mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-02 00:42:52 +01:00
fd906f6a07
functions. llvm-svn: 61345
1593 lines
55 KiB
C++
1593 lines
55 KiB
C++
//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the AsmPrinter class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/CodeGen/GCMetadataPrinter.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetAsmInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <cerrno>
|
|
using namespace llvm;
|
|
|
|
char AsmPrinter::ID = 0;
|
|
AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
|
|
const TargetAsmInfo *T)
|
|
: MachineFunctionPass(&ID), FunctionNumber(0), O(o),
|
|
TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
|
|
IsInTextSection(false)
|
|
{}
|
|
|
|
AsmPrinter::~AsmPrinter() {
|
|
for (gcp_iterator I = GCMetadataPrinters.begin(),
|
|
E = GCMetadataPrinters.end(); I != E; ++I)
|
|
delete I->second;
|
|
}
|
|
|
|
/// SwitchToTextSection - Switch to the specified text section of the executable
|
|
/// if we are not already in it!
|
|
///
|
|
void AsmPrinter::SwitchToTextSection(const char *NewSection,
|
|
const GlobalValue *GV) {
|
|
std::string NS;
|
|
if (GV && GV->hasSection())
|
|
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
|
|
else
|
|
NS = NewSection;
|
|
|
|
// If we're already in this section, we're done.
|
|
if (CurrentSection == NS) return;
|
|
|
|
// Close the current section, if applicable.
|
|
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
|
|
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
|
|
|
|
CurrentSection = NS;
|
|
|
|
if (!CurrentSection.empty())
|
|
O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
|
|
|
|
IsInTextSection = true;
|
|
}
|
|
|
|
/// SwitchToDataSection - Switch to the specified data section of the executable
|
|
/// if we are not already in it!
|
|
///
|
|
void AsmPrinter::SwitchToDataSection(const char *NewSection,
|
|
const GlobalValue *GV) {
|
|
std::string NS;
|
|
if (GV && GV->hasSection())
|
|
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
|
|
else
|
|
NS = NewSection;
|
|
|
|
// If we're already in this section, we're done.
|
|
if (CurrentSection == NS) return;
|
|
|
|
// Close the current section, if applicable.
|
|
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
|
|
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
|
|
|
|
CurrentSection = NS;
|
|
|
|
if (!CurrentSection.empty())
|
|
O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
|
|
|
|
IsInTextSection = false;
|
|
}
|
|
|
|
/// SwitchToSection - Switch to the specified section of the executable if we
|
|
/// are not already in it!
|
|
void AsmPrinter::SwitchToSection(const Section* NS) {
|
|
const std::string& NewSection = NS->getName();
|
|
|
|
// If we're already in this section, we're done.
|
|
if (CurrentSection == NewSection) return;
|
|
|
|
// Close the current section, if applicable.
|
|
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
|
|
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
|
|
|
|
// FIXME: Make CurrentSection a Section* in the future
|
|
CurrentSection = NewSection;
|
|
CurrentSection_ = NS;
|
|
|
|
if (!CurrentSection.empty()) {
|
|
// If section is named we need to switch into it via special '.section'
|
|
// directive and also append funky flags. Otherwise - section name is just
|
|
// some magic assembler directive.
|
|
if (NS->isNamed())
|
|
O << TAI->getSwitchToSectionDirective()
|
|
<< CurrentSection
|
|
<< TAI->getSectionFlags(NS->getFlags());
|
|
else
|
|
O << CurrentSection;
|
|
O << TAI->getDataSectionStartSuffix() << '\n';
|
|
}
|
|
|
|
IsInTextSection = (NS->getFlags() & SectionFlags::Code);
|
|
}
|
|
|
|
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<GCModuleInfo>();
|
|
}
|
|
|
|
bool AsmPrinter::doInitialization(Module &M) {
|
|
Mang = new Mangler(M, TAI->getGlobalPrefix());
|
|
|
|
GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
|
|
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
|
|
|
|
if (TAI->hasSingleParameterDotFile()) {
|
|
/* Very minimal debug info. It is ignored if we emit actual
|
|
debug info. If we don't, this at helps the user find where
|
|
a function came from. */
|
|
O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
|
|
}
|
|
|
|
for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
|
|
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
|
|
MP->beginAssembly(O, *this, *TAI);
|
|
|
|
if (!M.getModuleInlineAsm().empty())
|
|
O << TAI->getCommentString() << " Start of file scope inline assembly\n"
|
|
<< M.getModuleInlineAsm()
|
|
<< '\n' << TAI->getCommentString()
|
|
<< " End of file scope inline assembly\n";
|
|
|
|
SwitchToDataSection(""); // Reset back to no section.
|
|
|
|
MMI = getAnalysisToUpdate<MachineModuleInfo>();
|
|
if (MMI) MMI->AnalyzeModule(M);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AsmPrinter::doFinalization(Module &M) {
|
|
if (TAI->getWeakRefDirective()) {
|
|
if (!ExtWeakSymbols.empty())
|
|
SwitchToDataSection("");
|
|
|
|
for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
|
|
e = ExtWeakSymbols.end(); i != e; ++i) {
|
|
const GlobalValue *GV = *i;
|
|
std::string Name = Mang->getValueName(GV);
|
|
O << TAI->getWeakRefDirective() << Name << '\n';
|
|
}
|
|
}
|
|
|
|
if (TAI->getSetDirective()) {
|
|
if (!M.alias_empty())
|
|
SwitchToSection(TAI->getTextSection());
|
|
|
|
O << '\n';
|
|
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
|
|
I!=E; ++I) {
|
|
std::string Name = Mang->getValueName(I);
|
|
std::string Target;
|
|
|
|
const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
|
|
Target = Mang->getValueName(GV);
|
|
|
|
if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
|
|
O << "\t.globl\t" << Name << '\n';
|
|
else if (I->hasWeakLinkage())
|
|
O << TAI->getWeakRefDirective() << Name << '\n';
|
|
else if (!I->hasInternalLinkage())
|
|
assert(0 && "Invalid alias linkage");
|
|
|
|
printVisibility(Name, I->getVisibility());
|
|
|
|
O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
|
|
|
|
// If the aliasee has external weak linkage it can be referenced only by
|
|
// alias itself. In this case it can be not in ExtWeakSymbols list. Emit
|
|
// weak reference in such case.
