1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Target/Hexagon/HexagonNewValueJump.cpp
Reid Kleckner 68092989f3 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00

728 lines
26 KiB
C++

//===- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements NewValueJump pass in Hexagon.
// Ideally, we should merge this as a Peephole pass prior to register
// allocation, but because we have a spill in between the feeder and new value
// jump instructions, we are forced to write after register allocation.
// Having said that, we should re-attempt to pull this earlier at some point
// in future.
// The basic approach looks for sequence of predicated jump, compare instruciton
// that genereates the predicate and, the feeder to the predicate. Once it finds
// all, it collapses compare and jump instruction into a new value jump
// intstructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/InitializePasses.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "hexagon-nvj"
STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
static cl::opt<int> DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden,
cl::desc("Maximum number of predicated jumps to be converted to "
"New Value Jump"));
static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
cl::ZeroOrMore, cl::init(false),
cl::desc("Disable New Value Jumps"));
namespace llvm {
FunctionPass *createHexagonNewValueJump();
void initializeHexagonNewValueJumpPass(PassRegistry&);
} // end namespace llvm
namespace {
struct HexagonNewValueJump : public MachineFunctionPass {
static char ID;
HexagonNewValueJump() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBranchProbabilityInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Hexagon NewValueJump"; }
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
const HexagonInstrInfo *QII;
const HexagonRegisterInfo *QRI;
/// A handle to the branch probability pass.
const MachineBranchProbabilityInfo *MBPI;
bool isNewValueJumpCandidate(const MachineInstr &MI) const;
};
} // end anonymous namespace
char HexagonNewValueJump::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
"Hexagon NewValueJump", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
"Hexagon NewValueJump", false, false)
// We have identified this II could be feeder to NVJ,
// verify that it can be.
static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
const TargetRegisterInfo *TRI,
MachineBasicBlock::iterator II,
MachineBasicBlock::iterator end,
MachineBasicBlock::iterator skip,
MachineFunction &MF) {
// Predicated instruction can not be feeder to NVJ.
if (QII->isPredicated(*II))
return false;
// Bail out if feederReg is a paired register (double regs in
// our case). One would think that we can check to see if a given
// register cmpReg1 or cmpReg2 is a sub register of feederReg
// using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
// before the callsite of this function
// But we can not as it comes in the following fashion.
// %d0 = Hexagon_S2_lsr_r_p killed %d0, killed %r2
// %r0 = KILL %r0, implicit killed %d0
// %p0 = CMPEQri killed %r0, 0
// Hence, we need to check if it's a KILL instruction.
if (II->getOpcode() == TargetOpcode::KILL)
return false;
if (II->isImplicitDef())
return false;
if (QII->isSolo(*II))
return false;
if (QII->isFloat(*II))
return false;
// Make sure that the (unique) def operand is a register from IntRegs.
bool HadDef = false;
for (const MachineOperand &Op : II->operands()) {
if (!Op.isReg() || !Op.isDef())
continue;
if (HadDef)
return false;
HadDef = true;
if (!Hexagon::IntRegsRegClass.contains(Op.getReg()))
return false;
}
assert(HadDef);
// Make sure there is no 'def' or 'use' of any of the uses of
// feeder insn between its definition, this MI and jump, jmpInst
// skipping compare, cmpInst.
// Here's the example.
// r21=memub(r22+r24<<#0)
// p0 = cmp.eq(r21, #0)
// r4=memub(r3+r21<<#0)
// if (p0.new) jump:t .LBB29_45
// Without this check, it will be converted into
// r4=memub(r3+r21<<#0)
// r21=memub(r22+r24<<#0)
// p0 = cmp.eq(r21, #0)
// if (p0.new) jump:t .LBB29_45
// and result WAR hazards if converted to New Value Jump.
for (unsigned i = 0; i < II->getNumOperands(); ++i) {
if (II->getOperand(i).isReg() &&
(II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
MachineBasicBlock::iterator localII = II;
++localII;
Register Reg = II->getOperand(i).getReg();
for (MachineBasicBlock::iterator localBegin = localII; localBegin != end;
++localBegin) {
if (localBegin == skip)
continue;
// Check for Subregisters too.
if (localBegin->modifiesRegister(Reg, TRI) ||
localBegin->readsRegister(Reg, TRI))
return false;
}
}
}
return true;
}
// These are the common checks that need to performed
// to determine if
// 1. compare instruction can be moved before jump.
