mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
50c405416c
This patch removes all weight-related interfaces from BPI and replace them by probability versions. With this patch, we won't use edge weight anymore in either IR or MC passes. Edge probabilitiy is a better representation in terms of CFG update and validation. Differential revision: http://reviews.llvm.org/D15519 llvm-svn: 256263
494 lines
18 KiB
C++
494 lines
18 KiB
C++
//===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass inserts stack protectors into functions which need them. A variable
|
|
// with a random value in it is stored onto the stack before the local variables
|
|
// are allocated. Upon exiting the block, the stored value is checked. If it's
|
|
// changed, then there was some sort of violation and the program aborts.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/StackProtector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <cstdlib>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "stack-protector"
|
|
|
|
STATISTIC(NumFunProtected, "Number of functions protected");
|
|
STATISTIC(NumAddrTaken, "Number of local variables that have their address"
|
|
" taken.");
|
|
|
|
static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
char StackProtector::ID = 0;
|
|
INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
|
|
false, true)
|
|
|
|
FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
|
|
return new StackProtector(TM);
|
|
}
|
|
|
|
StackProtector::SSPLayoutKind
|
|
StackProtector::getSSPLayout(const AllocaInst *AI) const {
|
|
return AI ? Layout.lookup(AI) : SSPLK_None;
|
|
}
|
|
|
|
void StackProtector::adjustForColoring(const AllocaInst *From,
|
|
const AllocaInst *To) {
|
|
// When coloring replaces one alloca with another, transfer the SSPLayoutKind
|
|
// tag from the remapped to the target alloca. The remapped alloca should
|
|
// have a size smaller than or equal to the replacement alloca.
|
|
SSPLayoutMap::iterator I = Layout.find(From);
|
|
if (I != Layout.end()) {
|
|
SSPLayoutKind Kind = I->second;
|
|
Layout.erase(I);
|
|
|
|
// Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
|
|
// SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
|
|
// SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
|
|
I = Layout.find(To);
|
|
if (I == Layout.end())
|
|
Layout.insert(std::make_pair(To, Kind));
|
|
else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
|
|
I->second = Kind;
|
|
}
|
|
}
|
|
|
|
bool StackProtector::runOnFunction(Function &Fn) {
|
|
F = &Fn;
|
|
M = F->getParent();
|
|
DominatorTreeWrapperPass *DTWP =
|
|
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
|
|
|
|
Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
|
|
if (Attr.isStringAttribute() &&
|
|
Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
|
|
return false; // Invalid integer string
|
|
|
|
if (!RequiresStackProtector())
|
|
return false;
|
|
|
|
++NumFunProtected;
|
|
return InsertStackProtectors();
|
|
}
|
|
|
|
/// \param [out] IsLarge is set to true if a protectable array is found and
|
|
/// it is "large" ( >= ssp-buffer-size). In the case of a structure with
|
|
/// multiple arrays, this gets set if any of them is large.
|
|
bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
|
|
bool Strong,
|
|
bool InStruct) const {
|
|
if (!Ty)
|
|
return false;
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
|
|
if (!AT->getElementType()->isIntegerTy(8)) {
|
|
// If we're on a non-Darwin platform or we're inside of a structure, don't
|
|
// add stack protectors unless the array is a character array.
|
|
// However, in strong mode any array, regardless of type and size,
|
|
// triggers a protector.
|
|
if (!Strong && (InStruct || !Trip.isOSDarwin()))
|
|
return false;
|
|
}
|
|
|
|
// If an array has more than SSPBufferSize bytes of allocated space, then we
|
|
// emit stack protectors.
|
|
if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
|
|
IsLarge = true;
|
|
return true;
|
|
}
|
|
|
|
if (Strong)
|
|
// Require a protector for all arrays in strong mode
|
|
return true;
|
|
}
|
|
|
|
const StructType *ST = dyn_cast<StructType>(Ty);
|
|
if (!ST)
|
|
return false;
|
|
|
|
bool NeedsProtector = false;
|
|
for (StructType::element_iterator I = ST->element_begin(),
|
|
E = ST->element_end();
|
|
I != E; ++I)
|
|
if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
|
|
// If the element is a protectable array and is large (>= SSPBufferSize)
|
|
// then we are done. If the protectable array is not large, then
|
|
// keep looking in case a subsequent element is a large array.
