: NVPTXInst<outs, ins, asmstr, pattern>;
def Callseq_Start :
NVPTXInst<(outs), (ins i32imm:$amt),
"\\{ // callseq $amt\n"
"\t.reg .b32 temp_param_reg;",
[(callseq_start timm:$amt)]>;
def Callseq_End :
NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"\\} // callseq $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
// trap instruction
def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>;
// Call prototype wrapper
def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def CallPrototype :
SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
def ProtoIdent : Operand<i32> {
let PrintMethod = "printProtoIdent";
}
def CALL_PROTOTYPE :
NVPTXInst<(outs), (ins ProtoIdent:$ident),
"$ident", [(CallPrototype (i32 texternalsym:$ident))]>;
include "NVPTXIntrinsics.td"
//-----------------------------------
// Notes
//-----------------------------------
// BSWAP is currently expanded. The following is a more efficient
// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register
// - for sm_20, use pmpt (use vector scalar mov to get the pack and
// unpack). sm_20 supports native 32-bit register, but not native 16-bit
// register.