|
|
if (GV->hasExternalWeakLinkage()) {
|
|
if (TAI->getWeakRefDirective())
|
|
O << TAI->getWeakRefDirective() << Target << '\n';
|
|
else
|
|
O << "\t.globl\t" << Target << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
|
|
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
|
|
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
|
|
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
|
|
MP->finishAssembly(O, *this, *TAI);
|
|
|
|
// If we don't have any trampolines, then we don't require stack memory
|
|
// to be executable. Some targets have a directive to declare this.
|
|
Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
|
|
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
|
|
if (TAI->getNonexecutableStackDirective())
|
|
O << TAI->getNonexecutableStackDirective() << '\n';
|
|
|
|
delete Mang; Mang = 0;
|
|
return false;
|
|
}
|
|
|
|
std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
|
|
assert(MF && "No machine function?");
|
|
std::string Name = MF->getFunction()->getName();
|
|
if (Name.empty())
|
|
Name = Mang->getValueName(MF->getFunction());
|
|
return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
|
|
Name + ".eh", TAI->getGlobalPrefix());
|
|
}
|
|
|
|
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
|
|
// What's my mangled name?
|
|
CurrentFnName = Mang->getValueName(MF.getFunction());
|
|
IncrementFunctionNumber();
|
|
}
|
|
|
|
/// EmitConstantPool - Print to the current output stream assembly
|
|
/// representations of the constants in the constant pool MCP. This is
|
|
/// used to print out constants which have been "spilled to memory" by
|
|
/// the code generator.
|
|
///
|
|
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
|
|
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
|
|
if (CP.empty()) return;
|
|
|
|
// Calculate sections for constant pool entries. We collect entries to go into
|
|
// the same section together to reduce amount of section switch statements.
|
|
typedef
|
|
std::multimap<const Section*,
|
|
std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
|
|
CPMap CPs;
|
|
SmallPtrSet<const Section*, 5> Sections;
|
|
|
|
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
|
|
MachineConstantPoolEntry CPE = CP[i];
|
|
const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
|
|
CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
|
|
Sections.insert(S);
|
|
}
|
|
|
|
// Now print stuff into the calculated sections.
|
|
for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
|
|
ES = Sections.end(); IS != ES; ++IS) {
|
|
SwitchToSection(*IS);
|
|
EmitAlignment(MCP->getConstantPoolAlignment());
|
|
|
|
std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
|
|
for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
|
|
CPMap::iterator J = next(I);
|
|
MachineConstantPoolEntry Entry = I->second.first;
|
|
unsigned index = I->second.second;
|
|
|
|
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
|
|
<< index << ":\t\t\t\t\t";
|
|
// O << TAI->getCommentString() << ' ' <<
|
|
// WriteTypeSymbolic(O, CP[i].first.getType(), 0);
|
|
O << '\n';
|
|
if (Entry.isMachineConstantPoolEntry())
|
|
EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
|
|
else
|
|
EmitGlobalConstant(Entry.Val.ConstVal);
|
|
|
|
// Emit inter-object padding for alignment.
|
|
if (J != E) {
|
|
const Type *Ty = Entry.getType();
|
|
unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty);
|
|
unsigned ValEnd = Entry.getOffset() + EntSize;
|
|
EmitZeros(J->second.first.getOffset()-ValEnd);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
|
|
/// by the current function to the current output stream.
|
|
///
|
|
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
|
|
MachineFunction &MF) {
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return;
|
|
|
|
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
|
|
|
|
// Pick the directive to use to print the jump table entries, and switch to
|
|
// the appropriate section.
|
|
TargetLowering *LoweringInfo = TM.getTargetLowering();
|
|
|
|
const char* JumpTableDataSection = TAI->getJumpTableDataSection();
|
|
const Function *F = MF.getFunction();
|
|
unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
|
|
if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
|
|
!JumpTableDataSection ||
|
|
SectionFlags & SectionFlags::Linkonce) {
|
|
// In PIC mode, we need to emit the jump table to the same section as the
|
|
// function body itself, otherwise the label differences won't make sense.
|
|
// We should also do if the section name is NULL or function is declared in
|
|
// discardable section.
|
|
SwitchToSection(TAI->SectionForGlobal(F));
|
|
} else {
|
|
SwitchToDataSection(JumpTableDataSection);
|
|
}
|
|
|
|
EmitAlignment(Log2_32(MJTI->getAlignment()));
|
|
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
|
|
|
|
// If this jump table was deleted, ignore it.
|
|
if (JTBBs.empty()) continue;
|
|
|
|
// For PIC codegen, if possible we want to use the SetDirective to reduce
|
|
// the number of relocations the assembler will generate for the jump table.
|
|
// Set directives are all printed before the jump table itself.
|
|
SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
|
|
if (TAI->getSetDirective() && IsPic)
|
|
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
|
|
if (EmittedSets.insert(JTBBs[ii]))
|
|
printPICJumpTableSetLabel(i, JTBBs[ii]);
|
|
|
|
// On some targets (e.g. darwin) we want to emit two consequtive labels
|
|
// before each jump table. The first label is never referenced, but tells
|
|
// the assembler and linker the extents of the jump table object. The
|
|
// second label is actually referenced by the code.
|
|
if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
|
|
O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
|
|
|
|
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
|
|
<< '_' << i << ":\n";
|
|
|
|
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
|
|
printPICJumpTableEntry(MJTI, JTBBs[ii], i);
|
|
O << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
|
|
const MachineBasicBlock *MBB,
|
|
unsigned uid) const {
|
|
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
|
|
|
|
// Use JumpTableDirective otherwise honor the entry size from the jump table
|
|
// info.
|
|
const char *JTEntryDirective = TAI->getJumpTableDirective();
|
|
bool HadJTEntryDirective = JTEntryDirective != NULL;
|
|
if (!HadJTEntryDirective) {
|
|
JTEntryDirective = MJTI->getEntrySize() == 4 ?
|
|
TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
|
|
}
|
|
|
|
O << JTEntryDirective << ' ';
|
|
|
|
// If we have emitted set directives for the jump table entries, print
|
|
// them rather than the entries themselves. If we're emitting PIC, then
|
|
// emit the table entries as differences between two text section labels.
|
|
// If we're emitting non-PIC code, then emit the entries as direct
|
|
// references to the target basic blocks.