|
|
if (IsLarge)
|
|
return true;
|
|
NeedsProtector = true;
|
|
}
|
|
|
|
return NeedsProtector;
|
|
}
|
|
|
|
bool StackProtector::HasAddressTaken(const Instruction *AI) {
|
|
for (const User *U : AI->users()) {
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
if (AI == SI->getValueOperand())
|
|
return true;
|
|
} else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
|
|
if (AI == SI->getOperand(0))
|
|
return true;
|
|
} else if (isa<CallInst>(U)) {
|
|
return true;
|
|
} else if (isa<InvokeInst>(U)) {
|
|
return true;
|
|
} else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
|
|
if (HasAddressTaken(SI))
|
|
return true;
|
|
} else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
|
|
// Keep track of what PHI nodes we have already visited to ensure
|
|
// they are only visited once.
|
|
if (VisitedPHIs.insert(PN).second)
|
|
if (HasAddressTaken(PN))
|
|
return true;
|
|
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
|
|
if (HasAddressTaken(GEP))
|
|
return true;
|
|
} else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
|
|
if (HasAddressTaken(BI))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check whether or not this function needs a stack protector based
|
|
/// upon the stack protector level.
|
|
///
|
|
/// We use two heuristics: a standard (ssp) and strong (sspstrong).
|
|
/// The standard heuristic which will add a guard variable to functions that
|
|
/// call alloca with a either a variable size or a size >= SSPBufferSize,
|
|
/// functions with character buffers larger than SSPBufferSize, and functions
|
|
/// with aggregates containing character buffers larger than SSPBufferSize. The
|
|
/// strong heuristic will add a guard variables to functions that call alloca
|
|
/// regardless of size, functions with any buffer regardless of type and size,
|
|
/// functions with aggregates that contain any buffer regardless of type and
|
|
/// size, and functions that contain stack-based variables that have had their
|
|
/// address taken.
|
|
bool StackProtector::RequiresStackProtector() {
|
|
bool Strong = false;
|
|
bool NeedsProtector = false;
|
|
if (F->hasFnAttribute(Attribute::StackProtectReq)) {
|
|
NeedsProtector = true;
|
|
Strong = true; // Use the same heuristic as strong to determine SSPLayout
|
|
} else if (F->hasFnAttribute(Attribute::StackProtectStrong))
|
|
Strong = true;
|
|
else if (!F->hasFnAttribute(Attribute::StackProtect))
|
|
return false;
|
|
|
|
for (const BasicBlock &BB : *F) {
|
|
for (const Instruction &I : BB) {
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
|
|
if (AI->isArrayAllocation()) {
|
|
// SSP-Strong: Enable protectors for any call to alloca, regardless
|
|
// of size.
|
|
if (Strong)
|
|
return true;
|
|
|
|
if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
|
|
if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
|
|
// A call to alloca with size >= SSPBufferSize requires
|
|
// stack protectors.
|
|
Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
|
|
NeedsProtector = true;
|
|
} else if (Strong) {
|
|
// Require protectors for all alloca calls in strong mode.
|
|
Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
|
|
NeedsProtector = true;
|
|
}
|
|
} else {
|
|
// A call to alloca with a variable size requires protectors.
|
|
Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
|
|
NeedsProtector = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
bool IsLarge = false;
|
|
if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
|
|
Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
|
|
: SSPLK_SmallArray));
|
|
NeedsProtector = true;
|
|
continue;
|
|
}
|
|
|
|
if (Strong && HasAddressTaken(AI)) {
|
|
++NumAddrTaken;
|
|
Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
|
|
NeedsProtector = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NeedsProtector;
|
|
}
|
|
|
|
static bool InstructionWillNotHaveChain(const Instruction *I) {
|
|
return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
|
|
isSafeToSpeculativelyExecute(I);
|
|
}
|
|
|
|
/// Identify if RI has a previous instruction in the "Tail Position" and return
|
|
/// it. Otherwise return 0.