// 2. feeder to the compare instruction can be moved before jump.
static bool commonChecksToProhibitNewValueJump(bool afterRA,
MachineBasicBlock::iterator MII) {
// If store in path, bail out.
if (MII->mayStore())
return false;
// if call in path, bail out.
if (MII->isCall())
return false;
// if NVJ is running prior to RA, do the following checks.
if (!afterRA) {
// The following Target Opcode instructions are spurious
// to new value jump. If they are in the path, bail out.
// KILL sets kill flag on the opcode. It also sets up a
// single register, out of pair.
// %d0 = S2_lsr_r_p killed %d0, killed %r2
// %r0 = KILL %r0, implicit killed %d0
// %p0 = C2_cmpeqi killed %r0, 0
// PHI can be anything after RA.
// COPY can remateriaze things in between feeder, compare and nvj.
if (MII->getOpcode() == TargetOpcode::KILL ||
MII->getOpcode() == TargetOpcode::PHI ||
MII->getOpcode() == TargetOpcode::COPY)
return false;
// The following pseudo Hexagon instructions sets "use" and "def"
// of registers by individual passes in the backend. At this time,
// we don't know the scope of usage and definitions of these
// instructions.
if (MII->getOpcode() == Hexagon::LDriw_pred ||
MII->getOpcode() == Hexagon::STriw_pred)
return false;
}
return true;
}
static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
const TargetRegisterInfo *TRI,
MachineBasicBlock::iterator II,
unsigned pReg,
bool secondReg,
bool optLocation,
MachineBasicBlock::iterator end,
MachineFunction &MF) {
MachineInstr &MI = *II;
// If the second operand of the compare is an imm, make sure it's in the
// range specified by the arch.
if (!secondReg) {
const MachineOperand &Op2 = MI.getOperand(2);
if (!Op2.isImm())
return false;
int64_t v = Op2.getImm();
bool Valid = false;
switch (MI.getOpcode()) {
case Hexagon::C2_cmpeqi:
case Hexagon::C4_cmpneqi:
case Hexagon::C2_cmpgti:
case Hexagon::C4_cmpltei:
Valid = (isUInt<5>(v) || v == -1);
break;
case Hexagon::C2_cmpgtui:
case Hexagon::C4_cmplteui:
Valid = isUInt<5>(v);
break;
case Hexagon::S2_tstbit_i:
case Hexagon::S4_ntstbit_i:
Valid = (v == 0);
break;
}
if (!Valid)
return false;
}
unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
cmpReg1 = MI.getOperand(1).getReg();
if (secondReg) {
cmpOp2 = MI.getOperand(2).getReg();
// If the same register appears as both operands, we cannot generate a new
// value compare. Only one operand may use the .new suffix.
if (cmpReg1 == cmpOp2)
return false;
// Make sure that the second register is not from COPY
// at machine code level, we don't need this, but if we decide
// to move new value jump prior to RA, we would be needing this.
MachineRegisterInfo &MRI = MF.getRegInfo();
if (secondReg && !Register::isPhysicalRegister(cmpOp2)) {
MachineInstr *def = MRI.getVRegDef(cmpOp2);
if (def->getOpcode() == TargetOpcode::COPY)
return false;
}
}
// Walk the instructions after the compare (predicate def) to the jump,
// and satisfy the following conditions.
++II;
for (MachineBasicBlock::iterator localII = II; localII != end; ++localII) {
if (localII->isDebugInstr())
continue;
// Check 1.
// If "common" checks fail, bail out.
if (!commonChecksToProhibitNewValueJump(optLocation, localII))
return false;
// Check 2.
// If there is a def or use of predicate (result of compare), bail out.
if (localII->modifiesRegister(pReg, TRI) ||
localII->readsRegister(pReg, TRI))
return false;
// Check 3.
// If there is a def of any of the use of the compare (operands of compare),
// bail out.
// Eg.
// p0 = cmp.eq(r2, r0)
// r2 = r4
// if (p0.new) jump:t .LBB28_3
if (localII->modifiesRegister(cmpReg1, TRI) ||
(secondReg && localII->modifiesRegister(cmpOp2, TRI)))
return false;
}
return true;
}
// Given a compare operator, return a matching New Value Jump compare operator.