|
|
if (IsPic) {
|
|
if (TAI->getSetDirective()) {
|
|
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
|
|
<< '_' << uid << "_set_" << MBB->getNumber();
|
|
} else {
|
|
printBasicBlockLabel(MBB, false, false, false);
|
|
// If the arch uses custom Jump Table directives, don't calc relative to
|
|
// JT
|
|
if (!HadJTEntryDirective)
|
|
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
|
|
<< getFunctionNumber() << '_' << uid;
|
|
}
|
|
} else {
|
|
printBasicBlockLabel(MBB, false, false, false);
|
|
}
|
|
}
|
|
|
|
|
|
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
|
|
/// special global used by LLVM. If so, emit it and return true, otherwise
|
|
/// do nothing and return false.
|
|
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
|
|
if (GV->getName() == "llvm.used") {
|
|
if (TAI->getUsedDirective() != 0) // No need to emit this at all.
|
|
EmitLLVMUsedList(GV->getInitializer());
|
|
return true;
|
|
}
|
|
|
|
// Ignore debug and non-emitted data.
|
|
if (GV->getSection() == "llvm.metadata") return true;
|
|
|
|
if (!GV->hasAppendingLinkage()) return false;
|
|
|
|
assert(GV->hasInitializer() && "Not a special LLVM global!");
|
|
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
|
|
if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
|
|
SwitchToDataSection(TAI->getStaticCtorsSection());
|
|
EmitAlignment(Align, 0);
|
|
EmitXXStructorList(GV->getInitializer());
|
|
return true;
|
|
}
|
|
|
|
if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
|
|
SwitchToDataSection(TAI->getStaticDtorsSection());
|
|
EmitAlignment(Align, 0);
|
|
EmitXXStructorList(GV->getInitializer());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// findGlobalValue - if CV is an expression equivalent to a single
|
|
/// global value, return that value.
|
|
const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
|
|
return GV;
|
|
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Opcode = CE->getOpcode();
|
|
switch (Opcode) {
|
|
case Instruction::GetElementPtr: {
|
|
const Constant *ptrVal = CE->getOperand(0);
|
|
SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
|
|
if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
|
|
return 0;
|
|
return findGlobalValue(ptrVal);
|
|
}
|
|
case Instruction::BitCast:
|
|
return findGlobalValue(CE->getOperand(0));
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
|
|
/// global in the specified llvm.used list for which emitUsedDirectiveFor
|
|
/// is true, as being used with this directive.
|
|
|
|
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
|
|
const char *Directive = TAI->getUsedDirective();
|
|
|
|
// Should be an array of 'sbyte*'.
|
|
ConstantArray *InitList = dyn_cast<ConstantArray>(List);
|
|
if (InitList == 0) return;
|
|
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
|
|
const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
|
|
if (TAI->emitUsedDirectiveFor(GV, Mang)) {
|
|
O << Directive;
|
|
EmitConstantValueOnly(InitList->getOperand(i));
|
|
O << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
|
|
/// function pointers, ignoring the init priority.
|
|
void AsmPrinter::EmitXXStructorList(Constant *List) {
|
|
// Should be an array of '{ int, void ()* }' structs. The first value is the
|
|
// init priority, which we ignore.
|
|
if (!isa<ConstantArray>(List)) return;
|
|
ConstantArray *InitList = cast<ConstantArray>(List);
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
|
|
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
|
|
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
|
|
|
|
if (CS->getOperand(1)->isNullValue())
|
|
return; // Found a null terminator, exit printing.
|
|
// Emit the function pointer.
|
|
EmitGlobalConstant(CS->getOperand(1));
|
|
}
|
|
}
|
|
|
|
/// getGlobalLinkName - Returns the asm/link name of of the specified
|
|
/// global variable. Should be overridden by each target asm printer to
|
|
/// generate the appropriate value.
|
|
const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
|
|
std::string LinkName;
|
|
|
|
if (isa<Function>(GV)) {
|
|
LinkName += TAI->getFunctionAddrPrefix();
|
|
LinkName += Mang->getValueName(GV);
|
|
LinkName += TAI->getFunctionAddrSuffix();
|
|
} else {
|
|
LinkName += TAI->getGlobalVarAddrPrefix();
|
|
LinkName += Mang->getValueName(GV);
|
|
LinkName += TAI->getGlobalVarAddrSuffix();
|
|
}
|
|
|
|
return LinkName;
|
|
}
|
|
|
|
/// EmitExternalGlobal - Emit the external reference to a global variable.
|
|
/// Should be overridden if an indirect reference should be used.
|
|
void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
|
|
O << getGlobalLinkName(GV);
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// LEB 128 number encoding.
|
|
|
|
/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
|
|
/// representing an unsigned leb128 value.
|
|
void AsmPrinter::PrintULEB128(unsigned Value) const {
|
|
char Buffer[20];
|
|
do {
|
|
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
|
|
Value >>= 7;
|
|
if (Value) Byte |= 0x80;
|
|
O << "0x" << utohex_buffer(Byte, Buffer+20);
|
|
if (Value) O << ", ";
|
|
} while (Value);
|
|
}
|
|
|
|
/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
|
|
/// representing a signed leb128 value.
|
|
void AsmPrinter::PrintSLEB128(int Value) const {
|
|
int Sign = Value >> (8 * sizeof(Value) - 1);
|
|
bool IsMore;
|
|
char Buffer[20];
|
|
|
|
do {
|
|
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
|
|
Value >>= 7;
|
|
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
|
|
if (IsMore) Byte |= 0x80;
|
|
O << "0x" << utohex_buffer(Byte, Buffer+20);
|
|
if (IsMore) O << ", ";
|
|
} while (IsMore);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Emission and print routines
|
|
//
|
|
|
|
/// PrintHex - Print a value as a hexidecimal value.
|
|
///
|
|
void AsmPrinter::PrintHex(int Value) const {
|
|
char Buffer[20];
|
|
O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
|
|
}
|
|
|
|
/// EOL - Print a newline character to asm stream. If a comment is present
|
|
/// then it will be printed first. Comments should not contain '\n'.
|
|
void AsmPrinter::EOL() const {
|
|
O << '\n';
|
|
}
|
|
|
|
void AsmPrinter::EOL(const std::string &Comment) const {
|
|
if (VerboseAsm && !Comment.empty()) {
|
|
O << '\t'
|
|
<< TAI->getCommentString()
|
|
<< ' '
|
|
<< Comment;
|
|
}
|
|
O << '\n';
|
|
}
|
|
|
|
void AsmPrinter::EOL(const char* Comment) const {
|
|
if (VerboseAsm && *Comment) {
|
|
O << '\t'
|
|
<< TAI->getCommentString()
|
|
<< ' '
|
|
<< Comment;
|
|
}
|
|
O << '\n';
|
|
}
|
|
|
|
/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
|
|
/// unsigned leb128 value.