|
|
///
|
|
/// This is based off of the code in llvm::isInTailCallPosition. The difference
|
|
/// is that it inverts the first part of llvm::isInTailCallPosition since
|
|
/// isInTailCallPosition is checking if a call is in a tail call position, and
|
|
/// we are searching for an unknown tail call that might be in the tail call
|
|
/// position. Once we find the call though, the code uses the same refactored
|
|
/// code, returnTypeIsEligibleForTailCall.
|
|
static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
|
|
const TargetLoweringBase *TLI) {
|
|
// Establish a reasonable upper bound on the maximum amount of instructions we
|
|
// will look through to find a tail call.
|
|
unsigned SearchCounter = 0;
|
|
const unsigned MaxSearch = 4;
|
|
bool NoInterposingChain = true;
|
|
|
|
for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend();
|
|
I != E && SearchCounter < MaxSearch; ++I) {
|
|
Instruction *Inst = &*I;
|
|
|
|
// Skip over debug intrinsics and do not allow them to affect our MaxSearch
|
|
// counter.
|
|
if (isa<DbgInfoIntrinsic>(Inst))
|
|
continue;
|
|
|
|
// If we find a call and the following conditions are satisifed, then we
|
|
// have found a tail call that satisfies at least the target independent
|
|
// requirements of a tail call:
|
|
//
|
|
// 1. The call site has the tail marker.
|
|
//
|
|
// 2. The call site either will not cause the creation of a chain or if a
|
|
// chain is necessary there are no instructions in between the callsite and
|
|
// the call which would create an interposing chain.
|
|
//
|
|
// 3. The return type of the function does not impede tail call
|
|
// optimization.
|
|
if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
|
|
if (CI->isTailCall() &&
|
|
(InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
|
|
returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
|
|
return CI;
|
|
}
|
|
|
|
// If we did not find a call see if we have an instruction that may create
|
|
// an interposing chain.
|
|
NoInterposingChain =
|
|
NoInterposingChain && InstructionWillNotHaveChain(Inst);
|
|
|
|
// Increment max search.
|
|
SearchCounter++;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Insert code into the entry block that stores the __stack_chk_guard
|
|
/// variable onto the stack:
|
|
///
|
|
/// entry:
|
|
/// StackGuardSlot = alloca i8*
|
|
/// StackGuard = load __stack_chk_guard
|
|
/// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
|
|
///
|
|
/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
|
|
/// node.
|
|
static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
|
|
const TargetLoweringBase *TLI, const Triple &TT,
|
|
AllocaInst *&AI, Value *&StackGuardVar) {
|
|
bool SupportsSelectionDAGSP = false;
|
|
PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
|
|
unsigned AddressSpace, Offset;
|
|
if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
|
|
Constant *OffsetVal =
|
|
ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
|
|
|
|
StackGuardVar =
|
|
ConstantExpr::getIntToPtr(OffsetVal, PointerType::get(PtrTy,
|
|
AddressSpace));
|
|
} else if (TT.isOSOpenBSD()) {
|
|
StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
|
|
cast<GlobalValue>(StackGuardVar)
|
|
->setVisibility(GlobalValue::HiddenVisibility);
|
|
} else {
|
|
SupportsSelectionDAGSP = true;
|
|
StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
|
|
}
|
|
|
|
IRBuilder<> B(&F->getEntryBlock().front());
|
|
AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
|
|
LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
|
|
B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
|
|
{LI, AI});
|
|
|
|
return SupportsSelectionDAGSP;
|
|
}
|
|
|
|
/// InsertStackProtectors - Insert code into the prologue and epilogue of the
|
|
/// function.
|
|
///
|
|
/// - The prologue code loads and stores the stack guard onto the stack.
|
|
/// - The epilogue checks the value stored in the prologue against the original
|
|
/// value. It calls __stack_chk_fail if they differ.
|
|
bool StackProtector::InsertStackProtectors() {
|
|
bool HasPrologue = false;
|
|
bool SupportsSelectionDAGSP =
|
|
EnableSelectionDAGSP && !TM->Options.EnableFastISel;
|
|
AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
|
|
Value *StackGuardVar = nullptr; // The stack guard variable.
|
|
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
|
|
BasicBlock *BB = &*I++;
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
|
|
if (!RI)
|
|
continue;
|
|
|
|
if (!HasPrologue) {
|
|
HasPrologue = true;
|
|
SupportsSelectionDAGSP &=
|
|
CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
|
|
}
|
|
|
|
if (SupportsSelectionDAGSP) {
|
|
// Since we have a potential tail call, insert the special stack check
|
|
// intrinsic.
