mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
c040998a61
Unfortunately this fix had the effect of exposing the -verify-machineinstrs FIXME of X86InstrInfo.cpp in two testcases for which I disabled it for now. Two testcases also have additional pushq/popq where the corrected code cannot prove that %rax is dead any longer. Looking at the examples, this could potentially be fixed by improving computeRegisterLiveness() to check the live-in lists of the successors blocks when reaching the end of a block. This fixes http://llvm.org/PR25951. llvm-svn: 256799
340 lines
11 KiB
C++
340 lines
11 KiB
C++
//===-- lib/CodeGen/MachineInstrBundle.cpp --------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineInstrBundle.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class UnpackMachineBundles : public MachineFunctionPass {
|
|
public:
|
|
static char ID; // Pass identification
|
|
UnpackMachineBundles(std::function<bool(const Function &)> Ftor = nullptr)
|
|
: MachineFunctionPass(ID), PredicateFtor(Ftor) {
|
|
initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
std::function<bool(const Function &)> PredicateFtor;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char UnpackMachineBundles::ID = 0;
|
|
char &llvm::UnpackMachineBundlesID = UnpackMachineBundles::ID;
|
|
INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles",
|
|
"Unpack machine instruction bundles", false, false)
|
|
|
|
bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) {
|
|
if (PredicateFtor && !PredicateFtor(*MF.getFunction()))
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
|
|
MachineBasicBlock *MBB = &*I;
|
|
|
|
for (MachineBasicBlock::instr_iterator MII = MBB->instr_begin(),
|
|
MIE = MBB->instr_end(); MII != MIE; ) {
|
|
MachineInstr *MI = &*MII;
|
|
|
|
// Remove BUNDLE instruction and the InsideBundle flags from bundled
|
|
// instructions.
|
|
if (MI->isBundle()) {
|
|
while (++MII != MIE && MII->isBundledWithPred()) {
|
|
MII->unbundleFromPred();
|
|
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MII->getOperand(i);
|
|
if (MO.isReg() && MO.isInternalRead())
|
|
MO.setIsInternalRead(false);
|
|
}
|
|
}
|
|
MI->eraseFromParent();
|
|
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
++MII;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
FunctionPass *
|
|
llvm::createUnpackMachineBundles(std::function<bool(const Function &)> Ftor) {
|
|
return new UnpackMachineBundles(Ftor);
|
|
}
|
|
|
|
namespace {
|
|
class FinalizeMachineBundles : public MachineFunctionPass {
|
|
public:
|
|
static char ID; // Pass identification
|
|
FinalizeMachineBundles() : MachineFunctionPass(ID) {
|
|
initializeFinalizeMachineBundlesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char FinalizeMachineBundles::ID = 0;
|
|
char &llvm::FinalizeMachineBundlesID = FinalizeMachineBundles::ID;
|
|
INITIALIZE_PASS(FinalizeMachineBundles, "finalize-mi-bundles",
|
|
"Finalize machine instruction bundles", false, false)
|
|
|
|
bool FinalizeMachineBundles::runOnMachineFunction(MachineFunction &MF) {
|
|
return llvm::finalizeBundles(MF);
|
|
}
|
|
|
|
|
|
/// finalizeBundle - Finalize a machine instruction bundle which includes
|
|
/// a sequence of instructions starting from FirstMI to LastMI (exclusive).
|
|
/// This routine adds a BUNDLE instruction to represent the bundle, it adds
|
|
/// IsInternalRead markers to MachineOperands which are defined inside the
|
|
/// bundle, and it copies externally visible defs and uses to the BUNDLE
|
|
/// instruction.
|
|
void llvm::finalizeBundle(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::instr_iterator FirstMI,
|
|
MachineBasicBlock::instr_iterator LastMI) {
|
|
assert(FirstMI != LastMI && "Empty bundle?");
|
|
MIBundleBuilder Bundle(MBB, FirstMI, LastMI);
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MF, FirstMI->getDebugLoc(), TII->get(TargetOpcode::BUNDLE));
|
|
Bundle.prepend(MIB);
|
|
|
|
SmallVector<unsigned, 32> LocalDefs;
|
|
SmallSet<unsigned, 32> LocalDefSet;
|
|
SmallSet<unsigned, 8> DeadDefSet;
|
|
SmallSet<unsigned, 16> KilledDefSet;
|
|
SmallVector<unsigned, 8> ExternUses;
|
|
SmallSet<unsigned, 8> ExternUseSet;
|
|
SmallSet<unsigned, 8> KilledUseSet;
|
|
SmallSet<unsigned, 8> UndefUseSet;
|
|
SmallVector<MachineOperand*, 4> Defs;
|
|
for (; FirstMI != LastMI; ++FirstMI) {
|
|
for (unsigned i = 0, e = FirstMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = FirstMI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isDef()) {
|
|
Defs.push_back(&MO);
|
|
continue;
|
|
}
|
|
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
|
|
if (LocalDefSet.count(Reg)) {
|
|
MO.setIsInternalRead();
|
|
if (MO.isKill())
|
|
// Internal def is now killed.
|
|
KilledDefSet.insert(Reg);
|
|
} else {
|
|
if (ExternUseSet.insert(Reg).second) {
|
|
ExternUses.push_back(Reg);
|
|
if (MO.isUndef())
|
|
UndefUseSet.insert(Reg);
|
|
}
|
|
if (MO.isKill())
|
|
// External def is now killed.
|
|
KilledUseSet.insert(Reg);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
|
|
MachineOperand &MO = *Defs[i];
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (LocalDefSet.insert(Reg).second) {
|
|
LocalDefs.push_back(Reg);
|
|
if (MO.isDead()) {
|
|
DeadDefSet.insert(Reg);
|
|
}
|
|
} else {
|
|
// Re-defined inside the bundle, it's no longer killed.