|
|
void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
|
|
if (TAI->hasLEB128()) {
|
|
O << "\t.uleb128\t"
|
|
<< Value;
|
|
} else {
|
|
O << TAI->getData8bitsDirective();
|
|
PrintULEB128(Value);
|
|
}
|
|
}
|
|
|
|
/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
|
|
/// signed leb128 value.
|
|
void AsmPrinter::EmitSLEB128Bytes(int Value) const {
|
|
if (TAI->hasLEB128()) {
|
|
O << "\t.sleb128\t"
|
|
<< Value;
|
|
} else {
|
|
O << TAI->getData8bitsDirective();
|
|
PrintSLEB128(Value);
|
|
}
|
|
}
|
|
|
|
/// EmitInt8 - Emit a byte directive and value.
|
|
///
|
|
void AsmPrinter::EmitInt8(int Value) const {
|
|
O << TAI->getData8bitsDirective();
|
|
PrintHex(Value & 0xFF);
|
|
}
|
|
|
|
/// EmitInt16 - Emit a short directive and value.
|
|
///
|
|
void AsmPrinter::EmitInt16(int Value) const {
|
|
O << TAI->getData16bitsDirective();
|
|
PrintHex(Value & 0xFFFF);
|
|
}
|
|
|
|
/// EmitInt32 - Emit a long directive and value.
|
|
///
|
|
void AsmPrinter::EmitInt32(int Value) const {
|
|
O << TAI->getData32bitsDirective();
|
|
PrintHex(Value);
|
|
}
|
|
|
|
/// EmitInt64 - Emit a long long directive and value.
|
|
///
|
|
void AsmPrinter::EmitInt64(uint64_t Value) const {
|
|
if (TAI->getData64bitsDirective()) {
|
|
O << TAI->getData64bitsDirective();
|
|
PrintHex(Value);
|
|
} else {
|
|
if (TM.getTargetData()->isBigEndian()) {
|
|
EmitInt32(unsigned(Value >> 32)); O << '\n';
|
|
EmitInt32(unsigned(Value));
|
|
} else {
|
|
EmitInt32(unsigned(Value)); O << '\n';
|
|
EmitInt32(unsigned(Value >> 32));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// toOctal - Convert the low order bits of X into an octal digit.
|
|
///
|
|
static inline char toOctal(int X) {
|
|
return (X&7)+'0';
|
|
}
|
|
|
|
/// printStringChar - Print a char, escaped if necessary.
|
|
///
|
|
static void printStringChar(raw_ostream &O, char C) {
|
|
if (C == '"') {
|
|
O << "\\\"";
|
|
} else if (C == '\\') {
|
|
O << "\\\\";
|
|
} else if (isprint(C)) {
|
|
O << C;
|
|
} else {
|
|
switch(C) {
|
|
case '\b': O << "\\b"; break;
|
|
case '\f': O << "\\f"; break;
|
|
case '\n': O << "\\n"; break;
|
|
case '\r': O << "\\r"; break;
|
|
case '\t': O << "\\t"; break;
|
|
default:
|
|
O << '\\';
|
|
O << toOctal(C >> 6);
|
|
O << toOctal(C >> 3);
|
|
O << toOctal(C >> 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitString - Emit a string with quotes and a null terminator.
|
|
/// Special characters are emitted properly.
|
|
/// \literal (Eg. '\t') \endliteral
|
|
void AsmPrinter::EmitString(const std::string &String) const {
|
|
const char* AscizDirective = TAI->getAscizDirective();
|
|
if (AscizDirective)
|
|
O << AscizDirective;
|
|
else
|
|
O << TAI->getAsciiDirective();
|
|
O << '\"';
|
|
for (unsigned i = 0, N = String.size(); i < N; ++i) {
|
|
unsigned char C = String[i];
|
|
printStringChar(O, C);
|
|
}
|
|
if (AscizDirective)
|
|
O << '\"';
|
|
else
|
|
O << "\\0\"";
|
|
}
|
|
|
|
|
|
/// EmitFile - Emit a .file directive.
|
|
void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
|
|
O << "\t.file\t" << Number << " \"";
|
|
for (unsigned i = 0, N = Name.size(); i < N; ++i) {
|
|
unsigned char C = Name[i];
|
|
printStringChar(O, C);
|
|
}
|
|
O << '\"';
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// EmitAlignment - Emit an alignment directive to the specified power of
|
|
// two boundary. For example, if you pass in 3 here, you will get an 8
|
|
// byte alignment. If a global value is specified, and if that global has
|
|
// an explicit alignment requested, it will unconditionally override the
|
|
// alignment request. However, if ForcedAlignBits is specified, this value
|
|
// has final say: the ultimate alignment will be the max of ForcedAlignBits
|
|
// and the alignment computed with NumBits and the global.
|
|
//
|
|
// The algorithm is:
|
|
// Align = NumBits;
|
|
// if (GV && GV->hasalignment) Align = GV->getalignment();
|
|
// Align = std::max(Align, ForcedAlignBits);
|
|
//
|
|
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
|
|
unsigned ForcedAlignBits,
|
|
bool UseFillExpr) const {
|
|
if (GV && GV->getAlignment())
|
|
NumBits = Log2_32(GV->getAlignment());
|
|
NumBits = std::max(NumBits, ForcedAlignBits);
|
|
|
|
if (NumBits == 0) return; // No need to emit alignment.
|
|
if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
|
|
O << TAI->getAlignDirective() << NumBits;
|
|
|
|
unsigned FillValue = TAI->getTextAlignFillValue();
|
|
UseFillExpr &= IsInTextSection && FillValue;
|
|
if (UseFillExpr) {
|
|
O << ',';
|
|
PrintHex(FillValue);
|
|
}
|
|
O << '\n';
|
|
}
|
|
|
|
|
|
/// EmitZeros - Emit a block of zeros.
|
|
///
|
|
void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
|
|
if (NumZeros) {
|
|
if (TAI->getZeroDirective()) {
|
|
O << TAI->getZeroDirective() << NumZeros;
|
|
if (TAI->getZeroDirectiveSuffix())
|
|
O << TAI->getZeroDirectiveSuffix();
|
|
O << '\n';
|
|
} else {
|
|
for (; NumZeros; --NumZeros)
|
|
O << TAI->getData8bitsDirective() << "0\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print out the specified constant, without a storage class. Only the
|
|
// constants valid in constant expressions can occur here.
