1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Transforms/Scalar/LoopPassManager.cpp
Arthur Eubanks 4fce57098e [NewPM] Make pass adaptors less templatey
Currently PassBuilder.cpp is by far the file that takes longest to
compile. This is due to tons of templates being instantiated per pass.

Follow PassManager by using wrappers around passes to avoid making
the adaptors templated on the pass type. This allows us to move various
adaptors' run methods into .cpp files.

This reduces the compile time of PassBuilder.cpp on my machine from 66
to 39 seconds. It also reduces the size of opt from 685M to 676M.

Reviewed By: dexonsmith

Differential Revision: https://reviews.llvm.org/D92616
2020-12-04 08:30:50 -08:00

247 lines
9.5 KiB
C++

//===- LoopPassManager.cpp - Loop pass management -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Analysis/LoopInfo.h"
using namespace llvm;
// Explicit template instantiations and specialization defininitions for core
// template typedefs.
namespace llvm {
template class PassManager<Loop, LoopAnalysisManager,
LoopStandardAnalysisResults &, LPMUpdater &>;
/// Explicitly specialize the pass manager's run method to handle loop nest
/// structure updates.
template <>
PreservedAnalyses
PassManager<Loop, LoopAnalysisManager, LoopStandardAnalysisResults &,
LPMUpdater &>::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &U) {
PreservedAnalyses PA = PreservedAnalyses::all();
if (DebugLogging)
dbgs() << "Starting Loop pass manager run.\n";
// Request PassInstrumentation from analysis manager, will use it to run
// instrumenting callbacks for the passes later.
PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(L, AR);
for (auto &Pass : Passes) {
// Check the PassInstrumentation's BeforePass callbacks before running the
// pass, skip its execution completely if asked to (callback returns false).
if (!PI.runBeforePass<Loop>(*Pass, L))
continue;
PreservedAnalyses PassPA;
{
TimeTraceScope TimeScope(Pass->name(), L.getName());
PassPA = Pass->run(L, AM, AR, U);
}
// do not pass deleted Loop into the instrumentation
if (U.skipCurrentLoop())
PI.runAfterPassInvalidated<Loop>(*Pass, PassPA);
else
PI.runAfterPass<Loop>(*Pass, L, PassPA);
// If the loop was deleted, abort the run and return to the outer walk.
if (U.skipCurrentLoop()) {
PA.intersect(std::move(PassPA));
break;
}
// Update the analysis manager as each pass runs and potentially
// invalidates analyses.
AM.invalidate(L, PassPA);
// Finally, we intersect the final preserved analyses to compute the
// aggregate preserved set for this pass manager.
PA.intersect(std::move(PassPA));
// FIXME: Historically, the pass managers all called the LLVM context's
// yield function here. We don't have a generic way to acquire the
// context and it isn't yet clear what the right pattern is for yielding
// in the new pass manager so it is currently omitted.
// ...getContext().yield();
}
// Invalidation for the current loop should be handled above, and other loop
// analysis results shouldn't be impacted by runs over this loop. Therefore,
// the remaining analysis results in the AnalysisManager are preserved. We
// mark this with a set so that we don't need to inspect each one
// individually.
// FIXME: This isn't correct! This loop and all nested loops' analyses should
// be preserved, but unrolling should invalidate the parent loop's analyses.
PA.preserveSet<AllAnalysesOn<Loop>>();
if (DebugLogging)
dbgs() << "Finished Loop pass manager run.\n";
return PA;
}
}
PreservedAnalyses FunctionToLoopPassAdaptor::run(Function &F,
FunctionAnalysisManager &AM) {
// Before we even compute any loop analyses, first run a miniature function
// pass pipeline to put loops into their canonical form. Note that we can
// directly build up function analyses after this as the function pass
// manager handles all the invalidation at that layer.
PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(F);
PreservedAnalyses PA = PreservedAnalyses::all();
// Check the PassInstrumentation's BeforePass callbacks before running the
// canonicalization pipeline.
if (PI.runBeforePass<Function>(LoopCanonicalizationFPM, F)) {
PA = LoopCanonicalizationFPM.run(F, AM);
PI.runAfterPass<Function>(LoopCanonicalizationFPM, F, PA);
}
// Get the loop structure for this function
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
// If there are no loops, there is nothing to do here.
if (LI.empty())