|
|
Instruction *InsertionPt = nullptr;
|
|
if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
|
|
InsertionPt = CI;
|
|
} else {
|
|
InsertionPt = RI;
|
|
// At this point we know that BB has a return statement so it *DOES*
|
|
// have a terminator.
|
|
assert(InsertionPt != nullptr &&
|
|
"BB must have a terminator instruction at this point.");
|
|
}
|
|
|
|
Function *Intrinsic =
|
|
Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
|
|
CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
|
|
} else {
|
|
// If we do not support SelectionDAG based tail calls, generate IR level
|
|
// tail calls.
|
|
//
|
|
// For each block with a return instruction, convert this:
|
|
//
|
|
// return:
|
|
// ...
|
|
// ret ...
|
|
//
|
|
// into this:
|
|
//
|
|
// return:
|
|
// ...
|
|
// %1 = load __stack_chk_guard
|
|
// %2 = load StackGuardSlot
|
|
// %3 = cmp i1 %1, %2
|
|
// br i1 %3, label %SP_return, label %CallStackCheckFailBlk
|
|
//
|
|
// SP_return:
|
|
// ret ...
|
|
//
|
|
// CallStackCheckFailBlk:
|
|
// call void @__stack_chk_fail()
|
|
// unreachable
|
|
|
|
// Create the FailBB. We duplicate the BB every time since the MI tail
|
|
// merge pass will merge together all of the various BB into one including
|
|
// fail BB generated by the stack protector pseudo instruction.
|
|
BasicBlock *FailBB = CreateFailBB();
|
|
|
|
// Split the basic block before the return instruction.
|
|
BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
|
|
|
|
// Update the dominator tree if we need to.
|
|
if (DT && DT->isReachableFromEntry(BB)) {
|
|
DT->addNewBlock(NewBB, BB);
|
|
DT->addNewBlock(FailBB, BB);
|
|
}
|
|
|
|
// Remove default branch instruction to the new BB.
|
|
BB->getTerminator()->eraseFromParent();
|
|
|
|
// Move the newly created basic block to the point right after the old
|
|
// basic block so that it's in the "fall through" position.
|
|
NewBB->moveAfter(BB);
|
|
|
|
// Generate the stack protector instructions in the old basic block.
|
|
IRBuilder<> B(BB);
|
|
LoadInst *LI1 = B.CreateLoad(StackGuardVar);
|
|
LoadInst *LI2 = B.CreateLoad(AI);
|
|
Value *Cmp = B.CreateICmpEQ(LI1, LI2);
|
|
auto SuccessProb =
|
|
BranchProbabilityInfo::getBranchProbStackProtector(true);
|
|
auto FailureProb =
|
|
BranchProbabilityInfo::getBranchProbStackProtector(false);
|
|
MDNode *Weights = MDBuilder(F->getContext())
|
|
.createBranchWeights(SuccessProb.getNumerator(),
|
|
FailureProb.getNumerator());
|
|
B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
|
|
}
|
|
}
|
|
|
|
// Return if we didn't modify any basic blocks. i.e., there are no return
|
|
// statements in the function.
|
|
return HasPrologue;
|
|
}
|
|
|
|
/// CreateFailBB - Create a basic block to jump to when the stack protector
|
|
/// check fails.
|
|
BasicBlock *StackProtector::CreateFailBB() {
|
|
LLVMContext &Context = F->getContext();
|
|
BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
|
|
IRBuilder<> B(FailBB);
|
|
if (Trip.isOSOpenBSD()) {
|
|
Constant *StackChkFail =
|
|
M->getOrInsertFunction("__stack_smash_handler",
|
|
Type::getVoidTy(Context),
|
|
Type::getInt8PtrTy(Context), nullptr);
|
|
|
|
B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
|
|
} else {
|
|
Constant *StackChkFail =
|
|
M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context),
|
|
nullptr);
|
|
B.CreateCall(StackChkFail, {});
|
|
}
|
|
B.CreateUnreachable();
|
|
return FailBB;
|
|
}
|