// Make sure that MI here is included in isNewValueJumpCandidate.
static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
bool secondRegNewified,
MachineBasicBlock *jmpTarget,
const MachineBranchProbabilityInfo
*MBPI) {
bool taken = false;
MachineBasicBlock *Src = MI->getParent();
const BranchProbability Prediction =
MBPI->getEdgeProbability(Src, jmpTarget);
if (Prediction >= BranchProbability(1,2))
taken = true;
switch (MI->getOpcode()) {
case Hexagon::C2_cmpeq:
return taken ? Hexagon::J4_cmpeq_t_jumpnv_t
: Hexagon::J4_cmpeq_t_jumpnv_nt;
case Hexagon::C2_cmpeqi:
if (reg >= 0)
return taken ? Hexagon::J4_cmpeqi_t_jumpnv_t
: Hexagon::J4_cmpeqi_t_jumpnv_nt;
return taken ? Hexagon::J4_cmpeqn1_t_jumpnv_t
: Hexagon::J4_cmpeqn1_t_jumpnv_nt;
case Hexagon::C4_cmpneqi:
if (reg >= 0)
return taken ? Hexagon::J4_cmpeqi_f_jumpnv_t
: Hexagon::J4_cmpeqi_f_jumpnv_nt;
return taken ? Hexagon::J4_cmpeqn1_f_jumpnv_t :
Hexagon::J4_cmpeqn1_f_jumpnv_nt;
case Hexagon::C2_cmpgt:
if (secondRegNewified)
return taken ? Hexagon::J4_cmplt_t_jumpnv_t
: Hexagon::J4_cmplt_t_jumpnv_nt;
return taken ? Hexagon::J4_cmpgt_t_jumpnv_t
: Hexagon::J4_cmpgt_t_jumpnv_nt;
case Hexagon::C2_cmpgti:
if (reg >= 0)
return taken ? Hexagon::J4_cmpgti_t_jumpnv_t
: Hexagon::J4_cmpgti_t_jumpnv_nt;
return taken ? Hexagon::J4_cmpgtn1_t_jumpnv_t
: Hexagon::J4_cmpgtn1_t_jumpnv_nt;
case Hexagon::C2_cmpgtu:
if (secondRegNewified)
return taken ? Hexagon::J4_cmpltu_t_jumpnv_t
: Hexagon::J4_cmpltu_t_jumpnv_nt;
return taken ? Hexagon::J4_cmpgtu_t_jumpnv_t
: Hexagon::J4_cmpgtu_t_jumpnv_nt;
case Hexagon::C2_cmpgtui:
return taken ? Hexagon::J4_cmpgtui_t_jumpnv_t
: Hexagon::J4_cmpgtui_t_jumpnv_nt;
case Hexagon::C4_cmpneq:
return taken ? Hexagon::J4_cmpeq_f_jumpnv_t
: Hexagon::J4_cmpeq_f_jumpnv_nt;
case Hexagon::C4_cmplte:
if (secondRegNewified)
return taken ? Hexagon::J4_cmplt_f_jumpnv_t
: Hexagon::J4_cmplt_f_jumpnv_nt;
return taken ? Hexagon::J4_cmpgt_f_jumpnv_t
: Hexagon::J4_cmpgt_f_jumpnv_nt;
case Hexagon::C4_cmplteu:
if (secondRegNewified)
return taken ? Hexagon::J4_cmpltu_f_jumpnv_t
: Hexagon::J4_cmpltu_f_jumpnv_nt;
return taken ? Hexagon::J4_cmpgtu_f_jumpnv_t
: Hexagon::J4_cmpgtu_f_jumpnv_nt;
case Hexagon::C4_cmpltei:
if (reg >= 0)
return taken ? Hexagon::J4_cmpgti_f_jumpnv_t
: Hexagon::J4_cmpgti_f_jumpnv_nt;
return taken ? Hexagon::J4_cmpgtn1_f_jumpnv_t
: Hexagon::J4_cmpgtn1_f_jumpnv_nt;
case Hexagon::C4_cmplteui:
return taken ? Hexagon::J4_cmpgtui_f_jumpnv_t
: Hexagon::J4_cmpgtui_f_jumpnv_nt;
default:
llvm_unreachable("Could not find matching New Value Jump instruction.");
}
// return *some value* to avoid compiler warning
return 0;
}
bool HexagonNewValueJump::isNewValueJumpCandidate(
const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtui:
case Hexagon::C4_cmpneq:
case Hexagon::C4_cmpneqi:
case Hexagon::C4_cmplte:
case Hexagon::C4_cmplteu:
case Hexagon::C4_cmpltei:
case Hexagon::C4_cmplteui:
return true;
default:
return false;
}
}
bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
<< "********** Function: " << MF.getName() << "\n");
if (skipFunction(MF.getFunction()))
return false;
// If we move NewValueJump before register allocation we'll need live variable
// analysis here too.
QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
QRI = static_cast<const HexagonRegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
if (DisableNewValueJumps ||
!MF.getSubtarget<HexagonSubtarget>().useNewValueJumps())
return false;
int nvjCount = DbgNVJCount;
int nvjGenerated = 0;
// Loop through all the bb's of the function
for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
MBBb != MBBe; ++MBBb) {
MachineBasicBlock *MBB = &*MBBb;
LLVM_DEBUG(dbgs() << "** dumping bb ** " << MBB->getNumber() << "\n");
LLVM_DEBUG(MBB->dump());
LLVM_DEBUG(dbgs() << "\n"
<< "********** dumping instr bottom up **********\n");
bool foundJump = false;
bool foundCompare = false;
bool invertPredicate = false;
unsigned predReg = 0; // predicate reg of the jump.
unsigned cmpReg1 = 0;
int cmpOp2 = 0;
MachineBasicBlock::iterator jmpPos;
MachineBasicBlock::iterator cmpPos;
MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
MachineBasicBlock *jmpTarget = nullptr;
bool afterRA = false;
bool isSecondOpReg = false;
bool isSecondOpNewified = false;
// Traverse the basic block - bottom up
for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
MII != E;) {
MachineInstr &MI = *--MII;
if (MI.isDebugInstr()) {
continue;
}
if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
break;
LLVM_DEBUG(dbgs() << "Instr: "; MI.dump(); dbgs() << "\n");
if (!foundJump && (MI.getOpcode() == Hexagon::J2_jumpt ||
MI.getOpcode() == Hexagon::J2_jumptpt ||
MI.getOpcode() == Hexagon::J2_jumpf ||
MI.getOpcode() == Hexagon::J2_jumpfpt ||
MI.getOpcode() == Hexagon::J2_jumptnewpt ||
MI.getOpcode() == Hexagon::J2_jumptnew ||
MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
MI.getOpcode() == Hexagon::J2_jumpfnew)) {
// This is where you would insert your compare and
// instr that feeds compare
jmpPos = MII;
jmpInstr = &MI;
predReg = MI.getOperand(0).getReg();
afterRA = Register::isPhysicalRegister(predReg);
// If ifconverter had not messed up with the kill flags of the
// operands, the following check on the kill flag would suffice.
// if(!jmpInstr->getOperand(0).isKill()) break;
// This predicate register is live out of BB
// this would only work if we can actually use Live
// variable analysis on phy regs - but LLVM does not
// provide LV analysis on phys regs.
//if(LVs.isLiveOut(predReg, *MBB)) break;
// Get all the successors of this block - which will always
// be 2. Check if the predicate register is live-in in those
// successor. If yes, we can not delete the predicate -
// I am doing this only because LLVM does not provide LiveOut
// at the BB level.
bool predLive = false;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SIE = MBB->succ_end();
SI != SIE; ++SI) {
MachineBasicBlock *succMBB = *SI;
if (succMBB->isLiveIn(predReg))
predLive = true;
}
if (predLive)
break;
if (!MI.getOperand(1).isMBB())
continue;
jmpTarget = MI.getOperand(1).getMBB();
foundJump = true;
if (MI.getOpcode() == Hexagon::J2_jumpf ||
MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
MI.getOpcode() == Hexagon::J2_jumpfnew) {
invertPredicate = true;
}
continue;
}
// No new value jump if there is a barrier. A barrier has to be in its
// own packet. A barrier has zero operands. We conservatively bail out
// here if we see any instruction with zero operands.
if (foundJump && MI.getNumOperands() == 0)
break;
if (foundJump && !foundCompare && MI.getOperand(0).isReg() &&
MI.getOperand(0).getReg() == predReg) {
// Not all compares can be new value compare. Arch Spec: 7.6.1.1
if (isNewValueJumpCandidate(MI)) {
assert(
(MI.getDesc().isCompare()) &&
"Only compare instruction can be collapsed into New Value Jump");
isSecondOpReg = MI.getOperand(2).isReg();
if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
afterRA, jmpPos, MF))
break;
cmpInstr = &MI;
cmpPos = MII;
foundCompare = true;
// We need cmpReg1 and cmpOp2(imm or reg) while building
// new value jump instruction.