|
|
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
|
|
if (CV->isNullValue() || isa<UndefValue>(CV))
|
|
O << '0';
|
|
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
O << CI->getZExtValue();
|
|
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
|
|
// This is a constant address for a global variable or function. Use the
|
|
// name of the variable or function as the address value, possibly
|
|
// decorating it with GlobalVarAddrPrefix/Suffix or
|
|
// FunctionAddrPrefix/Suffix (these all default to "" )
|
|
if (isa<Function>(GV)) {
|
|
O << TAI->getFunctionAddrPrefix()
|
|
<< Mang->getValueName(GV)
|
|
<< TAI->getFunctionAddrSuffix();
|
|
} else {
|
|
O << TAI->getGlobalVarAddrPrefix()
|
|
<< Mang->getValueName(GV)
|
|
<< TAI->getGlobalVarAddrSuffix();
|
|
}
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Opcode = CE->getOpcode();
|
|
switch (Opcode) {
|
|
case Instruction::GetElementPtr: {
|
|
// generate a symbolic expression for the byte address
|
|
const Constant *ptrVal = CE->getOperand(0);
|
|
SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
|
|
if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
|
|
idxVec.size())) {
|
|
if (Offset)
|
|
O << '(';
|
|
EmitConstantValueOnly(ptrVal);
|
|
if (Offset > 0)
|
|
O << ") + " << Offset;
|
|
else if (Offset < 0)
|
|
O << ") - " << -Offset;
|
|
} else {
|
|
EmitConstantValueOnly(ptrVal);
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
|
|
break;
|
|
case Instruction::BitCast:
|
|
return EmitConstantValueOnly(CE->getOperand(0));
|
|
|
|
case Instruction::IntToPtr: {
|
|
// Handle casts to pointers by changing them into casts to the appropriate
|
|
// integer type. This promotes constant folding and simplifies this code.
|
|
Constant *Op = CE->getOperand(0);
|
|
Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
|
|
return EmitConstantValueOnly(Op);
|
|
}
|
|
|
|
|
|
case Instruction::PtrToInt: {
|
|
// Support only foldable casts to/from pointers that can be eliminated by
|
|
// changing the pointer to the appropriately sized integer type.
|
|
Constant *Op = CE->getOperand(0);
|
|
const Type *Ty = CE->getType();
|
|
|
|
// We can emit the pointer value into this slot if the slot is an
|
|
// integer slot greater or equal to the size of the pointer.
|
|
if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
|
|
return EmitConstantValueOnly(Op);
|
|
|
|
O << "((";
|
|
EmitConstantValueOnly(Op);
|
|
APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
|
|
|
|
SmallString<40> S;
|
|
ptrMask.toStringUnsigned(S);
|
|
O << ") & " << S.c_str() << ')';
|
|
break;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
O << '(';
|
|
EmitConstantValueOnly(CE->getOperand(0));
|
|
O << ')';
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
O << " + ";
|
|
break;
|
|
case Instruction::Sub:
|
|
O << " - ";
|
|
break;
|
|
case Instruction::And:
|
|
O << " & ";
|
|
break;
|
|
case Instruction::Or:
|
|
O << " | ";
|
|
break;
|
|
case Instruction::Xor:
|
|
O << " ^ ";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
O << '(';
|
|
EmitConstantValueOnly(CE->getOperand(1));
|
|
O << ')';
|
|
break;
|
|
default:
|
|
assert(0 && "Unsupported operator!");
|
|
}
|
|
} else {
|
|
assert(0 && "Unknown constant value!");
|
|
}
|
|
}
|
|
|
|
/// printAsCString - Print the specified array as a C compatible string, only if
|
|
/// the predicate isString is true.
|
|
///
|
|
static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
|
|
unsigned LastElt) {
|
|
assert(CVA->isString() && "Array is not string compatible!");
|
|
|
|
O << '\"';
|
|
for (unsigned i = 0; i != LastElt; ++i) {
|
|
unsigned char C =
|
|
(unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
|
|
printStringChar(O, C);
|
|
}
|
|
O << '\"';
|
|
}
|
|
|
|
/// EmitString - Emit a zero-byte-terminated string constant.
|
|
///
|
|
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
|
|
unsigned NumElts = CVA->getNumOperands();
|
|
if (TAI->getAscizDirective() && NumElts &&
|
|
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
|
|
O << TAI->getAscizDirective();
|
|
printAsCString(O, CVA, NumElts-1);
|
|
} else {
|
|
O << TAI->getAsciiDirective();
|
|
printAsCString(O, CVA, NumElts);
|
|
}
|
|
O << '\n';
|
|
}
|
|
|
|
void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
|
|
if (CVA->isString()) {
|
|
EmitString(CVA);
|
|
} else { // Not a string. Print the values in successive locations
|
|
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
|
|
EmitGlobalConstant(CVA->getOperand(i));
|
|
}
|
|
}
|
|
|
|
void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
|
|
const VectorType *PTy = CP->getType();
|
|
|
|
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
|
|
EmitGlobalConstant(CP->getOperand(I));
|
|
}
|
|
|
|
void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS) {
|
|
// Print the fields in successive locations. Pad to align if needed!
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Size = TD->getABITypeSize(CVS->getType());
|
|
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
|
|
uint64_t sizeSoFar = 0;
|
|
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
|
|
const Constant* field = CVS->getOperand(i);
|
|
|
|
// Check if padding is needed and insert one or more 0s.
|
|
uint64_t fieldSize = TD->getABITypeSize(field->getType());
|
|
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
|
|
- cvsLayout->getElementOffset(i)) - fieldSize;
|
|
sizeSoFar += fieldSize + padSize;
|
|
|
|
// Now print the actual field value.
|
|
EmitGlobalConstant(field);
|
|
|
|
// Insert padding - this may include padding to increase the size of the
|
|
// current field up to the ABI size (if the struct is not packed) as well
|
|
// as padding to ensure that the next field starts at the right offset.
|
|
EmitZeros(padSize);
|
|
}
|
|
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
|
|
"Layout of constant struct may be incorrect!");
|
|
}
|
|
|
|
void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP) {
|
|
// FP Constants are printed as integer constants to avoid losing
|
|
// precision...