|
|
KilledDefSet.erase(Reg);
|
|
if (!MO.isDead())
|
|
// Previously defined but dead.
|
|
DeadDefSet.erase(Reg);
|
|
}
|
|
|
|
if (!MO.isDead()) {
|
|
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
|
|
unsigned SubReg = *SubRegs;
|
|
if (LocalDefSet.insert(SubReg).second)
|
|
LocalDefs.push_back(SubReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
Defs.clear();
|
|
}
|
|
|
|
SmallSet<unsigned, 32> Added;
|
|
for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
|
|
unsigned Reg = LocalDefs[i];
|
|
if (Added.insert(Reg).second) {
|
|
// If it's not live beyond end of the bundle, mark it dead.
|
|
bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg);
|
|
MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) |
|
|
getImplRegState(true));
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = ExternUses.size(); i != e; ++i) {
|
|
unsigned Reg = ExternUses[i];
|
|
bool isKill = KilledUseSet.count(Reg);
|
|
bool isUndef = UndefUseSet.count(Reg);
|
|
MIB.addReg(Reg, getKillRegState(isKill) | getUndefRegState(isUndef) |
|
|
getImplRegState(true));
|
|
}
|
|
}
|
|
|
|
/// finalizeBundle - Same functionality as the previous finalizeBundle except
|
|
/// the last instruction in the bundle is not provided as an input. This is
|
|
/// used in cases where bundles are pre-determined by marking instructions
|
|
/// with 'InsideBundle' marker. It returns the MBB instruction iterator that
|
|
/// points to the end of the bundle.
|
|
MachineBasicBlock::instr_iterator
|
|
llvm::finalizeBundle(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::instr_iterator FirstMI) {
|
|
MachineBasicBlock::instr_iterator E = MBB.instr_end();
|
|
MachineBasicBlock::instr_iterator LastMI = std::next(FirstMI);
|
|
while (LastMI != E && LastMI->isInsideBundle())
|
|
++LastMI;
|
|
finalizeBundle(MBB, FirstMI, LastMI);
|
|
return LastMI;
|
|
}
|
|
|
|
/// finalizeBundles - Finalize instruction bundles in the specified
|
|
/// MachineFunction. Return true if any bundles are finalized.
|
|
bool llvm::finalizeBundles(MachineFunction &MF) {
|
|
bool Changed = false;
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
|
|
MachineBasicBlock &MBB = *I;
|
|
MachineBasicBlock::instr_iterator MII = MBB.instr_begin();
|
|
MachineBasicBlock::instr_iterator MIE = MBB.instr_end();
|
|
if (MII == MIE)
|
|
continue;
|
|
assert(!MII->isInsideBundle() &&
|
|
"First instr cannot be inside bundle before finalization!");
|
|
|
|
for (++MII; MII != MIE; ) {
|
|
if (!MII->isInsideBundle())
|
|
++MII;
|
|
else {
|
|
MII = finalizeBundle(MBB, std::prev(MII));
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineOperand iterator
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineOperandIteratorBase::VirtRegInfo
|
|
MachineOperandIteratorBase::analyzeVirtReg(unsigned Reg,
|
|
SmallVectorImpl<std::pair<MachineInstr*, unsigned> > *Ops) {
|
|
VirtRegInfo RI = { false, false, false };
|
|
for(; isValid(); ++*this) {
|
|
MachineOperand &MO = deref();
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
continue;
|
|
|
|
// Remember each (MI, OpNo) that refers to Reg.
|
|
if (Ops)
|
|
Ops->push_back(std::make_pair(MO.getParent(), getOperandNo()));
|
|
|
|
// Both defs and uses can read virtual registers.
|
|
if (MO.readsReg()) {
|
|
RI.Reads = true;
|
|
if (MO.isDef())
|
|
RI.Tied = true;
|
|
}
|
|
|
|
// Only defs can write.
|
|
if (MO.isDef())
|
|
RI.Writes = true;
|
|
else if (!RI.Tied && MO.getParent()->isRegTiedToDefOperand(getOperandNo()))
|
|
RI.Tied = true;
|
|
}
|
|
return RI;
|
|
}
|
|
|
|
MachineOperandIteratorBase::PhysRegInfo
|
|
MachineOperandIteratorBase::analyzePhysReg(unsigned Reg,
|
|
const TargetRegisterInfo *TRI) {
|
|
bool AllDefsDead = true;
|
|
PhysRegInfo PRI = {false, false, false, false, false, false, false};
|
|
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
|
|
"analyzePhysReg not given a physical register!");
|
|
for (; isValid(); ++*this) {
|
|
MachineOperand &MO = deref();
|
|
|
|
if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) {
|
|
PRI.Clobbered = true;
|
|
continue;
|
|
}
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg || !TargetRegisterInfo::isPhysicalRegister(MOReg))
|
|
continue;
|
|
|
|
if (!TRI->regsOverlap(MOReg, Reg))
|
|
continue;
|
|
|
|
bool Covered = TRI->isSuperRegisterEq(Reg, MOReg);
|
|
if (MO.readsReg()) {
|
|
PRI.Read = true;
|
|
if (Covered) {
|
|
PRI.FullyRead = true;
|
|
if (MO.isKill())
|
|
PRI.Killed = true;
|
|
}
|
|
} else if (MO.isDef()) {
|
|
PRI.Defined = true;
|
|
if (Covered)
|
|
PRI.FullyDefined = true;
|
|
if (!MO.isDead())
|
|
AllDefsDead = false;
|
|
}
|
|
}
|
|
|
|
if (AllDefsDead && PRI.FullyDefined)
|
|
PRI.DeadDef = true;
|
|
|
|
return PRI;
|
|
}
|