cmpReg1 = MI.getOperand(1).getReg();
if (isSecondOpReg)
cmpOp2 = MI.getOperand(2).getReg();
else
cmpOp2 = MI.getOperand(2).getImm();
continue;
}
}
if (foundCompare && foundJump) {
// If "common" checks fail, bail out on this BB.
if (!commonChecksToProhibitNewValueJump(afterRA, MII))
break;
bool foundFeeder = false;
MachineBasicBlock::iterator feederPos = MII;
if (MI.getOperand(0).isReg() && MI.getOperand(0).isDef() &&
(MI.getOperand(0).getReg() == cmpReg1 ||
(isSecondOpReg &&
MI.getOperand(0).getReg() == (unsigned)cmpOp2))) {
Register feederReg = MI.getOperand(0).getReg();
// First try to see if we can get the feeder from the first operand
// of the compare. If we can not, and if secondOpReg is true
// (second operand of the compare is also register), try that one.
// TODO: Try to come up with some heuristic to figure out which
// feeder would benefit.
if (feederReg == cmpReg1) {
if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
if (!isSecondOpReg)
break;
else
continue;
} else
foundFeeder = true;
}
if (!foundFeeder && isSecondOpReg && feederReg == (unsigned)cmpOp2)
if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
break;
if (isSecondOpReg) {
// In case of CMPLT, or CMPLTU, or EQ with the second register
// to newify, swap the operands.
unsigned COp = cmpInstr->getOpcode();
if ((COp == Hexagon::C2_cmpeq || COp == Hexagon::C4_cmpneq) &&
(feederReg == (unsigned)cmpOp2)) {
unsigned tmp = cmpReg1;
cmpReg1 = cmpOp2;
cmpOp2 = tmp;
}
// Now we have swapped the operands, all we need to check is,
// if the second operand (after swap) is the feeder.
// And if it is, make a note.
if (feederReg == (unsigned)cmpOp2)
isSecondOpNewified = true;
}
// Now that we are moving feeder close the jump,
// make sure we are respecting the kill values of
// the operands of the feeder.
auto TransferKills = [jmpPos,cmpPos] (MachineInstr &MI) {
for (MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isUse())
continue;
Register UseR = MO.getReg();
for (auto I = std::next(MI.getIterator()); I != jmpPos; ++I) {
if (I == cmpPos)
continue;
for (MachineOperand &Op : I->operands()) {
if (!Op.isReg() || !Op.isUse() || !Op.isKill())
continue;
if (Op.getReg() != UseR)
continue;
// We found that there is kill of a use register
// Set up a kill flag on the register
Op.setIsKill(false);
MO.setIsKill(true);
return;
}
}
}
};
TransferKills(*feederPos);
TransferKills(*cmpPos);
bool MO1IsKill = cmpPos->killsRegister(cmpReg1, QRI);
bool MO2IsKill = isSecondOpReg && cmpPos->killsRegister(cmpOp2, QRI);
MBB->splice(jmpPos, MI.getParent(), MI);
MBB->splice(jmpPos, MI.getParent(), cmpInstr);
DebugLoc dl = MI.getDebugLoc();
MachineInstr *NewMI;
assert((isNewValueJumpCandidate(*cmpInstr)) &&
"This compare is not a New Value Jump candidate.");
unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
isSecondOpNewified,
jmpTarget, MBPI);
if (invertPredicate)
opc = QII->getInvertedPredicatedOpcode(opc);
if (isSecondOpReg)
NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
.addReg(cmpReg1, getKillRegState(MO1IsKill))
.addReg(cmpOp2, getKillRegState(MO2IsKill))
.addMBB(jmpTarget);
else
NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
.addReg(cmpReg1, getKillRegState(MO1IsKill))
.addImm(cmpOp2)
.addMBB(jmpTarget);
assert(NewMI && "New Value Jump Instruction Not created!");
(void)NewMI;
if (cmpInstr->getOperand(0).isReg() &&
cmpInstr->getOperand(0).isKill())
cmpInstr->getOperand(0).setIsKill(false);
if (cmpInstr->getOperand(1).isReg() &&
cmpInstr->getOperand(1).isKill())
cmpInstr->getOperand(1).setIsKill(false);
cmpInstr->eraseFromParent();
jmpInstr->eraseFromParent();
++nvjGenerated;
++NumNVJGenerated;
break;
}
}
}
}
return true;
}
FunctionPass *llvm::createHexagonNewValueJump() {
return new HexagonNewValueJump();
}