|
|
const TargetData *TD = TM.getTargetData();
|
|
if (CFP->getType() == Type::DoubleTy) {
|
|
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
|
|
uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
if (TAI->getData64bitsDirective())
|
|
O << TAI->getData64bitsDirective() << i << '\t'
|
|
<< TAI->getCommentString() << " double value: " << Val << '\n';
|
|
else if (TD->isBigEndian()) {
|
|
O << TAI->getData32bitsDirective() << unsigned(i >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " double most significant word " << Val << '\n';
|
|
O << TAI->getData32bitsDirective() << unsigned(i)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " double least significant word " << Val << '\n';
|
|
} else {
|
|
O << TAI->getData32bitsDirective() << unsigned(i)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " double least significant word " << Val << '\n';
|
|
O << TAI->getData32bitsDirective() << unsigned(i >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " double most significant word " << Val << '\n';
|
|
}
|
|
return;
|
|
} else if (CFP->getType() == Type::FloatTy) {
|
|
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
|
|
O << TAI->getData32bitsDirective()
|
|
<< CFP->getValueAPF().bitcastToAPInt().getZExtValue()
|
|
<< '\t' << TAI->getCommentString() << " float " << Val << '\n';
|
|
return;
|
|
} else if (CFP->getType() == Type::X86_FP80Ty) {
|
|
// all long double variants are printed as hex
|
|
// api needed to prevent premature destruction
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
// Convert to double so we can print the approximate val as a comment.
|
|
APFloat DoubleVal = CFP->getValueAPF();
|
|
bool ignored;
|
|
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
if (TD->isBigEndian()) {
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double most significant halfword of ~"
|
|
<< DoubleVal.convertToDouble() << '\n';
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next halfword\n";
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next halfword\n";
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next halfword\n";
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[1])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double least significant halfword\n";
|
|
} else {
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[1])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double least significant halfword of ~"
|
|
<< DoubleVal.convertToDouble() << '\n';
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next halfword\n";
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next halfword\n";
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next halfword\n";
|
|
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double most significant halfword\n";
|
|
}
|
|
EmitZeros(TD->getABITypeSize(Type::X86_FP80Ty) -
|
|
TD->getTypeStoreSize(Type::X86_FP80Ty));
|
|
return;
|
|
} else if (CFP->getType() == Type::PPC_FP128Ty) {
|
|
// all long double variants are printed as hex
|
|
// api needed to prevent premature destruction
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
if (TD->isBigEndian()) {
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double most significant word\n";
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[0])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next word\n";
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next word\n";
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[1])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double least significant word\n";
|
|
} else {
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[1])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double least significant word\n";
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next word\n";
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[0])
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double next word\n";
|
|
O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " long double most significant word\n";
|
|
}
|
|
return;
|
|
} else assert(0 && "Floating point constant type not handled");
|
|
}
|
|
|
|
void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned BitWidth = CI->getBitWidth();
|
|
assert(isPowerOf2_32(BitWidth) &&
|
|
"Non-power-of-2-sized integers not handled!");
|
|
|
|
// We don't expect assemblers to support integer data directives
|
|
// for more than 64 bits, so we emit the data in at most 64-bit
|
|
// quantities at a time.
|
|
const uint64_t *RawData = CI->getValue().getRawData();
|
|
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
|
|
uint64_t Val;
|
|
if (TD->isBigEndian())
|
|
Val = RawData[e - i - 1];
|
|
else
|
|
Val = RawData[i];
|
|
|
|
if (TAI->getData64bitsDirective())
|
|
O << TAI->getData64bitsDirective() << Val << '\n';
|
|
else if (TD->isBigEndian()) {
|
|
O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " Double-word most significant word " << Val << '\n';
|
|
O << TAI->getData32bitsDirective() << unsigned(Val)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " Double-word least significant word " << Val << '\n';
|
|
} else {
|
|
O << TAI->getData32bitsDirective() << unsigned(Val)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " Double-word least significant word " << Val << '\n';
|
|
O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
|
|
<< '\t' << TAI->getCommentString()
|
|
<< " Double-word most significant word " << Val << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
|
|
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
const Type *type = CV->getType();
|
|
unsigned Size = TD->getABITypeSize(type);
|
|
|
|
if (CV->isNullValue() || isa<UndefValue>(CV)) {
|
|
EmitZeros(Size);
|
|
return;
|
|
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
|
|
EmitGlobalConstantArray(CVA);
|
|
return;
|
|
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
|
|
EmitGlobalConstantStruct(CVS);
|
|
return;
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
EmitGlobalConstantFP(CFP);
|
|
return;
|
|
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
// Small integers are handled below; large integers are handled here.
|
|
if (Size > 4) {
|
|
EmitGlobalConstantLargeInt(CI);
|
|
return;
|
|
}
|
|
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
|
|
EmitGlobalConstantVector(CP);
|
|
return;
|
|
}
|
|
|
|
printDataDirective(type);
|
|
EmitConstantValueOnly(CV);
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
SmallString<40> S;
|
|
CI->getValue().toStringUnsigned(S, 16);
|
|
O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
|
|
}
|
|
O << '\n';
|
|
}
|
|
|
|
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
|
|
// Target doesn't support this yet!
|
|
abort();
|
|
}
|
|
|
|
/// PrintSpecial - Print information related to the specified machine instr
|
|
/// that is independent of the operand, and may be independent of the instr
|
|
/// itself. This can be useful for portably encoding the comment character
|
|
/// or other bits of target-specific knowledge into the asmstrings. The
|
|
/// syntax used is ${:comment}. Targets can override this to add support
|
|
/// for their own strange codes.
|
|
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
|
|
if (!strcmp(Code, "private")) {
|
|
O << TAI->getPrivateGlobalPrefix();
|
|
} else if (!strcmp(Code, "comment")) {
|
|
O << TAI->getCommentString();
|
|
} else if (!strcmp(Code, "uid")) {
|
|
// Assign a unique ID to this machine instruction.
|
|
static const MachineInstr *LastMI = 0;
|
|
static const Function *F = 0;
|
|
static unsigned Counter = 0U-1;
|
|
|
|
// Comparing the address of MI isn't sufficient, because machineinstrs may
|
|
// be allocated to the same address across functions.
|
|
const Function *ThisF = MI->getParent()->getParent()->getFunction();
|
|
|
|
// If this is a new machine instruction, bump the counter.
|
|
if (LastMI != MI || F != ThisF) {
|
|
++Counter;
|
|
LastMI = MI;
|
|
F = ThisF;
|
|
}
|
|
O << Counter;
|
|
} else {
|
|
cerr << "Unknown special formatter '" << Code
|
|
<< "' for machine instr: " << *MI;
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
/// printInlineAsm - This method formats and prints the specified machine
|
|
/// instruction that is an inline asm.