return PA;
// Get the analysis results needed by loop passes.
MemorySSA *MSSA =
UseMemorySSA ? (&AM.getResult<MemorySSAAnalysis>(F).getMSSA()) : nullptr;
BlockFrequencyInfo *BFI = UseBlockFrequencyInfo && F.hasProfileData()
? (&AM.getResult<BlockFrequencyAnalysis>(F))
: nullptr;
LoopStandardAnalysisResults LAR = {AM.getResult<AAManager>(F),
AM.getResult<AssumptionAnalysis>(F),
AM.getResult<DominatorTreeAnalysis>(F),
AM.getResult<LoopAnalysis>(F),
AM.getResult<ScalarEvolutionAnalysis>(F),
AM.getResult<TargetLibraryAnalysis>(F),
AM.getResult<TargetIRAnalysis>(F),
BFI,
MSSA};
// Setup the loop analysis manager from its proxy. It is important that
// this is only done when there are loops to process and we have built the
// LoopStandardAnalysisResults object. The loop analyses cached in this
// manager have access to those analysis results and so it must invalidate
// itself when they go away.
auto &LAMFP = AM.getResult<LoopAnalysisManagerFunctionProxy>(F);
if (UseMemorySSA)
LAMFP.markMSSAUsed();
LoopAnalysisManager &LAM = LAMFP.getManager();
// A postorder worklist of loops to process.
SmallPriorityWorklist<Loop *, 4> Worklist;
// Register the worklist and loop analysis manager so that loop passes can
// update them when they mutate the loop nest structure.
LPMUpdater Updater(Worklist, LAM);
// Add the loop nests in the reverse order of LoopInfo. See method
// declaration.
appendLoopsToWorklist(LI, Worklist);
#ifndef NDEBUG
PI.pushBeforeNonSkippedPassCallback([&LAR, &LI](StringRef PassID, Any IR) {
if (isSpecialPass(PassID, {"PassManager"}))
return;
assert(any_isa<const Loop *>(IR));
const Loop *L = any_cast<const Loop *>(IR);
assert(L && "Loop should be valid for printing");
// Verify the loop structure and LCSSA form before visiting the loop.
L->verifyLoop();
assert(L->isRecursivelyLCSSAForm(LAR.DT, LI) &&
"Loops must remain in LCSSA form!");
});
#endif
do {
Loop *L = Worklist.pop_back_val();
// Reset the update structure for this loop.
Updater.CurrentL = L;
Updater.SkipCurrentLoop = false;
#ifndef NDEBUG
// Save a parent loop pointer for asserts.
Updater.ParentL = L->getParentLoop();
#endif
// Check the PassInstrumentation's BeforePass callbacks before running the
// pass, skip its execution completely if asked to (callback returns
// false).
if (!PI.runBeforePass<Loop>(*Pass, *L))
continue;
PreservedAnalyses PassPA;
{
TimeTraceScope TimeScope(Pass->name());
PassPA = Pass->run(*L, LAM, LAR, Updater);
}
// Do not pass deleted Loop into the instrumentation.
if (Updater.skipCurrentLoop())
PI.runAfterPassInvalidated<Loop>(*Pass, PassPA);
else
PI.runAfterPass<Loop>(*Pass, *L, PassPA);
// FIXME: We should verify the set of analyses relevant to Loop passes
// are preserved.
// If the loop hasn't been deleted, we need to handle invalidation here.
if (!Updater.skipCurrentLoop())
// We know that the loop pass couldn't have invalidated any other
// loop's analyses (that's the contract of a loop pass), so directly
// handle the loop analysis manager's invalidation here.
LAM.invalidate(*L, PassPA);
// Then intersect the preserved set so that invalidation of module
// analyses will eventually occur when the module pass completes.
PA.intersect(std::move(PassPA));
} while (!Worklist.empty());
#ifndef NDEBUG
PI.popBeforeNonSkippedPassCallback();
#endif
// By definition we preserve the proxy. We also preserve all analyses on
// Loops. This precludes *any* invalidation of loop analyses by the proxy,
// but that's OK because we've taken care to invalidate analyses in the
// loop analysis manager incrementally above.
PA.preserveSet<AllAnalysesOn<Loop>>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
// We also preserve the set of standard analyses.
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
PA.preserve<ScalarEvolutionAnalysis>();
if (UseBlockFrequencyInfo && F.hasProfileData())
PA.preserve<BlockFrequencyAnalysis>();
if (UseMemorySSA)
PA.preserve<MemorySSAAnalysis>();
// FIXME: What we really want to do here is preserve an AA category, but
// that concept doesn't exist yet.
PA.preserve<AAManager>();
PA.preserve<BasicAA>();
PA.preserve<GlobalsAA>();
PA.preserve<SCEVAA>();
return PA;
}
PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
: OS(OS), Banner(Banner) {}
PreservedAnalyses PrintLoopPass::run(Loop &L, LoopAnalysisManager &,
LoopStandardAnalysisResults &,
LPMUpdater &) {
printLoop(L, OS, Banner);
return PreservedAnalyses::all();
}