|
|
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
|
|
unsigned NumOperands = MI->getNumOperands();
|
|
|
|
// Count the number of register definitions.
|
|
unsigned NumDefs = 0;
|
|
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
|
|
++NumDefs)
|
|
assert(NumDefs != NumOperands-1 && "No asm string?");
|
|
|
|
assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
|
|
|
|
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
|
|
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
|
|
|
|
// If this asmstr is empty, just print the #APP/#NOAPP markers.
|
|
// These are useful to see where empty asm's wound up.
|
|
if (AsmStr[0] == 0) {
|
|
O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
|
|
return;
|
|
}
|
|
|
|
O << TAI->getInlineAsmStart() << "\n\t";
|
|
|
|
// The variant of the current asmprinter.
|
|
int AsmPrinterVariant = TAI->getAssemblerDialect();
|
|
|
|
int CurVariant = -1; // The number of the {.|.|.} region we are in.
|
|
const char *LastEmitted = AsmStr; // One past the last character emitted.
|
|
|
|
while (*LastEmitted) {
|
|
switch (*LastEmitted) {
|
|
default: {
|
|
// Not a special case, emit the string section literally.
|
|
const char *LiteralEnd = LastEmitted+1;
|
|
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
|
|
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
|
|
++LiteralEnd;
|
|
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
|
|
O.write(LastEmitted, LiteralEnd-LastEmitted);
|
|
LastEmitted = LiteralEnd;
|
|
break;
|
|
}
|
|
case '\n':
|
|
++LastEmitted; // Consume newline character.
|
|
O << '\n'; // Indent code with newline.
|
|
break;
|
|
case '$': {
|
|
++LastEmitted; // Consume '$' character.
|
|
bool Done = true;
|
|
|
|
// Handle escapes.
|
|
switch (*LastEmitted) {
|
|
default: Done = false; break;
|
|
case '$': // $$ -> $
|
|
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
|
|
O << '$';
|
|
++LastEmitted; // Consume second '$' character.
|
|
break;
|
|
case '(': // $( -> same as GCC's { character.
|
|
++LastEmitted; // Consume '(' character.
|
|
if (CurVariant != -1) {
|
|
cerr << "Nested variants found in inline asm string: '"
|
|
<< AsmStr << "'\n";
|
|
exit(1);
|
|
}
|
|
CurVariant = 0; // We're in the first variant now.
|
|
break;
|
|
case '|':
|
|
++LastEmitted; // consume '|' character.
|
|
if (CurVariant == -1)
|
|
O << '|'; // this is gcc's behavior for | outside a variant
|
|
else
|
|
++CurVariant; // We're in the next variant.
|
|
break;
|
|
case ')': // $) -> same as GCC's } char.
|
|
++LastEmitted; // consume ')' character.
|
|
if (CurVariant == -1)
|
|
O << '}'; // this is gcc's behavior for } outside a variant
|
|
else
|
|
CurVariant = -1;
|
|
break;
|
|
}
|
|
if (Done) break;
|
|
|
|
bool HasCurlyBraces = false;
|
|
if (*LastEmitted == '{') { // ${variable}
|
|
++LastEmitted; // Consume '{' character.
|
|
HasCurlyBraces = true;
|
|
}
|
|
|
|
const char *IDStart = LastEmitted;
|
|
char *IDEnd;
|
|
errno = 0;
|
|
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
|
|
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
|
|
cerr << "Bad $ operand number in inline asm string: '"
|
|
<< AsmStr << "'\n";
|
|
exit(1);
|
|
}
|
|
LastEmitted = IDEnd;
|
|
|
|
char Modifier[2] = { 0, 0 };
|
|
|
|
if (HasCurlyBraces) {
|
|
// If we have curly braces, check for a modifier character. This
|
|
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
|
|
if (*LastEmitted == ':') {
|
|
++LastEmitted; // Consume ':' character.
|
|
if (*LastEmitted == 0) {
|
|
cerr << "Bad ${:} expression in inline asm string: '"
|
|
<< AsmStr << "'\n";
|
|
exit(1);
|
|
}
|
|
|
|
Modifier[0] = *LastEmitted;
|
|
++LastEmitted; // Consume modifier character.
|
|
}
|
|
|
|
if (*LastEmitted != '}') {
|
|
cerr << "Bad ${} expression in inline asm string: '"
|
|
<< AsmStr << "'\n";
|
|
exit(1);
|
|
}
|
|
++LastEmitted; // Consume '}' character.
|
|
}
|
|
|
|
if ((unsigned)Val >= NumOperands-1) {
|
|
cerr << "Invalid $ operand number in inline asm string: '"
|
|
<< AsmStr << "'\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Okay, we finally have a value number. Ask the target to print this
|
|
// operand!
|
|
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
|
|
unsigned OpNo = 1;
|
|
|
|
bool Error = false;
|
|
|
|
// Scan to find the machine operand number for the operand.
|
|
for (; Val; --Val) {
|
|
if (OpNo >= MI->getNumOperands()) break;
|
|
unsigned OpFlags = MI->getOperand(OpNo).getImm();
|
|
OpNo += (OpFlags >> 3) + 1;
|
|
}
|
|
|
|
if (OpNo >= MI->getNumOperands()) {
|
|
Error = true;
|
|
} else {
|
|
unsigned OpFlags = MI->getOperand(OpNo).getImm();
|
|
++OpNo; // Skip over the ID number.
|
|
|
|
if (Modifier[0]=='l') // labels are target independent
|
|
printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
|
|
false, false, false);
|
|
else {
|
|
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
|
|
if ((OpFlags & 7) == 4) {
|
|
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
|
|
Modifier[0] ? Modifier : 0);
|
|
} else {
|
|
Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
|
|
Modifier[0] ? Modifier : 0);
|
|
}
|
|
}
|
|
}
|
|
if (Error) {
|
|
cerr << "Invalid operand found in inline asm: '"
|
|
<< AsmStr << "'\n";
|
|
MI->dump();
|
|
exit(1);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
|
|
}
|
|
|
|
/// printImplicitDef - This method prints the specified machine instruction
|
|
/// that is an implicit def.
|
|
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
|
|
O << '\t' << TAI->getCommentString() << " implicit-def: "
|
|
<< TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
|
|
}
|
|
|
|
/// printLabel - This method prints a local label used by debug and
|
|
/// exception handling tables.
|
|
void AsmPrinter::printLabel(const MachineInstr *MI) const {
|
|
printLabel(MI->getOperand(0).getImm());
|
|
}
|
|
|
|
void AsmPrinter::printLabel(unsigned Id) const {
|
|
O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
|
|
}
|
|
|
|
/// printDeclare - This method prints a local variable declaration used by
|
|
/// debug tables.
|
|
/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
|
|
/// entry into dwarf table.
|
|
void AsmPrinter::printDeclare(const MachineInstr *MI) const {
|
|
int FI = MI->getOperand(0).getIndex();
|
|
GlobalValue *GV = MI->getOperand(1).getGlobal();
|
|
MMI->RecordVariable(GV, FI);
|
|
}
|
|
|
|
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
|
|
/// instruction, using the specified assembler variant. Targets should
|
|
/// overried this to format as appropriate.
|
|
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
unsigned AsmVariant, const char *ExtraCode) {
|
|
// Target doesn't support this yet!
|
|
return true;
|
|
}
|
|
|
|
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
|
|
unsigned AsmVariant,
|
|
const char *ExtraCode) {
|
|
// Target doesn't support this yet!
|
|
return true;
|
|
}
|
|
|
|
/// printBasicBlockLabel - This method prints the label for the specified
|
|
/// MachineBasicBlock
|
|
void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
|
|
bool printAlign,
|
|
bool printColon,
|
|
bool printComment) const {
|
|
if (printAlign) {
|
|
unsigned Align = MBB->getAlignment();
|
|
if (Align)
|
|
EmitAlignment(Log2_32(Align));
|
|
}
|
|
|
|
O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
|
|
<< MBB->getNumber();
|
|
if (printColon)
|
|
O << ':';
|
|
if (printComment && MBB->getBasicBlock())
|
|
O << '\t' << TAI->getCommentString() << ' '
|
|
<< MBB->getBasicBlock()->getNameStart();
|
|
}
|
|
|
|
/// printPICJumpTableSetLabel - This method prints a set label for the
|
|
/// specified MachineBasicBlock for a jumptable entry.
|
|
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
|
|
const MachineBasicBlock *MBB) const {
|
|
if (!TAI->getSetDirective())
|
|
return;
|
|
|
|
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
|
|
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
|
|
printBasicBlockLabel(MBB, false, false, false);
|
|
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
|
|
<< '_' << uid << '\n';
|
|
}
|
|
|
|
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
|
|
const MachineBasicBlock *MBB) const {
|
|
if (!TAI->getSetDirective())
|
|
return;
|
|
|
|
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
|
|
<< getFunctionNumber() << '_' << uid << '_' << uid2
|
|
<< "_set_" << MBB->getNumber() << ',';
|
|
printBasicBlockLabel(MBB, false, false, false);
|
|
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
|
|
<< '_' << uid << '_' << uid2 << '\n';
|
|
}
|
|
|
|
/// printDataDirective - This method prints the asm directive for the
|
|
/// specified type.
|
|
void AsmPrinter::printDataDirective(const Type *type) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
switch (type->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
|
|
if (BitWidth <= 8)
|
|
O << TAI->getData8bitsDirective();
|
|
else if (BitWidth <= 16)
|
|
O << TAI->getData16bitsDirective();
|
|
else if (BitWidth <= 32)
|
|
O << TAI->getData32bitsDirective();
|
|
else if (BitWidth <= 64) {
|
|
assert(TAI->getData64bitsDirective() &&
|
|
"Target cannot handle 64-bit constant exprs!");
|
|
O << TAI->getData64bitsDirective();
|
|
} else {
|
|
assert(0 && "Target cannot handle given data directive width!");
|
|
}
|
|
break;
|
|
}
|
|
case Type::PointerTyID:
|
|
if (TD->getPointerSize() == 8) {
|
|
assert(TAI->getData64bitsDirective() &&
|
|
"Target cannot handle 64-bit pointer exprs!");
|
|
O << TAI->getData64bitsDirective();
|
|
} else {
|
|
O << TAI->getData32bitsDirective();
|
|
}
|
|
break;
|
|
case Type::FloatTyID: case Type::DoubleTyID:
|
|
case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
|
|
assert (0 && "Should have already output floating point constant.");
|
|
default:
|
|
assert (0 && "Can't handle printing this type of thing");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
|
|
const char *Prefix) {
|
|
if (Name[0]=='\"')
|
|
O << '\"';
|
|
O << TAI->getPrivateGlobalPrefix();
|
|
if (Prefix) O << Prefix;
|
|
if (Name[0]=='\"')
|
|
O << '\"';
|
|
if (Name[0]=='\"')
|
|
O << Name[1];
|
|
else
|
|
O << Name;
|
|
O << Suffix;
|
|
if (Name[0]=='\"')
|
|
O << '\"';
|
|
}
|
|
|
|
void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
|
|
printSuffixedName(Name.c_str(), Suffix);
|
|
}
|
|
|
|
void AsmPrinter::printVisibility(const std::string& Name,
|
|
unsigned Visibility) const {
|
|
if (Visibility == GlobalValue::HiddenVisibility) {
|
|
if (const char *Directive = TAI->getHiddenDirective())
|
|
O << Directive << Name << '\n';
|
|
} else if (Visibility == GlobalValue::ProtectedVisibility) {
|
|
if (const char *Directive = TAI->getProtectedDirective())
|
|
O << Directive << Name << '\n';
|
|
}
|
|
}
|
|
|
|
void AsmPrinter::printOffset(int64_t Offset) const {
|
|
if (Offset > 0)
|
|
O << '+' << Offset;
|
|
else if (Offset < 0)
|
|
O << Offset;
|
|
}
|
|
|
|
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
|
|
if (!S->usesMetadata())
|
|
return 0;
|
|
|
|
gcp_iterator GCPI = GCMetadataPrinters.find(S);
|
|
if (GCPI != GCMetadataPrinters.end())
|
|
return GCPI->second;
|
|
|
|
const char *Name = S->getName().c_str();
|
|
|
|
for (GCMetadataPrinterRegistry::iterator
|
|
I = GCMetadataPrinterRegistry::begin(),
|
|
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
|
|
if (strcmp(Name, I->getName()) == 0) {
|
|
GCMetadataPrinter *GMP = I->instantiate();
|
|
GMP->S = S;
|
|
GCMetadataPrinters.insert(std::make_pair(S, GMP));
|
|
return GMP;
|
|
}
|
|
|
|
cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
|
|
abort();
|
|
}
|